Simplify this expression. -12 - 3 • (-8 +(-4)^2 - 6) + 2

Answers

Answer 1

Answer

-16

Step By Step explanation

Simplify This Expression. -12 - 3 (-8 +(-4)^2 - 6) + 2
Answer 2

Answer:

[tex] - 12 - 3 \times ( - 8 + ( { - 4)}^{2} - 6) + 2[/tex]

[tex] - 12 - 3 \times ( - 8 + 16 - 6) + 2[/tex]

[tex] - 12 - 3 \times (8 - 6) + 2[/tex]

[tex] - 12 - 3 \times 2 + 2[/tex]

[tex] - 12 - 6 + 2[/tex]

[tex] - 12 - 4[/tex]

[tex] - 16[/tex]


Related Questions

The American Sugar Producers Association wants to estimate
themean yearly sugar consumption. A sample of n = 12 people
revealsthe mean yearly consuption to be 55 pounds with a
standarddeviation of 20 pounds. Find the lower bound for the 98%
confidenceinterval for the mean yearly sugar consumption. Assume
thepopulation is normal.

Answers

Answer: 39.308 pounds

Step-by-step explanation:

We assume that the given population is normally distributed.

Given : Significance level : [tex]\alpha: 1-0.98=0.02[/tex]

Sample size : n= 12, which is  small sample (n<30), so we use t-test.

Critical value (by using the t-value table)=[tex]t_{n-1, \alpha/2}=t_{11,0.01}=2.718[/tex]

Sample mean : [tex]\overline{x}=50[/tex]  

Standard deviation : [tex]\sigma= 20[/tex]

The lower bound of confidence interval is given by :-

[tex]\overline{x}-t_{(n-1,\alpha/2)}\dfrac{\sigma}{\sqrt{n}}[/tex]

i.e. [tex]55-(2.718)\dfrac{20}{\sqrt{12}}[/tex]

[tex]=55-15.6923803166\approx55-15.692=39.308[/tex]

Hence, the lower bound for the 98%  confidence interval for the mean yearly sugar consumption= 39.308 pounds

Use the Babylonian method of false position to solve the following
problem,
taken from a clay tablet found in Susa: Let the width of a
rectangle measure a
quarter less than the length. Let 40 be the length of the diagonal.
What are
the length and width? Begin with the assumption that 1 (or 60) is
the length
of the rectangle.

Answers

Answer:

length: 32width: 24

Step-by-step explanation:

Assume a solution

Assume that 60 is the length. The width is then 1/4 less, or 60 -60/4 = 45.

The diagonal of this rectangle is found using the Pythagorean theorem:

  d = √(60² +45²) = √5625 = 75

Make the adjustment

This is a factor of 75/40 larger than the actual diagonal, so the actual dimensions must be 40/75 = 8/15 times those we assumed.

  length = (8/15)×60 = 32

  width = (8/15)×45 = 24

The length and width of the rectangle are 32 and 24, respectively.

_____

Comment on this solution method

This method is suitable for problems where variables are linearly related. If we were concerned with the area, for example, instead of the diagonal, we would have to adjust the linear dimensions by the square root of the ratio of desired area to "false" area.

Final answer:

This detailed answer explains how to use the Babylonian method of false position to find the length and width of a rectangle.

Explanation:

The Babylonian method of false position involves making an initial assumption about the solution and then iteratively honing in on the correct answer.

Step-by-step:

Let's start with an assumption: Length = 60. Then calculate the width based on the given conditions.

Adjust your assumption based on the calculated width until you reach the correct solution.

By using this method, you can find the length and width of the rectangle described in the problem.

Consider a bag containing five red marbles, two green ones, one transparent one, four yellow ones, and two orange ones How many possible sets of five marbles are there in which none of them are red or green? sets Need Help? Tente Tutor

Answers

Answer:  21

Step-by-step explanation:

Given : A bag containing five red marbles, two green ones, one transparent one, four yellow ones, and two orange ones .

Total marbles other than red or green = 1+4+2=7

Now, the number of combinations to select five marbles from the set of 7 will be :-

[tex]7C_5=\dfrac{7!}{5!(7-5)!}=\dfrac{7\times6\times5!}{5!\times2!}=21[/tex]

Hence, the number of  possible sets of five marbles are there in which none of them are red or green =21

Drug A has a concentration of 475 mg/10 mL. How many grams are in 100 mL of Drug A? (Round to the nearest tenth if applicable).

Answers

Answer: There are 4.8 grams in 100 mL of Drug A

Step-by-step explanation:

In order to determinate how many grams are in 100 mL of Drug A you can multiply and divide the expression of the concentration by 10 (To obtain 100 mL in the denominator)

Notice that the value remains unaltered.

(475 mg/10 mL )(10/10) = 4750 mg/ 100 mL

But the question is how many grams are in 100 mL, so you have to convert the value from mg to g.

