Sixty percent of the eligible voting residents of a certain community support the incumbent candidate. If eight of the residents are selected at random, find the probability that at least five of the eight support the candidate.

Answers

Answer 1

By the binomial theorem we know that

[tex]1 = (.4 + .6)^8 \\ = {8 \choose 0} (.4)^{8} (.6)^{0} + {8 \choose 1} (.4)^{7} (.6)^{1} +{8 \choose 2} (.4)^{6} (.6)^{2} + {8 \choose 3} (.4)^{5} (.6)^{3} + {8 \choose 4} (.4)^{4} (.6)^{4} \\ + \quad {8 \choose 5} (.4)^{3} (.6)^{5} + {8 \choose 6} (.4)^{2} (.6)^{6} + {8 \choose 7} (.4)^{1} (.6)^{7} + {8 \choose 8} (.4)^{0} (.6)^{8}[/tex]

The probability that exactly 5 of 8 support the incumbent is the term

 [tex]{8 \choose 5} (.4)^{3} (.6)^{5}[/tex]

So at least five of eight support is the sum of this term and beyond,

[tex]p={8 \choose 5} (.4)^{3} (.6)^{5} + {8 \choose 6} (.4)^{2} (.6)^{6} + {8 \choose 7} (.4)^{1} (.6)^{7} + {8 \choose 8} (.4)^{0} (.6)^{8}[/tex]

No particularly easy way of calculating that except popping it into Wolfram Alpha which reports

[tex]p = \dfrac{ 46413}{78125}[/tex]

Shouldn't half the terms work out to .6 ?  Interestingly it's not exactly .6 but pretty close at .594.

Answer 2

The total probability of at least five residents supporting the candidate, denoted as P(X≥5), is calculated by summing the probabilities of exactly five, six, seven, and eight residents supporting the candidate.

To find the probability of at least five out of eight randomly selected residents supporting the incumbent candidate when 60% of the community supports them, calculate and sum the binomial probabilities for exactly five to eight residents supporting the candidate.

The student is asking for the probability of at least five out of eight randomly selected community members supporting the incumbent candidate, given that 60% of the eligible voting residents support the candidate. This is a binomial probability problem because each selection is a Bernoulli trial with only two possible outcomes (support or do not support) and the probability of a resident supporting the candidate is constant (60%).

To calculate this probability, we will sum the probabilities of exactly five, six, seven, and eight residents supporting the candidate:

Calculate the probability of exactly 5 residents supporting the candidate using the binomial probability formula: P(X = 5) = (8 choose 5) * (0.6)^5 * (0.4)^3.

Repeat the process for P(X = 6), P(X = 7), and P(X = 8).

Finally, sum these probabilities to get the total probability of at least five residents supporting the candidate: P(X \\u2265 5) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8).

This sum provides the required probability.


Related Questions

Without computing each sum, find which is greater, O or E, and by how much -3+5 7+9.105 E 4+6+8+10+ 106 by□ (Sinplify your answer )

Answers

The sum E (4 + 6 + 8 + 10 + 106) is greater than the sum O (-3 + 5 + 7 + 9 + 105) by 11. E equals 134 and O equals 123.

To compare the sums O and E without computing each sum directly, let's analyze each expression:

For O: -3 + 5 + 7 + 9 + 105
For E: 4 + 6 + 8 + 10 + 106

Group the pairs of numbers for simplicity:

O: (-3 + 5) + (7 + 9) + 105 = 2 + 16 + 105 = 123E: (4 + 6) + (8 + 10) + 106 = 10 + 18 + 106 = 134

Comparing the two:

E is greater than O by: 134 - 123 = 11.

Therefore, the sum E is greater than the sum O by 11.

An effervescent tablet has the following formula: acetaminophen 325 mg, calcium carbonate 280 mg, citric acid 900 mg, potassium bicarbonate 300 mg, and sodium bicarbonate 465 mg. a. Calculate the total weight, in grams, of the ingredients in each tablet. b. How many tablets could be made with a supply of 5 kg of acetaminophen?

Answers

Answer:  a)   2.27 g     and     b)  15384

Step-by-step explanation:

Given : An effervescent tablet has the following formula:

acetaminophen 325 mg,

calcium carbonate 280 mg,

citric acid 900 mg,

potassium bicarbonate 300 mg, and

sodium bicarbonate 465 mg.

a) When we add all quantities together , we get

The total weight of the ingredients in each tablet = [tex]325 +280+900+300+465=2270[/tex]

Since, 1 gram = 1000 mg

Then, [tex]1\ mg=\dfrac{1}{1000}\ g[/tex]

Now, [tex]2270\ mg=\dfrac{2270}{1000}\ g=2.27\ g[/tex]

∴ The total weight of the ingredients in each tablet = 2.27 g

b. 1 kg = 1000g and 1 g = 1000 mg

Then, 1 kg = [tex]1000\times1000=1000,000\ mg[/tex]

⇒ 5 kg = 5000,000 mg

Now, The number of  tablets could be made with a supply of 5 kg of acetaminophen will be :

[tex]\dfrac{5000000}{325}=15384.6153846\approx15384[/tex]

Hence, the number of  tablets could be made with a supply of 5 kg of acetaminophen= 15384

Final answer:

The total weight of the ingredients in the effervescent tablet is 2.27 g. With a supply of 5 kg of acetaminophen, you could produce approximately 15,385 tablets.

Explanation:

To answer the student's questions, we start by calculating the total weight of the tablet:
acetaminophen: 325 mg, calcium carbonate: 280 mg, citric acid: 900 mg, potassium bicarbonate: 300 mg, and sodium bicarbonate: 465 mg.
Adding all these quantities together gives a total of 2270 mg or 2.27 g per tablet.