The prefix m (mili) is equivalent to 0,001 so you can use 0.001 instead of the prefix

4750(0.001) g/ 100 mL

4.75 g/ 100 mL

The rounded result is 4.8 g/ 100 mL

Find the Cartesian Equation of the plane passing through P(8, -2,0) and perpendicular to a- 5i+3j-k What is the distance of this plane to the point 0(2,2, 2)? (a) (b)

Answers

Answer:

equation of plane, 5x+3y-z-36=0

Distance of point (2,2,2) from plane = 4.05 units

Step-by-step explanation:

Given,

Plane passing through the point = (8, -2, 0)

Let's say, [tex]x_1\ =\ 8[/tex]

               [tex]y_1\ =\ -2[/tex]

                [tex]z_1\ =\ 0[/tex]

Plane perpendicular to the vector, a= 5i + 3j- k

Since, the vector is perpendicular to the plane, hence the equation of plane can be given by

[tex](5i + 3j- k).((x-x_1)i+(y-y_1)j+(z- z_1)k)=\ 0[/tex]

[tex]=>(5i + 3j- k).((x-8)i+(y+2)j+(z-0)k)=\ 0[/tex]

[tex]=>\ 5(x-8)+3(y+2)-z=0[/tex]

[tex]=>\ 5x\ -\ 40\ +\ 3y\ +\ 6\ -\ z\ =\ 0[/tex]

[tex]=>\ 5x\ +\ 3y\ -\ z\ -\ 36\ =\ 0[/tex]

Hence, the equation of plane can be given by, 5x+3y-z-36=0

Now, we have to calculate the distance of the point O(2,2,2) from the plane 5x+3y-z-36=0

Let's say,

a= 5, b= 3, c= -1, d=-36

[tex]x_0=2,\ y_0=2,\ z_0=2[/tex]

So, distance of a point from the plane can be given by,

[tex]d=\dfrac{ax_0+by_0+cz_0+d}{\sqrt{a^2+b^2+c^2}}[/tex]

 [tex]=\dfrac{\left |5\times 2+3\times 2+(-1)\times 2-36\right |}{\sqrt{5^2+3^2+(-1)^2}}[/tex]

 [tex]=\dfrac{24}{\sqrt{35}}[/tex]

  = 4.05 units

So, the distance of the point O(2,2,2) from the given plane will be 4.05 units.

The amount of money spent on red balloon in a certain college town when the football team is in town is a normal random variable with mean $50000 and a standard deviation of $3000. What proportion of home football game days in this town is less than $45000 worth of red balloons sold?

Answers

Answer: 0.0475

Step-by-step explanation:

Given : The amount of money spent on red balloon in a certain college town when the football team is in town is a normal random variable with

[tex]\mu=\$50000[/tex] and [tex]\sigma=\$3000[/tex]

Let x be the random variable that represents the  amount of money spent on red balloon.

Using formula [tex]z=\dfrac{x-\mu}{\sigma}[/tex], the z-score corresponding to x= 45000 will be :_

[tex]z=\dfrac{45000-50000}{3000}\approx-1.67[/tex]

Now, by using the standard normal distribution table for z, we have

P value : [tex]P(z<-1.67)=1-P(z<1.67)=1-0.9525=0.0475[/tex]

The proportion of home football game days in this town is less than $45000 worth of red balloons sold = 0.0475

You buy g gallons of gasoline at $3.05 per gallon and pay $36.60. Write an equation to find the number of gallons purchased. Then find the number of gallons of gasoline that you purchased.

Answers

Answer:

The equation to find the number of gallons purchased is:

[tex]C(n) = 3.05n[/tex]

You purchased 12 gallons of gasoline

Step-by-step explanation:

This problem can be modeled by the following first order function

[tex]C(n) = P_{G}n[/tex]

Where C(n) is the cost in function to the number of gallons, P is the price of the gallon and n is the number of gallons

The problem states that the price of gasoline is $3.05 per gallon, so P = 3.05

The equation to find the number of gallons purchased is:

[tex]C(n) = 3.05n[/tex]

If you pay $36.60, you have C = 36.60, and want to find n, so:

[tex]36.60 = 3.05n[/tex]

[tex]n = \frac{36.60}{3.05}[/tex]

[tex]n = 12[/tex]

You purchased 12 gallons of gasoline

Two simple statements are connected with "AND." You're constructing the truth table of this compound statement. How many rows does the truth table x will have?

Answers

Answer:

4 rows

Step-by-step explanation:

It is given that two statements two be connected with AND, the statements may be either true or false.

The output of the AND will be true if both the statements will be true otherwise false.

We can construct the table as follows:

statement 1            statement 2         output

false                        false                        false

false                         true                         false

true                          false                        false

true                          true                          true

Hence, the number of rows the truth will have = 4

The opposite process rule says to solve for ________. a known variable by replicating the process used to form the original equation an unknown variable by reversing the process used to form the original equation an unknown variable by replicating the process used to form the original equation a known variable by reversing the process used to form the original equation

Answers

Answer:

An unknown variable by reversing the process used to form the original equation.

Step-by-step explanation:

The opposite process rule says to solve for - an unknown variable by reversing the process used to form the original equation.

If an equation indicates an operation such as addition, subtraction, multiplication, or division, solve for the unknown variable by using the opposite process.

For example:

Lets say we have to find [tex]x+25=35[/tex]

Here 25 is subtracted from both sides of the equation to isolate x.

[tex]x+25-25=35-25[/tex]

we get x = 10

Check this : [tex]10+25=35[/tex]

Final answer:

The opposite process rule is a technique used to solve for an unknown variable by reversing the operations that were used to create the equation. It is a key concept in algebra for finding values of unknown variables.

Explanation:

The opposite process rule refers to solving for an unknown variable by reversing the process used to form the original equation. This is a fundamental technique in solving algebraic equations, necessary for determining the value of the unknown.

To solve for an unknown variable, you follow several steps. Initially, identify the unknowns and known variables. Then, find an equation that expresses the unknown in terms of the knowns. If more than one unknown is present, multiple equations may be needed.

To find the numerical value of the unknown, substitute known values, including their units, into the equation and solve. In algebra, this could mean performing operations such as addition, subtraction, multiplication, or division inversely to isolate the variable.

Let A be the matrix: [130 024 154 11-4] Find a basis for the nullspace of A.

Answers

Answer:

The basis for the null space of A is [tex]{\left[\begin{array}{c}-1&-1&1&0\end{array}\right],\left[\begin{array}{c}-1&1&0&1\end{array}\right]}[/tex]

Step-by-step explanation:

The first step is to find the reduced row echelon form of the matrix:

[tex]\left[\begin{array}{cccc}1&0&1&1\\3&2&5&1\\0&4&4&-4\end{array}\right][/tex]

Make zeros in column 1 except the entry at row 1, column 1. Subtract row 1 multiplied by 3 from row 2 [tex]\left(R_2=R_2-\left(3\right)R_1\right)[/tex]

[tex]\left[\begin{array}{cccc}1&0&1&1\\0&2&2&-2\\0&4&4&-4\end{array}\right][/tex]

Make zeros in column 2 except the entry at row 2, column 2. Subtract row 2 multiplied by 2 from row 3 [tex]\left(R_3=R_3-\left(2\right)R_2\right)[/tex]

[tex]\left[\begin{array}{cccc}1&0&1&1\\0&2&2&-2\\0&0&0&0\end{array}\right][/tex]

Multiply the second row by 1/2 [tex]\left(R_2=\left(1/2\right)R_2\right)[/tex]

[tex]\left[\begin{array}{cccc}1&0&1&1\\0&1&1&-1\\0&0&0&0\end{array}\right][/tex]

    2. Convert the matrix equation back to an equivalent system and solve the matrix equation

[tex]1x_{1} +x_{3} +1x_{4}=0\\ 1x_{2} +x_{3} -1x_{4}=0\\0=0[/tex]

[tex]\left[\begin{array}{cccc}1&0&1&1\\0&1&1&-1\\0&0&0&0\end{array}\right] \left[\begin{array}{c}x_{1} &x_{2} &x_{3}&x_{4} \end{array}\right]=\left[\begin{array}{c}0&0&0\end{array}\right][/tex]

If we take [tex]x_{3}=t, x_{4}=s[/tex] then [tex]x_{1}=-s-t,x_{2}=s-t,x_{3}=t,x_{4}=s[/tex]

Therefore,

[tex]\boldsymbol{x}=\left[\begin{array}{c}-s-t&s-t&t&s\end{array}\right]=\left[\begin{array}{c}-1&-1&1&0\end{array}\right]t+\left[\begin{array}{c}-1&1&0&1\end{array}\right]s\\\boldsymbol{x}=\left[\begin{array}{c}-1&-1&1&0\end{array}\right]x_{3} +\left[\begin{array}{c}-1&1&0&1\end{array}\right]x_{4}[/tex]

The null space has a basis formed by the set {[tex]{\left[\begin{array}{c}-1&-1&1&0\end{array}\right],\left[\begin{array}{c}-1&1&0&1\end{array}\right]}[/tex]}

A certain chalkboard manufacturer determines that their largest blackboard model has a mean length of 5.00 m and a standard deviation of 1.0 cm. A certain school district orders 1000 of these chalkboards. How many are likely to have lengths of under 4.98 m?

Answers

Answer:

23 chalkboards

Step-by-step explanation:

Given:

Mean length = 5 m

Standard deviation = 0.01

Number of units ordered = 1000

Now,

The z factor = [tex]\frac{\textup{x - Mean}}{\textup{standard deviation}}[/tex]

or

The z factor = [tex]\frac{\textup{4.98 - 5}}{\textup{0.01}}[/tex]

or

Z = - 2

Now, the Probability P( length < 4.98 )

Also, From z table the p-value = 0.0228

therefore,

P( length < 4.98 ) = 0.0228

Hence, out of 1000 chalkboard ordered (0.0228 × 1000) = 23 chalkboard are likely to have lengths of under 4.98 m.


You deposit $3000 into a money-market savings account which pays 4.8% compounded quarterly, and you make no withdrawals from or further deposits into this account for 3 years. How much money is in your account at the end of those 3 years?

Give answer in dollars rounded to the nearest cent. Do NOT enter "$" sign in answer.

Answers

Answer:

$5265.71

Step-by-step explanation:

We have been given that you deposit $3000 into a money-market savings account which pays 4.8% compounded quarterly.

We will use future value formula to solve our given problem.

[tex]FV=C_0\times (1+r)^n[/tex], where,

[tex]C_0=\text{Initial amount}[/tex],

r = Rate of return in decimal form,

n = Number of periods.