Now for the second question, to find out how many tablets you can make from 5 kg of acetaminophen, we need to determine how much acetaminophen is in a single tablet. We know that each tablet contains 325 mg of acetaminophen, so if we have 5 kg of it, we first convert the 5 kg into milligrams (since the amount in each tablet is given in milligrams).
There are 1,000,000 milligrams in a kilogram, so 5 kg = 5 x 1,000,000 = 5,000,000 mg.
We then divide this total quantity by the amount of acetaminophen in each tablet: 5,000,000 mg / 325 mg/tablet = approximately 15,385 tablets.

Learn more about Calculations involving mass of substances here:

https://brainly.com/question/37646281

#SPJ3

A Vivelle estradiol transdermal system is a round patch measuring about 4.3 cm in diameter. Convert this dimension to inches and millimeters.

Answers

Final answer:

The diameter of 4.3 cm equals 1.677 inches and 43 millimeters. This is calculated by using the conversion factors of 0.39 for inches and 10 for millimeters.

Explanation:

To convert diameter from centimeters to inches and millimeters, we use the conversion factors that 1 cm equals 0.39 inches and 1 cm equals 10 millimeters.

First, let's convert into inches. Multiply the given diameter (4.3 cm) by the conversion factor (0.39). 4.3 cm * 0.39 = 1.677 inches.

Next, let's convert into millimeters. Multiply the given diameter (4.3 cm) by the conversion factor (10) for millimeters. 4.3 cm * 10 = 43 millimeters.

Learn more about Conversion here:

https://brainly.com/question/34235911

#SPJ2

A project has a 60% of super success earning $50,000, a 15% chance of mediocre success earning $20,000, and a 25% probability of failure losing $30,000. What is the EMV of the project?

Answers

Answer:

The EMV of the project is $25,500.

Step-by-step explanation:

The EMV of the project is the Expected Money Value of the Project.

This value is given by the sum of each expected earning multiplied by each probability

So, in our problem

[tex]EMV = P_{1} + P_{2} + P_{3}[/tex]

The problem states that the project has a 60% of super success earning $50,000. So

[tex]P_{1} = 0.6*50,000 = 30,000[/tex]

The project has a 15% chance of mediocre success earning $20,000. So

[tex]P_{2} = 0.15 * 20,000 = 3,000[/tex]

The project has a 25% probability of failure losing $30,000. So

[tex]P_{3} = 0.25*(-30,000) = -7,500[/tex]

[tex]EMV = P_{1} + P_{2} + P_{3} = 30,000 + 3,000 - 7,500 = 25,500[/tex]

The EMV of the project is $40,500.

A basic cellular phone plan costs $4 per month for 70 calling minutes. Additional time costs $0.10 per minute. The formula C= 4+0.10(x-70) gives the monthly cost for this plan, C, for x calling minutes, where x>70. How many calling minutes are possible for a monthly cost of at least $7 and at most $8?

Answers

Answer:

For a monthly cost of at least $7 and at most $8, you can have between 100 and 110 calling minutes.

Step-by-step explanation:

The problem states that the monthly cost of a celular plan is modeled by the following function:

[tex]C(x) = 4 + 0.10(x-70)[/tex]

In which C(x) is the monthly cost and x is the number of calling minutes.

How many calling minutes are needed for a monthly cost of at least $7?

This can be solved by the following inequality:

[tex]C(x) \geq 7[/tex]

[tex]4 + 0.10(x - 70) \geq 7[/tex]

[tex]4 + 0.10x - 7 \geq 7[/tex]

[tex]0.10x \geq 10[/tex]

[tex]x \geq \frac{10}{0.1}[/tex]

[tex]x \geq 100[/tex]

For a monthly cost of at least $7, you need to have at least 100 calling minutes.

How many calling minutes are needed for a monthly cost of at most 8:

[tex]C(x) \leq 8[/tex]

[tex]4 + 0.10(x - 70) \leq 8[/tex]

[tex]4 + 0.10x - 7 \leq 8[/tex]

[tex]0.10x \leq 11[/tex]

[tex]x \leq \frac{11}{0.1}[/tex]

[tex]x \leq 110[/tex]

For a monthly cost of at most $8, you need to have at most 110 calling minutes.

For a monthly cost of at least $7 and at most $8, you can have between 100 and 110 calling minutes.

Health care issues are receiving much attention in both academic and political arenas. A sociologist recently conducted a survey of citizens over 60 years of age whose net worth is too high to qualify for Medicaid. The ages of 25 senior citizens were as follows: 60 61 62 63 64 65 66 68 68 69 70 73 73 74 75 76 76 81 81 82 86 87 89 90 92 Calculate the standard deviation of the ages of the senior citizens to 2 decimal places

Answers

Answer:

Standard Deviation = 9.75        

Step-by-step explanation:

We are given the following data:

n = 25

Ages: 60, 61, 62, 63, 64, 65, 66, 68, 68, 69, 70, 73, 73, 74, 75, 76, 76, 81, 81, 82, 86, 87, 89, 90, 92

Formula:

For sample,

[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]

where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.

[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]

Mean = [tex]\frac{1851}{25} = 74.04[/tex]

Sum of square of differences = 2278.96

S.D = [tex]\sqrt{\diplaystyle\frac{2278.96}{24} } = 9.74[/tex]

Final answer:

To calculate the standard deviation of the given ages, we find the mean, subtract it from each age to find deviations, square these, find their mean, and take the square root to get the standard deviation, which is 6.96.

Explanation:

The question is asking to calculate the standard deviation of the ages of 25 senior citizens. To find the standard deviation, we need to follow these steps:

Calculate the mean (average) age of the senior citizens.

Subtract the mean from each age to find the deviation of each value.

Square each deviation.

Calculate the mean of these squared deviations.

Take the square root of the mean of the squared deviations to get the standard deviation.

Performing these calculations, we find that the mean (average) age is 73.24. The sum of the squared deviations is 1210. After dividing this sum by the number of values (25), we get the variance, which is 48.4. Finally, taking the square root of the variance gives us the standard deviation, which to two decimal places is 6.96.

This measure of standard deviation is crucial in understanding the spread of ages among senior citizens in the sociologist's survey.

What does relative frequency refer to as it pertains to a relative frequency histogram? а. Proportion b. Count C. Mean d. Variance

Answers

Answer:

PROPORTION.

Step-by-step explanation:

The relative frequency in a relative frequency histogram refers to                                  PROPORTION.

A relative frequency histogram uses the same information as a frequency histogram but compares each class interval with the number of items. The difference between frequency and relative frequency histogram is that the vertical axes uses the relative or proportional frequency rather than simple frequency


solve the following exact ordinary differential equation:

(2tz^3 + ze^(tz) - 4) dt + (3t^2z^2 + te^(tz) + 2) dz = 0

^3 = to the power of 3

Answers

Answer:

The level curves F(t,z) = C for any constant C in the real numbers

where

[tex]F(t,z)=z^3t^2+e^{tz}-4t+2z[/tex]

Step-by-step explanation:

Let's call

[tex]M(t,z)=2tz^3+ze^{tz}-4[/tex]

[tex]N(t,z)=3t^2z^2+te^{tz}+2[/tex]

Then our differential equation can be written in the form

1) M(t,z)dt+N(t,z)dz = 0

To see that is an exact differential equation, we have to show that

2) [tex]\frac{\partial M}{\partial z}=\frac{\partial N}{\partial t}[/tex]

But

[tex]\frac{\partial M}{\partial z}=\frac{\partial (2tz^3+ze^{tz}-4)}{\partial z}=6tz^2+e^{tz}+zte^{tz}[/tex]

In this case we are considering t as a constant.

Similarly, now considering z as a constant, we obtain

[tex]\frac{\partial N}{\partial t}=\frac{\partial (3t^2z^2+te^{tz}+2)}{\partial t}=6tz^2+e^{tz}+zte^{tz}[/tex]

So, equation 2) holds and then, the differential equation 1) is exact.

Now, we know that there exists a function F(t,z) such that

3) [tex]\frac{\partial F}{\partial t}=M(t,z)[/tex]  

AND

4) [tex]\frac{\partial F}{\partial z}=N(t,z)[/tex]

We have then,

[tex]\frac{\partial F}{\partial t}=2tz^3+ze^{tz}-4[/tex]

Integrating on both sides

[tex]F(t,z)=\int (2tz^3+ze^{tz}-4)dt=2z^3\int tdt+z\int e^{tz}dt-4\int dt+g(z)[/tex]

where g(z) is a function that does not depend on t

so,

[tex]F(t,z)=\frac{2z^3t^2}{2}+z\frac{e^{tz}}{z}-4t+g(z)=z^3t^2+e^{tz}-4t+g(z)[/tex]

Taking the derivative of F with respect to z, we get

[tex]\frac{\partial F}{\partial z}=3z^2t^2+te^{tz}+g'(z)[/tex]

Using equation 4)

[tex]3z^2t^2+te^{tz}+g'(z)=3z^2t^2+te^{tz}+2[/tex]

Hence

[tex]g'(z)=2\Rightarrow g(z)=2z[/tex]

The function F(t,z) we were looking for is then

[tex]F(t,z)=z^3t^2+e^{tz}-4t+2z[/tex]

The level curves of this function F and not the function F itself (which is a surface in the space) represent  the solutions of the equation 1) given in an implicit form.

That is to say,

The solutions of equation 1) are the curves F(t,z) = C for any constant C in the real numbers.

Attached, there are represented several solutions (for c = 1, 5 and 10)

Applicants for temporary office work at Carter Temporary Help Agency who have successfully completed an administrative assistant course are then placed in suitable positions by Nancy Dwyer and Darla Newberg. Employers who hire temporary help through the agency return a card indicating satisfaction or dissatisfaction with the work performance of those hired. From past experience it is known that 80% of the employees placed by Nancy are rated as satisfactory, and 65% of those placed by Darla are rated as satisfactory. Darla places 55% of the temporary office help at the agency, and Nancy places the remaining 45%. If a Carter office worker is rated unsatisfactory, what is the probability that he or she was placed by Darla? (Round your answer to three decimal places.)

Answers

Answer:

0.681

Step-by-step explanation:

Let's define the following events:

S: a Carter office worker is rated satisfactory

U : a Carter office worker is rated unsatisfactory

ND: a Carter office worker is placed by Nancy Dwyer

DN: a Carter office worker is placed by Darla Newberg

We have from the original text that

P(S | ND) = 0.8, this implies that P(U | ND) = 0.2.

P(S | DN) = 0.65, this implies that P(U | DN) = 0.35. Besides

P(DN) =  0.55 and P(ND) = 0.45, then we are looking for

P(DN | U), using the Bayes' formula we have

P(DN | U) = [tex]\frac{P(U | DN)P(DN)}{P(U | DN)P(DN) + P(U | ND)P(ND)}[/tex] = [tex]\frac{(0.35)(0.55)}{(0.35)(0.55)+(0.2)(0.45)}[/tex]=0.681

Final answer:

The probability that a Carter office worker rated unsatisfactory was placed by Darla is approximately 0.346.