[tex]4.8\%=\frac{4.8}{100}=0.048[/tex]

[tex]n=3\times 4=12[/tex]

[tex]FV=\$3,000\times (1+0.048)^{12}[/tex]

[tex]FV=\$3,000\times (1.048)^{12}[/tex]

[tex]FV=\$3,000\times 1.7552354909370114[/tex]

[tex]FV=\$5265.7064\approx \$5265.71[/tex]

Therefore, there will be $5265.71 in your account at the end of those 3 years.

A ream of paper contains 500 sheets of paper. Norm has 373 sheets of paper left from a ream. Express the portion of a ream Norm has as a fraction and as a decimal.

Answers

Answer: In fraction : [tex]\dfrac{373}{500}[/tex]

In Decimal :  0.746

Step-by-step explanation:

Given : A ream of paper contains 500 sheets of paper.

Norm has 373 sheets of paper left from a ream.

Then, the fraction of ream Norm has will be :-

[tex]\dfrac{\text{Number of sheets left from ream }}{\text{Total sheets in a ream }}\\\\=\dfrac{373}{500}[/tex]

To convert in decimal we divide 373 by 500, we get 0.746.

Hence, The portion of a ream Norm has as = [tex]\dfrac{373}{500}[/tex] or 0.746

What sine function represents an amplitude of 4, a period of pi over 2, no horizontal shift, and a vertical shift of −3?


f(x) = −3 sin 4x + 4

f(x) = 4 sin 4x − 3

f(x) = 4 sin pi over 2x − 3

f(x) = −3 sin pi over 2x + 4

Answers

Answer:

[tex]f(x) = 4sin(\frac{\pi}{2}x) - 3[/tex], the third one

Step-by-step explanation:

Explaining the sine function:

The sine function is defined by:

[tex]S = Asin(p(x - x_{0})) + V[/tex]

In which A is the amplitude, [tex]p = \frac{2\pi}{N}[/tex] is the period, [tex]x_{0}[/tex] is the horizontal shift and V is the vertical shift.

So, in your problem:

The amplitude is 4, so A = 4.

The period is [tex]\frac{\pi}{2}[/tex], so [tex]p = \frac{\pi}{2}[/tex].

There is no horizontal shift, so [tex]x_{0} = 0[/tex].

The vertical shift is −3, so V = -3.

The sine function that represents these following conditions is

[tex]f(x) = 4sin(\frac{\pi}{2}x) - 3[/tex], the third one

U fill containers with an average of 12 ounces of oil with
astanderd deviation of .25 ounces. take a random sample of 40
cans,what is the probability that the sample mean,X is grater
then12.05.

Answers

Answer: 0.1038

Step-by-step explanation:

We assume that oil in each container is filled will normal distribution.

Given : Population mean : [tex]\mu=12[/tex]

Standard deviation: [tex]\sigma=0.25[/tex]

Sample size : [tex]n=40[/tex]

Let x be the random variable that denotes the amount of oil filled in container.

z-score : [tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

For x= 12.05

[tex]z=\dfrac{12.05-12}{\dfrac{0.25}{\sqrt{40}}}=1.26491106407\approx1.26[/tex]

Now by using the standard normal table for z, we have the probability that the sample mean,X is greater  then 12.05:-

[tex]P(z>1.26)=1-0.8961653=0.1038347\approx0.1038[/tex]

Hence, the probability that the sample mean,X is greater  then 12.05 = 0.1038

dy/dt = y^2

y(t) = ?

Answers

Answer:

[tex]y(t)=-\frac{1}{t+C}[/tex]

Step-by-step explanation:

We are given that

[tex]\frac{dy}{dt}=y^2[/tex]

We have to find the value of y(t).

[tex]\frac{dy}{dt}=y^2[/tex]

[tex]\frac{dy}{y^2}=dt[/tex]

Integrating on both sides

[tex]\int y^{-2}dy=\int dt[/tex]

We know that [tex]\int x^n dx=\frac{x^{n+1}}{n+1}+C[/tex]

Using the formula

[tex]\frac{y^{-1}}{-1}=t+C[/tex]

[tex]-\frac{1}{y}=t+C[/tex]

[tex]a^{-1}=\frac{1}{a}[/tex]

Taking the reciprocal on both side then , we get

[tex]-y=\frac{1}{t+C}[/tex]

[tex]y(t)=-\frac{1}{t+C}[/tex]

A commercial development project requires annual outlays of $65,000 for 10 years. Net cash inflows beginning in year 11 are expected to be $170,000 per year for 20 years. If the developer requires a rate of return of 16% , compute the net present value of the project.