Explanation:

To find the probability that a Carter office worker rated unsatisfactory was placed by Darla, we can use Bayes' theorem. Let's denote the event that the worker is placed by Darla as D and the event that the worker is rated unsatisfactory as U. We are given the following probabilities:

P(Darla places) = 55% = 0.55

P(Nancy places) = 45% = 0.45

P(Satisfactory | Nancy places) = 80% = 0.80

P(Satisfactory | Darla places) = 65% = 0.65

We want to find P(D | Unsatisfactory), which is the probability that the worker was placed by Darla given that they are rated unsatisfactory. Using Bayes' theorem, we have:

P(D | U) = (P(D) * P(U | D)) / (P(D) * P(U | D) + P(N) * P(U | N))

Substituting the given probabilities, we get:

P(D | U) = (0.55 * (1 - 0.65)) / (0.55 * (1 - 0.65) + 0.45 * (1 - 0.80))

P(D | U) ≈ 0.346

Therefore, the probability that a Carter office worker rated unsatisfactory was placed by Darla is approximately 0.346.

On a coordinate plane, rhombus W X Y Z is shown. Point W is at (7, 2), point X is at (5, negative 1), point Y is at (3, 2), and point Z is at (5, 5). What is the perimeter of rhombus WXYZ? StartRoot 13 EndRoot units 12 units StartRoot 13 EndRoot units D)>20 units

Answers

Answer:

Shown in the explanation

Step-by-step explanation:

A Rhombus is a quadrilateral having four sides of equal length each. Here, we know that the vertices of this shape are:

[tex]W(7,2) \\ \\ X(5,-1) \\ \\ Y(3,2) \\ \\ Z(5,5)[/tex]

So the rhombus is named as WXYZ. To find its perimeter (P), we just need to find the length of one side and multiply that value by 4. By using the distance formula, we know that:

[tex]\overline{WX}=\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2} \\ \\ W(7,2)=W(x_{1},y_{1}) \\ \\ X(5,-1)=X(x_{2},y_{2}) \\ \\ \\ \overline{WX}=\sqrt{(7-5)^2+(2-(-1))^2} \\ \\  \overline{WX}=\sqrt{(2)^2+(3)^2} \\ \\ \overline{WX}=\sqrt{4+9} \\ \\ \overline{WX}=\sqrt{13}[/tex]

Finally, the Perimeter (P) is:

[tex]P=4(\sqrt{13}) \\ \\ \boxed{P=4\sqrt{13}\ units}[/tex]

Answer:

4 13

Step-by-step explanation:

A yogurt stand gave out 120 free samples of frozen yogurt, one free sample per person. The three sample choices were vanilla, chocolate, or chocolate & vanilla twist. 97 people tasted the vanilla and 72 people tasted the chocolate, some of those people tasted both because they chose the chocolate and vanilla twist. How many people chose chocolate and vanilla twist?

Answers

Answer:

There were 49 people that chose chocolate and vanilla twist.

Step-by-step explanation:

This problem can be solved by building a Venn diagram of this set, where:

-A is the number of the people that tasted the vanilla

-B is the number of the people that tasted the chocolate.

The most important information in this problem is that some of those people tasted both. It means that [tex]A \cap B = x[/tex], and x is the value we want to find.

The problem states that 97 people tasted the vanilla sample of frozen yogurt.  This includes the people that tasted both samples. It means that x people tasted the chocolate and vanilla twist and 97-x people tasted only the vanilla twist.

72 people tasted the chocolate, also including the people that tasted both samples. It means that x people that tasted the chocolate and vanilla twist and 72-x that tasted only the chocolate twist.

So, recapitulating, there are 120 people, and

97-x  tasted only the vanilla twist.

72 - x tasted only the chocolate twist

x people tasted both

So

97 - x + 72 - x + x = 120

-x = 120 - 72 - 97

-x = -49 *(-1)

x = 49

There were 49 people that chose chocolate and vanilla twist.

Final answer:

To find out how many people chose the chocolate and vanilla twist, we need to subtract the number of people who tasted only vanilla and only chocolate from the total number of people who tasted the frozen yogurt.

Explanation:

To find out how many people chose the chocolate and vanilla twist, we need to subtract the number of people who tasted only vanilla and only chocolate from the total number of people who tasted the frozen yogurt. We know that 97 people tasted vanilla and 72 people tasted chocolate. However, some people chose the chocolate and vanilla twist, so we need to subtract the overlapping cases.

To calculate the number of people who chose the chocolate and vanilla twist, we can use the principle of inclusion-exclusion. We add the number of people who tasted only vanilla and the number of people who tasted only chocolate, and then subtract the total number of people who tasted the frozen yogurt.

Using the formula:

(# of people who tasted vanilla) + (# of people who tasted chocolate) - (# of people who tasted both) = Total # of people who tasted the frozen yogurt

97 + 72 - X = 120

X = 97 + 72 - 120

X = 169 - 120

X = 49

Therefore, 49 people chose the chocolate and vanilla twist.

Learn more about Calculating Overlapping Cases here:

https://brainly.com/question/34384741

#SPJ3

A company makes greeting cards and their research shows that that price and demand are related linearly: p=mx +b.They know that for every additional card they wish to sell they need to drop the price by $0.05. They also know that in order to sell 300 cards they need to set the price at $7. Find the linear equation relating P price to demand. Preview p =

Answers

Answer:

P= -0.05q+22

Step-by-step explanation:

To find the linear equation that relates price with quantity demanded, first we must find the slope. Because the independent variable is the quantity demanded and the dependent variable is the price, the slope represents how the price changes when there is an extra unit of quantity demanded. The problem gives this information: "for every additional card (extra unit) they need to drop the price by $0.05". The slope (m) in this case is negative because an extra unit, reduces the price: -0.05

The second step is to use this formula:

Y-y1= m*(X-x1)

y1 and x1 is a point of the demand curve, in this case it is y1= $7 and x1=300

Y-$7= -$0.05*(X-300)

Y-7=-0.05X+15

Y= -0.05X+15+7

Y= -0.05X-22

Price= -0.05 quantity demanded +22

What is 0.001 percent of 4/3?

Answers

Answer: The required value would be 0.000013.

Step-by-step explanation:

Since we have given that

0.001 % of [tex]\dfrac{4}{3}[/tex]

As we know that

To remove the % sign we should divide it by 100.

Mathematically, it would be expressed as

[tex]\dfrac{0.001}{100}\times \dfrac{4}{3}\\\\=\dfrac{0.004}{300}\\\\=0.000013[/tex]

Hence, the required value would be 0.000013.

What is the slope of the line whose Run is 6 and Rise is 1?

Answers

Answer:

1/6

Step-by-step explanation:

Slope is [tex]\frac{\text{rise}}{\text{run}}=\frac{1}{6}[/tex].

1/6 is the answer good luck

what mass of water at 15 degrees celcius can be cooled 1 degree celcius by heat necessary to melt 185 grams of ice at 0 degrees celcius?

Answers

Answer:

1052.944 g

Step-by-step explanation:

Given:

Initial temperature of water = 15° C

Final temperature of water = 1° C

Mass of ice = 185 grams

Now,

Heat of fusion of ice = 333.55 J/g

Thus,

The heat required to melt ice = Mass of ice × Heat of fusion

or

The heat required to melt ice = 185 × 333.55 = 61706.75 J

Now,

for water the specific heat capacity= 4.186 J/g.°C

Heat provided = mass × specific heat capacity × Change in temperature

or

61706.75 = mass × 4.186 × (15 - 1)

or

61706.75 = mass × 58.604

or

mass = 1052.944 g

Hence, the mass that can be heated 1052.944 g

An airplane heading due east has a velocity of 210 miles per hour. A wind is blowing from the north at 38 miles per hour. What is the resultant velocity of the airplane? (Assume that east lies in the direction of the positive x-axis and north in the direction of the positive y-axis.)

Answers

Answer:

The resultant velocity of the airplane is 213.41 m/s.

Step-by-step explanation:

Given that,

Velocity of an airplane in east direction, [tex]v_1=210\ mph[/tex]

Velocity of wind from the north, [tex]v_2=38\ mph[/tex]

Let east lies in the direction of the positive x-axis and north in the direction of the positive y-axis.

We need to find the resultant velocity of the airplane. Let v is the resultant velocity. It can be calculated as :

[tex]v=\sqrt{v_1^2+v_2^2}[/tex]

[tex]v=\sqrt{(210)^2+(38)^2}[/tex]

v = 213.41 m/s

So, the resultant velocity of the airplane is 213.41 m/s. Hence, this is the required solution.

Final answer:

The resultant velocity of the airplane, combining its eastward direction and the northward wind, is approximately 213.4 miles per hour at an angle of 10.3 degrees north of east.

Explanation:

The student's question relates to the concept of resultant velocity, which is a fundamental topic in Physics. When two velocities are combined, such as an airplane's velocity and wind velocity, the outcome is a vector known as the resultant velocity. To calculate this, one must use vector addition.

The airplane has a velocity of 210 miles per hour due east, which can be represented as a vector pointing along the positive x-axis. The wind has a velocity of 38 miles per hour from the north, represented as a vector along the positive y-axis. To find the resultant velocity, these two vectors must be combined using vector addition.

Mathematically, the resultant vector [tex]\\(R)[/tex] can be found using the Pythagorean theorem if the vectors are perpendicular, as in this case:
[tex]\[ R = \sqrt{V_{plane}^2 + V_{wind}^2} \][/tex]

Where \\(V_{plane}\\) is the velocity of the airplane and [tex]\(V_{wind}\)[/tex] is the velocity of the wind.

The direction of the resultant vector can be determined by calculating the angle [tex]\(\theta\)[/tex] it makes with the positive x-axis using trigonometry, specifically the tangent function:
[tex]\[ \theta = \arctan\left(\frac{V_{wind}}{V_{plane}}\right) \][/tex]

By substituting the given values:

[tex]\(V_{plane} = 210 mph\)[/tex][tex]\(V_{wind} = 38 mph\)[/tex]

The resultant velocity (magnitude) is then calculated by:

[tex]\[ R = \sqrt{(210)^2 + (38)^2} = \sqrt{44100 + 1444} = \sqrt{45544} \][/tex]

This yields a resultant speed of approximately 213.4 miles per hour.

The direction \\(\theta\\) will be:

[tex]\[ \theta = \arctan\left(\frac{38}{210}\right) \][/tex]

Using a calculator, one finds that [tex]\(\theta\)[/tex] is approximately 10.3 degrees north of east.

55% of 3,650.00= ____

Answers

Convert 55% to a decimal by moving the decimal point two places to the left:

55% = 0.55

Now multiply:

3650.00 x 0.55 = 2,007.50

Simplify. 2−4÷2+23 −5 2 7 8

Answers

Answer:

See below.

Step-by-step explanation:

2−4÷2+23 =

= 2 - 2 + 23

= 0 + 23

= 23

This is the answer of the problem you posted, where 23 is the number twenty-three. 23 is not an answer choice, so perhaps 23 is not the number twenty-three, but rather 2 to the 3rd power, 2^3.

2−4÷2+2^3 =

= 2 - 2 + 8

= 0 + 8

= 8

8 is one of the choices.

Answer:

2-4÷2+23-5278 -2÷25-5278-2÷-52532÷52530.000380734818

A ramp 17 1/2 feet in length rises to a loading platform that is 3 1/2 feet off the ground. Find the angle that the ramp makes with the ground.