Answers

Answer:

Net Present Value = - $99,360

Step-by-step explanation:

As provided,

Cash outlay = $65,000 each year for 10 years

Since the first outlay will be immediately, the cumulative discounting factor for cash outlay will be @ 16% = 1 for year 0 + 4.606 for 9 years = 5.606

Therefore, cumulative present value of total cash outlay = $65,000 [tex]\times[/tex] 5.606 = $364,390

Cash inflows beginning in year 11 = $170,000 for another continuous 20 years.

these cash flow will occur in the beginning of year 11 and end of year 10

Discounting factor will be [tex]\frac{1}{(1+0.16)^1^0}[/tex] = 0.2267

For, consecutive 20 years = 1.559

Therefore, value of inflows = $170,000 [tex]\times[/tex] 1.559 = $265,030

Net Present Value = Present Value of Cash Inflows - Present Value of Cash Outflows = $265,030 - $364,390 = - $99,360

Rewrite the subtraction number sentence as an addition number sentence.
5- (-2)

Answers

Answer:

5 + 2          

Step-by-step explanation:

We have to rewrite the given statement in addition form.

The integers have  property of:

Negative(-)  Negative(-) = Positive(+)

Positive(+)  Positive(+)  = Positive(+)

Positive(+)  Negative(-) = Negative(-)

Negative(-) Positive(+)  = Negative(-)

The given statement is:

5-(-2)

Since we have two negative together, it is converted into a positive.

Thus, the given statement can be written in positive form as

5 + 2

Is 57.3 a whole number

Answers

No, any decimal or fraction is not a whole number.

Answer:

No, whole numbers are numbers that are whole, which would mean that they are not a decimal or a fraction. This is because a fraction or a decimal is a portion of a number, which would mean that the decimal or fraction is not complete/ not whole!

Suppose a company wants to determine the current percentage of customers who are subjected to their advertisements online. How many customers should the company survey in order to be 98% confident that the estimated (sample) proportion is within 3 percentage points of the true population proportion of customers who are subjected to their advertisements online? z0.10 z0.05 z0.025 z0.01 z0.005 1.282 1.645 1.960 2.326 2.576

Answers

Answer: 1503

Step-by-step explanation:

Given : Significance level : [tex]\alpha:1-0.98=0.02[/tex]

Critical value : [tex]z_{\alpha/2}=2.326[/tex]

Margin of error : [tex]E=\pm0.03[/tex]

We know that the formula to find the sample size (the prior true proportion is not available) is given by :-

[tex]n=0.25(\dfrac{z_{\alpha/2}}{E})^2[/tex]

i.e. [tex]n=0.25(\dfrac{2.326}{0.03})^2=1502.85444444\approx1503[/tex]

Hence, the minimum sample size should be 1503.

Two sides of a rectangle are 4cm in length. The other two sides are 6cm in length. What is the perimeter of the rectangle? Include the abbreviation for millimeter as the units.

Answers

Answer: 200 mm

Step-by-step explanation:

The perimeter of rectangle is given by :-

[tex]P=2(l+w)[/tex], where l is length and w is width of the rectangle.

Given : Two sides of a rectangle are 4 cm in length. The other two sides are 6 cm in length.

The perimeter of the rectangle will be :_

[tex]P=2(4+6)=2(10)=20\ cm[/tex]

We know that 1 cm = 10 mm

Therefore,  perimeter of the rectangle = [tex]20\times10=200\ mm[/tex]

April shoots an arrow upward into the air at a speed of 64 feet per second from a platform that is 11 feet high. The height of the arrow is given by the function h(t) = -16t2 + 64t + 11, where t is the time is seconds. What is the maximum height of the arrow?

Answers

Answer:

Maximum height of the arrow is 203 feets

Step-by-step explanation:

It is given that,

The height of the arrow as a function of time t is given by :

[tex]h(t)=-16t^2+64t+11[/tex]..........(1)

t is in seconds

We need to find the maximum height of the arrow. For maximum height differentiating equation (1) wrt t as :

[tex]\dfrac{dh(t)}{dt}=0[/tex]

[tex]\dfrac{d(-16t^2+64t+11)}{dt}=0[/tex]

[tex]-32t+64=0[/tex]

t = 2 seconds

Put the value of t in equation (1) as :

[tex]h(t)=-16(2)^2+64(2)+11[/tex]

h(t) = 203 feet

So, the maximum height reached by the arrow is 203 feet. Hence, this is the required solution.

Suppose H,K C G are subgroups of orders 5 and 8, respectively. Prove that H K = {e}.

Answers

Step-by-step explanation:

Consider the provided information.

We have given that H and k are the subgroups of orders 5 and 8, respectively.

We need to prove that H∩K = {e}.

As we know "Order of element divides order of group"

Here, the order of each element of H must divide 5 and every group has 1 identity element of order 1.

1 and 5 are the possible order of 5 order subgroup.

For subgroup order 8: The possible orders are 1, 2, 4 and 8.

Now we want to find the intersection of these two subgroups.

Clearly both subgroup H and k has only identity element in common.

Thus, H∩K = {e}.

A researcher wants to compare student loan debt for students who attend four-year public universities with those who attend four –year private universities. She plans to take a random sample of 100 recent graduates of public universities and 100 recent graduates of private universities. Which type of random sampling is utilized in her study design?

Answers

Answer:

A simple random sample.

Step-by-step explanation:

A simple random sample is an statistical sample in which each member of a group has the same probability of being chosen. Since the researcher doesn't really have specific characteristics added to the sample other than being from public or private universities, this would be a simple random sample.

1/4÷(-2/3) =3/8 she is right now did she get the answer​

Answers

Answer:

  see below for the working

Step-by-step explanation:

Dividing by a number is the same as multiplying by the inverse of that number.