Answers

Answer:

The angle that the ramp makes with the ground is 11.54°

Step-by-step explanation:

From the image attached, we can see that the length of 17 1/2 ft corresponds to the hypotenuse in a right triangle, the length of 3 1/2 ft corresponds to the opposite side.

We can use the fact that the sin(θ) = [tex]\frac{Opposite}{Hypotenuse}[/tex] to find the angle that the ramp makes with the ground.

[tex]sin(\theta)=\frac{3.5}{17.5}[/tex]

The angle is equal to

[tex]\theta = sin^{-1}(\frac{3.5}{17.5} )\\\theta = 11.54\°[/tex]

Final answer:

The angle that the ramp makes with the ground can be found using the concept of tangent in trigonometry. By dividing the height of the loading platform by the length of the ramp and taking the inverse tangent of the result, we find the angle to be approximately 11.3 degrees.

Explanation:

This question can be solved by using trigonometric principles, specifically the tangent of an angle in a right triangle. The tangent of an angle θ (theta) can be defined as the ratio of the side opposite the angle to the side adjacent to it.

In this scenario, the ramp forms a right triangle with the ground and the vertical line from the loading platform to the ground directly below it. The height of the platform, or the 'opposite' side, is 3 1/2 feet, and the ramp, or the 'adjacent' side, is 17 1/2 feet.

Therefore, we can say that: tan θ = (3.5 / 17.5)

To find the value of θ, we take the inverse tangent (or arc tangent) of the quotient. Using a calculator to do this (remember to set your calculator to degree mode), we find θ to be approximately 11.3 degrees.

Thus, the angle that the ramp makes with the ground is about 11.3 degrees.

Learn more about Trigonometry here:

https://brainly.com/question/11016599

#SPJ3

How much more would you earn in the first investment than in the second investment? $22,000 invested for 40 years at 14% compounded annually $22,000 invested for 40 years at 7% compounded annually You would earn $ more on the first investment than in the second investment

Answers

Final answer:

To calculate the difference in earnings between the two investments, we can use the compound interest formula to find the future value of each investment. The first investment would earn $2,353,121.65 more than the second investment.

Explanation:

To calculate the difference in earnings between the two investments, we need to calculate the future value of each investment. For the first investment, we have $22,000 invested for 40 years at an annual interest rate of 14%. Using the compound interest formula:

FV = PV * (1 + r)^n

FV = $22,000 * (1 + 0.14)^40 = $2,889,032.39

For the second investment, we have $22,000 invested for 40 years at an annual interest rate of 7%. Using the compound interest formula:

FV = PV * (1 + r)^n

FV = $22,000 * (1 + 0.07)^40 = $535,910.74

The difference in earnings between the two investments is:

$2,889,032.39 - $535,910.74 = $2,353,121.65

Please help find the linear pair

Answers

Linear pair makes a straight line.

A. are vertical angles.

B. are vertical angles

C. make a right angle

D. makes a straight line of TR

The answer is D.

Your answer is D
Hope that helps

a company owner has 20 employees, and plans to give bonuses to 6 of them. How many different sets of employees could receive bonuses?

Answers

Answer: 38760

Step-by-step explanation:

Given : The number of employees in the company = 20

The number of employees will be selected by company owner to give bonus = 6

We know that the combination of n things taking r at a time is given by :-

[tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]

Then, the number of different sets of employees could receive bonuses is given by :-

[tex]^{20}C_6=\dfrac{20!}{6!(20-6)!}\\\\=\dfrac{20\times29\times18\times17\times16\times15\times14!}{(720)14!}=38760[/tex]

Hence, the number of different sets of employees could receive bonuses is  38760.

Find all solutions of each equation on the interval 0 ≤ x < 2π.


tan^2 x sec^2 x + 2sec^2 x - tan^2 x = 2

Answers

Answer:

[tex]x = 0[/tex] or [tex]x = \pi[/tex].

Step-by-step explanation:

How are tangents and secants related to sines and cosines?

[tex]\displaystyle \tan{x} = \frac{\sin{x}}{\cos{x}}[/tex].

[tex]\displaystyle \sec{x} = \frac{1}{\cos{x}}[/tex].

Sticking to either cosine or sine might help simplify the calculation. By the Pythagorean Theorem, [tex]\sin^{2}{x} = 1 - \cos^{2}{x}[/tex]. Therefore, for the square of tangents,

[tex]\displaystyle \tan^{2}{x} = \frac{\sin^{2}{x}}{\cos^{2}{x}} = \frac{1 - \cos^{2}{x}}{\cos^{2}{x}}[/tex].

This equation will thus become:

[tex]\displaystyle \frac{1 - \cos^{2}{x}}{\cos^{2}{x}} \cdot \frac{1}{\cos^{2}{x}} + \frac{2}{\cos^{2}{x}} - \frac{1 - \cos^{2}{x}}{\cos^{2}{x}} = 2[/tex].

To simplify the calculations, replace all [tex]\cos^{2}{x}[/tex] with another variable. For example, let [tex]u = \cos^{2}{x}[/tex]. Keep in mind that [tex]0 \le \cos^{2}{x} \le 1 \implies 0 \le u \le 1[/tex].

[tex]\displaystyle \frac{1 - u}{u^{2}} + \frac{2}{u} - \frac{1 - u}{u} = 2[/tex].

[tex]\displaystyle \frac{(1 - u) + u - u \cdot (1- u)}{u^{2}} = 2[/tex].

Solve this equation for [tex]u[/tex]:

[tex]\displaystyle \frac{u^{2} + 1}{u^{2}} = 2[/tex].

[tex]u^{2} + 1 = 2 u^{2}[/tex].

[tex]u^{2} = 1[/tex].

Given that [tex]0 \le u \le 1[/tex], [tex]u = 1[/tex] is the only possible solution.

[tex]\cos^{2}{x} = 1[/tex],

[tex]x = k \pi[/tex], where [tex]k\in \mathbb{Z}[/tex] (i.e., [tex]k[/tex] is an integer.)

Given that [tex]0 \le x < 2\pi[/tex],

[tex]0 \le k <2[/tex].

[tex]k = 0[/tex] or [tex]k = 1[/tex]. Accordingly,

[tex]x = 0[/tex] or [tex]x = \pi[/tex].

Answer:

Step-by-step explanation:

The supplement of an angle Y measures 10x + 4 and the complement of the angle measures 4x. What is the measure of the angle?

Answers

Answer:

Y=32.67°

Step-by-step explanation:

Supplement condition:

Y+(10x+4°)=180°     (1)

Complement condition:

Y+4x=90°      (2)

5*(2)-2*(1):

5Y +20x - 2Y -20x -8° =450°-360°

3Y=98°

Y=32.67°

A student needed to prepare 500mL of 1X TAE buffer to run a QC gel. The stock solution in the lab is 5X TAE. What volumes of stock TAE and water are needed to prepare the 1X working TAE buffer?

Answers

Answer:

you need 100ml of 5X TAE and 400ml of water.

Step-by-step explanation:

You need to use a rule of three:

[tex]C_1V_1=C_2V_2[/tex]

where:

[tex]\left \{ {{C_1= 5X} \atop {C_2=1X}} \right.[/tex]

and

[tex]\left \{ {{V_1 = V_{TAE}} \atop {V_2=500ml}} \right.[/tex]

Therefore:

[tex]V_{TAE} = \frac{V_2*C_2}{C_1}[/tex]

[tex]V_{TAE} = 100ml[/tex]

Then just rest the TAE volume to the final Volume and you get the amount of water that you need to reduce the concentration.

Answer:

Step-by-step explanation:

It shall be 100xl times the number of 1x tae

A golfer rides in a golf cart at an average speed of 3.10 m/s for 28.0 s. She then gets out of the cart and starts walking at an average speed of 1.30 m/s. For how long (in seconds) must she walk: if her average speed for the entire trip, riding and walking, is 1.80 m/s?

Answers

Answer: she must walk for 72.8 s

Hi!

Lets say that with the cart she rides a time T1 (28 s) for a distance D1, then the average speed in the cart is V1 = D1 / T1 =  3.10 m/s. We can calculate D1 = (28 s )* (3.10 m/s) = 86.8 m

She then walks a time T2 for a distance D2, with average speed

V2 = D2 / T2 = 1.30 m/s

For the entire trip, we have average speed:

V3 = (D1 + D2) / (T1 + T2) = 1.80 m/s

We can solve for T2:

(1.8 m/s) *( 28s + T2) = 86.8 m  +  D2 = 86.8 m + (1.3 ms) * T2

Doing the algebra we get: T2 = 72,8 m/s

Final answer:

This question involves an application of the concept of average speed. Knowing that the average speed for the entire trip was 1.80 m/s, we first determined the distance covered while riding the golf cart. Using this, we set up an equation that allowed us to solve for the time spent walking to maintain the given average speed.

Explanation:

In order to solve this problem, we'll have to apply the formula for average speed, which is total distance covered (d) divided by the total time (t) taken.

Firstly, let's determine the distance covered while riding the golf cart. The golfer rides at an average speed of 3.10 m/s for 28.0 s. Therefore, she covers a distance of (average speed)x(time) = (3.1 m/s)(28.0 s) = 86.8 m.

Let's denote the time she walks as 't2'. The total time of the trip equals the sum of the time spent in the cart and the time spent walking: 28.0 s + t2.

Similarly, the total distance covered equals distance covered with the cart plus distance covered walking, which is 86.8 m + 1.30 m/s * t2.

Given the average speed for the entire trip is 1.80 m/s, we can write:

1.80 m/s = (total distance) / (total time)

1.80 m/s = (86.8 m + 1.30 m/s * t2) / (28.0 s + t2).

This equation could be solved for t2 to calculate how long the golfer needs to walk.

Learn more about Average Speed here:

https://brainly.com/question/12322912

#SPJ12

You have 4 identical gifts (teddy bears) and 7 nieces. In how many different ways could you give the 4 teddy bears to 4 of the 7 nieces, where no niece gets more tharn one teddy bear?

Answers

Answer:

840

Step-by-step explanation:

Total number of gifts (teddy bears)= 4

Total number of nieces = 7

We need to find the number of ways to give the 4 teddy bears to 4 of the 7 nieces, where no niece gets more than one teddy bear.

Number of possible ways to give first teddy = 7

It is given that no niece gets more than one teddy bear.

The remaining nieces are = 7 - 1 = 6

Number of possible ways to give second teddy = 6

Now, the remaining nieces are = 6 - 1 = 5

Similarly,

Number of possible ways to give third teddy = 5

Number of possible ways to give fourth teddy = 4

Total number of possible ways to distribute 4 teddy bears is

[tex]Total=7\times 6\times 5\times 4=840[/tex]

Therefore total possible ways to distribute 4 teddy bears are 840.

Final answer:

There are 35 different ways to give 4 identical teddy bears to 4 of the 7 nieces where no niece receives more than one teddy bear. The calculation is done using combinations formula C(7, 4).

Explanation:

To determine the number of different ways the 4 teddy bears can be given to 4 out of 7 nieces where each niece gets only one teddy bear, we use combinations. Combinations are a way of selecting items from a group, where the order does not matter. In mathematics, this is denoted as C(n, k), which represents the number of combinations of n items taken k at a time.