[tex]\displaystyle\frac{\left(\frac{1}{4}\right)}{\left(-\frac{2}{3}\right)}=-\frac{1}{4}\cdot\frac{3}{2}=-\frac{3}{4\cdot 2}=-\frac{3}{8}[/tex]

Let x,y \epsilon R. Use mathmatical induction to prove the identity.

x^{n+1}-y^{n+1}=(x-y)(x^{n}+x^{n-1}y+...+xy^{n-1}+y^{n})

Answers

Step-by-step explanation:

We will prove by mathematical induction that, for every natural n,  

[tex](x-y)(x^{n}+x^{n-1}y+...+xy^{n-1}+y^{n})=x^{n+1}-y^{n+1}[/tex]

We will prove our base case (when n=1) to be true:

Base case:

[tex](x-y)(x^{n}+x^{n-1}y+...+xy^{n-1}+y^{n})=(x-y)(x^{1}+y^{1})=x^2-y^2=x^{1+1}-y^{1+1}[/tex]

Inductive hypothesis:  

Given a natural n,  

[tex]x^{n+1}-y^{n+1}=(x-y)(x^{n}+x^{n-1}y+...+xy^{n-1}+y^{n})[/tex]

Now, we will assume the inductive hypothesis and then use this assumption, involving n, to prove the statement for n + 1.

Inductive step:

Observe that, for y=0 the conclusion is clear. Then we will assume that [tex]y\neq 0.[/tex]

[tex](x-y)(x^{n+1}+x^{n}y+...+xy^{n}+y^{n+1})=(x-y)y(\frac{x^{n+1}}{y}+x^{n}+...+xy^{n-1}+y^{n})=(x-y)y(\frac{x^{n+1}}{y})+(x-y)y(x^{n}+...+xy^{n-1}+y^{n})=(x-y)y(\frac{x^{n+1}}{y})+y(x^{n+1}-y^{n+1})=(x-y)x^{n+1}+y(x^{n+1}-y^{n+1})=x^{n+2}-yx^{n+1}+yx^{n+1}-y^{n+2}=x^{n+2}-y^{n+2}\\[/tex]

With this we have proved our statement to be true for n+1.    

In conlusion, for every natural n,

[tex](x-y)(x^{n}+x^{n-1}y+...+xy^{n-1}+y^{n})=x^{n+1}-y^{n+1}[/tex]

Plato math help please

Answers

Answer: option (C)

Step-by-step explanation: The slope of a linear function is undetermined when the line is parallel respect to the y-axis. In the current problem there is no way to observe such geometrical issue, but if we consider how to derive the slope using the following expression; [tex]m=\frac{\Delta y}{\Delta x}= \frac{y_{2}-y_{1}}{x_2-x_{1}}[/tex].

With the previous equation, we have

[tex]a) for P_{1}(-1,1), P_{2}(1,-1)   m=\frac{\Delta y}{\Delta x}= \frac{-1-1}{1-(1)}=\frac{-2}{2}=1\\[/tex], therefore the slope is defined

[tex]b) for P_{1}(-2,2), P_{2}(2,2)   m=\frac{\Delta y}{\Delta x}= \frac{2-2}{2-(2)}=\frac{0}{4}=0\\[/tex], therefore the slope is defined

[tex]c) for P_{1}(-3,3), P_{2}(-3,3)   m=\frac{\Delta y}{\Delta x}= \frac{3-(-3)}{-3-(-3)}=\frac{6}{0}=undetermined\\[/tex]

[tex]d) for P_{1}(-4,4), P_{2}(4,4)   m=\frac{\Delta y}{\Delta x}= \frac{4-(-4)}{4-(-4)}=\frac{8}{8}=1\\[/tex]

In this case, the option (C) shows that is not possible to divide over zero. Given such issue, the slope is undetermined and therefore it is a vertical line parallel to y-axis.

Estimate the product or quotient.
4/7 x 1/6

Answers

Answer: I'm sure its 2/21

Step-by-step explanation: you just need to multiply cross sides then divide by any number that works on both of them.

I hope that I answer your question.

A researcher wants to provide a rabbit exactly 162 units of​protein, 72 units of​ carbohydrates, and 30 units of vitamin A. The rabbit is fed three types of food. Each gram of Food A has 5 units of​ protein, 2 units of​ carbohydrates, and 1unit of vitamin A. Each gram of Food B contains 11 units of​ protein, 5 units of​carbohydrates, and 2 units of vitamin A. Each gram of Food C contains 23 units of​ protein, 11 units of​ carbohydrates, and 4 units of vitamin A. How many grams of each food should the rabbit be​ fed?

Answers

Answer:

The rabbit should be fed:

[tex]6 + 2z[/tex] grams of food A

[tex]12 - 3z[/tex] grams of food B

[tex]z[/tex] grams of food C

For [tex]z \leq 4[/tex].

Step-by-step explanation:

This can be solved by a system of equations.

I am going to say that x is the number of grams of food A, y is the number of grams of food B and z is the number of grams of Food C.

The problem states that:

A researcher wants to provide a rabbit exactly 162 units of ​protein:

There are 5 units of protein in each gram of food A, 11 units of protein in each gram of food B and 23 units of protenin in each gram of food C. So

[tex]5x + 11y + 23z = 162[/tex]

A researcher wants to provide a rabbit exactly 72 units of carbohydrates:

There are 2 units of carbohydrates in each gram of food A, 5 units of carbohydrates in each gram of food B and 11 units of carbohydrates in each gram of food C. So:

[tex]2x + 5y + 11z = 72[/tex]

A researcher wants to provide a rabbit exactly 30 units of Vitamin A:

There is 1 unit of Vitamin A in each gram of food A, 2 units of Vitamin A in each gram of food B and 4 units of Vitamin A in each gram of food C. So:

[tex]x + 2y + 4z = 30[/tex].

We have to solve the following system of equations:

[tex]5x + 11y + 23z = 162[/tex]

[tex]2x + 5y + 11z = 72[/tex]

[tex]x + 2y + 4z = 30[/tex].

I think that the easier way to solve this is reducing the augmented matrix of this system.

This system has the following augmented matrix:

[tex]\left[\begin{array}{cccc}5&11&23&162\\2&5&11&72\\1&2&4&30\end{array}\right][/tex]

To help reduce this matrix, i am going to swap the first line with the third

[tex]L_{1} <-> L_{3}[/tex]

Now we have the following matrix:

[tex]\left[\begin{array}{cccc}1&2&4&30\\2&5&11&72\\5&11&23&162\end{array}\right][/tex]

Now i am going to do these following operations, to reduce the first row:

[tex]L_{2} = L_{2} - 2L_{1}[/tex]

[tex]L_{3} = L_{3} - 5L_{1}[/tex]

Now we have

[tex]\left[\begin{array}{cccc}1&2&4&30\\0&1&3&12\\0&1&3&12\end{array}\right][/tex]

Now, to reduce the second row, i do:

[tex]L_{3} = L_{3} - L_{2}[/tex]

The matrix is:

[tex]\left[\begin{array}{cccc}1&2&4&30\\0&1&3&12\\0&0&0&0\end{array}\right][/tex]

This means that z is a free variable, so we are going to write y and x as functions of z.

From the second line, we have

[tex]y + 3z = 12[/tex]

[tex]y = 12 - 3z[/tex]

From the first line, we have

[tex]x + 2y + 4z = 30[/tex]

[tex]x + 2(12 - 3z) + 4z = 30[/tex]

[tex]x + 24 - 6z + 4z = 30[/tex]

[tex]x = 6 + 2z[/tex]

Our solution is: [tex]x = 6 + 2z, y = 12 - 3z, z = z[/tex].

However, we can not give a negative number of grams of a food. So

[tex]y \geq 0[/tex]

[tex]12 - 3z \geq 0[/tex]

[tex]-3z \geq -12 *(-1)[/tex]

[tex]3z \leq 12[/tex]

[tex]z \leq 4[/tex]

The rabbit should be fed:

[tex]6 + 2z[/tex] grams of food A

[tex]12 - 3z[/tex] grams of food B

[tex]z[/tex] grams of food C

For [tex]z \leq 4[/tex].

c) Use the Bisection method to find a solution accurate to within 10^-2 for x^4 − 2x^3 − 4x^2 + 4x + 4 = 0 on [0, 2].

Answers

Answer:

  x ≈ 181/128 ≈ 1.41406

Step-by-step explanation:

The attached table shows the iterations. At each step, the interval containing the root is bisected and the function value at the midpoint of the interval is found. The sign of it relative to the signs of the function values at the ends of the interval tell which half interval contains the root. The process is repeated until the interval width is less than 10^-2.

Interval: [0, 2], signs [+, -], midpoint: 1; sign at midpoint: +

             [1, 2]                                      3/2                           -

             [1, 3/2]                                   5/4                           +

...

the rest is in the attachment. The listed table values are the successive interval midpoints.

The final midpoint is 181/128 ≈ 1.41406. This is within 0.0002 of the actual root.

_____

The actual solution in the interval [0, 2] is √2 ≈ 1.41421.

Final answer:

To find a solution utilizing the Bisection Method, one needs to establish the function and verify it satisfies the bisection condition. The process is iteratively repeated by adjusting the interval to the midpoint until the error tolerance is reached or the function value of the midpoint is within the desired accuracy.

Explanation:

The subject of your question concerns utilizing the Bisection method to solve a certain polynomial equation from a given interval [0, 2] with an accuracy of within 10^-2. The Bisection Method is a root-finding method in numerical analysis to solve for roots in given intervals.

First, establish the function f(x) = x^4 − 2x^3 − 4x^2 + 4x + 4 and set the interval a = 0 and b = 2. The midpoint c = (0 + 2) / 2 = 1.Check whether the configuration of f(0), f(1), and f(2) satisfies the bisection condition. The bisection condition states that the product of function at the end points should be negative i.e., f(a)*f(b) < 0. If it does, the root lies between a and b.Find f(1) and check its product with the values at the end points. If f(a)*f(c) < 0, then the root lies in the first subinterval so b is updated to be c. If not, then root is in the other interval, so a = c.We repeat this process until we get a c value that yields a function value within our desired accuracy or till we reach a point where (b-a)/2 < error tolerance, in this case, 10^-2 .