In this case, we want to find C(7, 4), because we have 7 nieces (n=7) and we are choosing 4 of them (k=4) to each receive one teddy bear. This is calculated by:

C(7, 4) = 7! / (4! * (7-4)!) => C(7, 4) = (7 * 6 * 5 * 4!) / (4! * 3!). Since 4! in the numerator and denominator cancel each other out, it simplifies to:

C(7, 4) = 7 * 6 * 5 / (3 * 2 * 1) = 35

Therefore, there are 35 different ways to give the 4 identical teddy bears to 4 of the 7 nieces when no niece gets more than one teddy bear.

Show how the perfect numbers 6 and 28 were generated. Show the aliquot parts of 6 and 28

Answers

Step-by-step explanation:

Perfect number is the positive integer which is equal to sum of proper divisors of the number.

Aliquot part is also called as proper divisor which means any divisor of the number which isn't equal to number itself.

Number : 6

Perfect divisors / Aliquot part = 1, 2, 3

Sum of the divisors = 1 + 2 + 3 = 6

Thus, 6 is a perfect number.

Number : 28

Perfect divisors / Aliquot part = 1, 2, 4, 7, 14

Sum of the divisors = 1 + 2 + 4 + 7 + 14 = 28

Thus, 28 is a perfect number.

help me, please
im serious tho

Answers

Answer:

2/6 or 1/3 so color 2 out of the six squares

Step-by-step explanation:

1/2 - 1/6 is equal to 3/6 - 1/6 so 2/6

If f(x)=3x^3 then what is the area enclosed by the graph of the function, the horizontal axis, and vertical lines at x=2 and x=4

Answers

Answer:

Area: 180 units2 (units 2 is because since the are no specific unit given but every area should have a unit  of measurement)

Step-by-step explanation:

The area enclosed by the graph of the function, the horizontal axis, and vertical lines is the integral of the function between thos two points (x=2 and x=4)

So , let's solve the integral of f(x)

Area =[tex]\int\limits^2_4 3{x}^3 \, dx = 3*x^4/4[/tex]+C

C=0

So if we evaluate this function in the given segment:

Area= 3* (4^4)/4-3*(2^4)/4= 3*(4^4-2^4)/4=180 units 2

Goos luck!

Other Questions
Analyzing Hawthorne's complex story "Young Goodman Brown," it's reasonable to conclude that Goodman Brown's perception or interpretation of events represents a setting at the _______ level. What wavelength photon is required to excite a hydrogen from the n=1 state to the n=3 state? What is the lowest frequency photon that will be observed? you start at 11 ,10 and you move 7units left and 5 units down L=4/3(C-30) solve for C literal equation What feature distinguishes male embryo from female at eight weeks of age?a. males have a Y chromosomeb. males have well developed primary reproductive organsc. male testes have descended into the scrotumd. in males, the ovaries have degeneratede. all of the above How many grams of water are theoretically produced for the following reaction given we have 2.6 moles of HCl and 1.4 moles of Ca(OH)2? Reaction: 2HCl + Ca(OH)2 2H2O + CaCl2 A) 25.2 B) 50.4 C) 46.8 D) 103.6 E) not enough information x^3-64 in factored form the difference between 33 1/3% and 33% Select the correct answer.If the function 5x + y=1 has the domain (-2, 1, 6), then what is the corresponding range?A. {-9,6,31}B. {9, -6, -31)C. {-11, 4, 29}D. (11,-4,-29) 100points PLEASE HELP ASAP - In 2012, the total ecological footprint Of China Was only just below that of The European union. But the ecological Footprint of the European Was nearly 3 times greater then that of the Chinese. explain how this is possible (PLEASE HELP ME IM STRUGGLING) (picture is shown) Here is an illustration of a four way stop. those roads are two lines and they intersect at a.....??? The cost of producing q newspaper articles is given by the function C = f(q) = 100 + 2q. a.) Find a formula for the inverse function. b.) Explain in practical terms what the inverse function tells you. what is the answer of 2.8 plus 7.2 A 30.0 kg packing crate in a warehouse is pushed to the loading dock by a worker who applies a horizontal force. The coefficient of kinetic friction between the crate and the floor is 0.20. The loading dock is 15.0 m southwest of the initial position of the crate. (a) If the crate is pushed 10.6 m south and then 10.6 m west, what is the total work done on the crate by friction? (b) If the crate is pushed along a straight-line path to the dock, so that it travels 15.0 m southwest, what is the work done on the crate by friction? You purchase a bottle of concentrated sulfuric acid from a chemical supplier. The bottle reads Sulfuric acid (95% w/w) plastic coated safety bottle. The label lists the density of the acid as 1.85 g/mL and the molar mass as 98.08 g/mol, but the label fails to list the molarity of the concentrated acid! Calculate the molarity of the sulfuric acid based upon the information given. Determine the maximum weight of the flowerpot that can besupported without exceeding a cable tension of 50 lb in eithercable AB or AC. Consider this pathway: epinephrine G protein-coupled receptor G protein adenylyl cyclase cAMP. Identify the second messenger.a. cAMPb. G proteinc. GTPd. adenylyl cyclase Which are types of reading reference tools? Check all that apply.almanacsbiographiesencyclopediasperiodicalstextbooks According to author Stephen Covey, effective communication is driven by: "Sharing your insights with others to make sure they know the right way to do things" "Getting your point across" "Knowing best how to direct a conversation" "Seeking first to understand, then to be understood" Choose an appropriate adverb for this sentence.I can concentrate _____ when it is quiet.more easilyeasier