This is an example of how the Bisection Method would be applied in solving for roots of polynomial equations. Do take note that this method only provides approximate solutions and it can be a lengthy process for equations with multiple roots.

Learn more about Bisection Method here:

https://brainly.com/question/32563551

#SPJ2

Other Questions
What did the Connecticut belief What is a baguette?A.a hot dog type of bunB.a round breadC.a long slender bread with lots of crust a new wireless printer costs $99.99 in the store. what would your total cost be if sales tax is 9.5% 1. Quelle est la rponse correcte?Il est souvent en ret#rd? (brainly censors the word late)Non, il n'est toujours en ret#rd.Non, il n'est jamais en ret#rd.Non, il n'est pas encore en ret#rd.2. Quelle est la rponse correcte?Tu es toujours la maison?(2 points)Non, je ne suis plus la maison.Non, tu n'es pas la maison.Non, je suis plus la maison.3. Quelle est la forme correcte de la phrase au ngatif?Elle se lave les cheveux.(2 points)Elle se lave pas les cheveux.Elle ne se pas lave les cheveux.Elle ne se lave pas les cheveux.4. Quelle est la forme correcte de la phrase au ngatif?Nous nous habillons rapidement.(2 points)Nous nous ne habillons pas rapidement.Nous ne nous habillons pas rapidement.Nous ne nous habillons rapidement pas.5. Quelle est la forme correcte de la phrase au ngatif?Vous vous rveillez tous les matins 7 heures.(2 points)Vous ne vous rveillez tous les matins 7 heures.Vous vous rveillez pas tous les matins 7 heures.Vous ne vous rveillez pas tous les matins 7 heures.6. Quelle est la forme correcte de la phrase au ngatif?Je me suis lev tard.(2 points)Je me ne suis lev pas tard.Je me suis lev pas tard.Je ne me suis pas lev tard.7. Quelle est la traduction correcte?I'm never late.(2 points)Je n'arrive jamais en ret#rd.Je n'arrive plus en ret#rd.J'arrive pas t#rd.8. Quelle est la traduction correcte?We never get dressed quickly.(2 points)Nous ne nous levons jamais rapidement.Nous ne nous habillons jamais rapidement.Nous ne nous habillons pas rapidement.9. Quelle est la traduction correcte?They are open on time.(2 points)Ils sont souvent l'heure.Ils ne sont jamais l'heure.Ils ne sont souvent l'heure. 15. What is one cause of the development of many small independent city-states inancient Greece?a. Military leaders were able to avoid detection by the enemy.b. The mountainous terrain of Greece resulted in widely isolated settlements.c. merchants traveling between the Indian peninsula and Europe needed places tostop for rest and foodd. The form of government in each community was a dictatorship Which statements were a factor in the decline of Sumer?Select all correct answers A: as the fields of Sumer grew saltier, harvests were less plentiful. B:Wars among the city-states plagued the Sumerians. C:Sumer was located on a mountain. What is the r.a.m. value of krypton (Kr)? A. 36 amu B. 1/36 amu C. 84 amu D. 1/84 amu The following data is available for Blaine Corporation at December 31, 2012: Common stock, par $10 (authorized 25,000 shares) $200,000 Treasury Stock (at cost $15 per share) 900 Based on the data, how many shares of common stock are a) outstanding, and b) have been issued ? a.25,000 b.20,000 c.24,940 d.19,940 A boy is walking down the road with a doctor. Whilethe boy is the doctor's son, the doctor is not theboy's father. Then who is the doctor? President Bigego is running for re-election against Senator Pander. Bigego proclaims that more people are working now than when he took office. Pander says that the unemployment rate is higher now than when Bigego took office. You conclude that.... a. both of them could be telling the truth if the labor force grew slower than employment. b. both of them could be telling the truth if the labor force grew faster than employment. c. one of them must be lying. d. both of them could be telling the truth if the labor force, and employment grew at the exact same rate. Suppose that scores on a test are normally distributed with a mean of 80 and a standard deviation of 8. Answer the questions below. (a) What is the 70th percentile? (round to the tenths place) (b) What percentage of students score less than 70? (round to the tenths place, give the percent) True or false? The Earth is the only planet in our Solar System with a natural satellite. Identify the outlier of each set of values.4. 32 35 3 36 37 35 38 40 42 34 Which of the following statements is/are true? (Points : 5) A. A default constructor is automatically created for you if you do not define one. B. A static method of a class can access non-static members of the class directly. C. An important consideration when designing a class is identifying the audience, or users, of the class. None of the above Only A and C Define the term relative molecular mass Which compound has the bigger lattice energy? K Br CaBr2 o O Na, NaF Rb20 0 Rb, S 0 In order, discuss each of the three stages in the evolution of Internet marketing. 65.39Atomic # =Atomic Mass =# of Protons =# of Neutrons =# of Electrons = Simplify the expression 5^22/5^13 What caused Europes population to increase, to provoke its interest in trade, and provided its population with large amounts of gold and silver? the Commercial Revolution the Columbian Exchange the Triangular Trade the mercantilism economy