solve 2/5+1/4+7/10= in simplest form

Answers

Answer 1

Answer:

1.35 or 27/20

Step-by-step explanation:

(2/5) + (1/4) + (7/10)

= 0.4 + 0.25 + 0.7

= 1.35 or 27/20

Answer 2
27/20 (decimal 1.35)

Related Questions

Twice the difference of a number and six is the same as twelve . Write into algebraic equation

Answers

Answer:

2(n-6)=12

(I went too far in my explanation; I'm not going to erase it because I think it is important to have an example on solving these)

Step-by-step explanation:

Twice the difference of a number and 6 is the same as 12.

Twice means 2 times

Difference means the result of subtracting something.

is the same as means equal to (=).

So we are given 2(n-6)=12.

You can start by dividing 2 on both sides are distributing 2 to terms in the ( ).

I will do it both ways and you can pick your favorite.

2(n-6)=12

Divide both sides by 2.

 n-6  =6

Add 6 on both sides

 n     =12

OR!

2(n-6)=12

Distribute 2 to both terms in the ( )

2n-12=12

Add 12 on both sides

2n    =24

Divide both sides by 2

n       =12

Rationalize the denominator and simplify.

Answers

let's use the conjugate of the denominator and multiply top and bottom by it, recall the conjugate of a binomial is simply the same binomial with a different sign in between.

[tex]\bf \cfrac{2\sqrt{x}-3\sqrt{y}}{\sqrt{x}+\sqrt{y}}\cdot \cfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}\implies \cfrac{2\sqrt{x}\sqrt{x}-2\sqrt{x}\sqrt{y}~~-~~3\sqrt{x}\sqrt{y}+3\sqrt{y}\sqrt{y}}{\underset{\textit{difference of squares}}{(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})}} \\\\\\ \cfrac{2\sqrt{x^2}-2\sqrt{xy}-3\sqrt{xy}+3\sqrt{y^2}}{(\sqrt{x})^2-(\sqrt{y})^2}\implies \cfrac{2x-5\sqrt{xy}+3y}{x-y}[/tex]

Answer:

[tex]\dfrac{2x-5\sqrt{xy}+3y}{x-y}\\[/tex]

Step-by-step explanation:

In Rationalize the denominator we multiply both numerator and denominator by the conjugate of denominator.

In Conjugate we change the sign of middle operator.

Example: Congugate of (a + b) = a - b

Now Solving the given expression,

[tex]\dfrac{2\sqrt{x} - 3\sqrt{y}}{\sqrt{x} + \sqrt{y}} = \dfrac{2\sqrt{x} - 3\sqrt{y}}{\sqrt{x} + \sqrt{y}}\times \dfrac{\sqrt{x} - \sqrt{y}}{\sqrt{x} - \sqrt{y}}\\\\\Rightarrow \dfrac{(2\sqrt{x} - 3\sqrt{y})(\sqrt{x} - \sqrt{y})}{( \sqrt{x} + \sqrt{y}){(\sqrt{x} - \sqrt{y}})}\ \ \ \ \ \ \ \ \ \ \ [\because (a-b)(a+b)=(a^{2} +b^{2})]\\\Rightarrow \dfrac{2x-2\sqrt{xy}-3\sqrt{xy}+3y}{x-y}\\\\ \Rightarrow \dfrac{2x-5\sqrt{xy}+3y}{x-y}\\[/tex]

given o below the arcs, wx and yz must be congruent.

Answers

Answer:

True.

Step-by-step explanation:

The arcs subtend the same equal angles at the center of the circle, i.e ∠YOZ=∠WOX= 27°. They are also bound by radii. All radii of the same circle are equal thus he two arcs are equal in length. OY= WO= XO= OZ

Therefore the two arcs wx and yz are congruent

 

Answer:

True

Step-by-step explanation:

just had the same question

which equation represents a population of 250 animals that decreases at an annual rate of 12%​

Answers

Answer:

The equation is equal to

[tex]y=250(0.88^{x})[/tex]

Step-by-step explanation:

we know that

In this problem we have a exponential function of the form

[tex]y=a(b^{x})[/tex]

where

x -----> the time in years

y ----> the population of animals

a is the initial value

b is the base

r is the rate of decreasing

b=(1-r) ----> because is a decrease rate

we have

[tex]a=250\ animals[/tex]

[tex]r=12\%=12/100=0.12[/tex]

[tex]b=(1-0.12)=0.88[/tex]

substitute

[tex]y=250(0.88^{x})[/tex]

Answer:

The equation which  represents a population of 250 animals that decreases at an annual rate of 12%​ is:

               [tex]f(x)=250(0.88)^x[/tex]

Step-by-step explanation:

It is given that:

A population of 250 animals decreases at an annual rate of 12%​.

This problem could be modeled with the help of a exponential function.

         [tex]f(x)=ab^x[/tex]

where a is the initial amount.

and b is the change in the population and is given by:

[tex]b=1-r[/tex] if the population is decreasing at a rate r.

and [tex]b=1+r[/tex] if the population is increasing at a rate r.

Here we have:

[tex]a=250[/tex]

and x represents the number of year.

[tex]r=12\%=0.12[/tex]

Hence, we have:

[tex]b=1-0.12=0.88[/tex]

Hence, the population function f(x) is given by:

          [tex]f(x)=250(0.88)^x[/tex]

The sum of a rational number and an irrational number equals:

Answers

Answer: is an irrational number

Step-by-step explanation:

Like adding three to pi (3.14159265358979323846264....)is still going to be irrational

Answer:

D

Step-by-step explanation:

I took the test

Three red and three blue flags are arranged randomly along
a wire. What is the probability that the six flags alternate in
color?
A. 1/20
B. 1/10
C. 1/4
D. 1/2​

Answers

[tex]|\Omega|=\dfrac{6!}{3!3!}=\dfrac{4\cdot5\cdot6}{2\cdot3}=20\\A=\{RBRBRB,BRBRBR\}\\|A|=2\\\\P(A)=\dfrac{2}{20}=\dfrac{1}{10}[/tex]

The answer would be B

what equation represents the line that passes through (-8,11) and (4,7/2)

Answers

For this case we have that by definition, the equation of the line in slope-intersection form is given by:

[tex]y = mx + b[/tex]

Where:

m: It's the slope

b: It is the cutoff point with the y axis

We have:

[tex](x1, y1): (- 8,11)\\(x2, y2): (4,3.5)[/tex]

[tex]m = \frac {y2-y1} {x2-x1} = \frac {3.5-11} {4 - (- 8)} = \frac {-7.5} {4 + 8} = \frac {-7.5} {12 } = - \frac {\frac {15} {2}} {12} = - \frac {15} {24} = - \frac {5} {8}[/tex]

Thus, the equation will be given by:

[tex]y = - \frac {5} {8} x + b[/tex]

We substitute a point to find "b":

[tex]11 = - \frac {5} {8} (- 8) + b\\11 = 5 + b\\b = 11-5\\b = 6[/tex]

Finally:

[tex]y = - \frac {5} {8} x + 6[/tex]

Answer:

[tex]y = - \frac {5} {8} x + 6[/tex]

Answer:

So our answers could be any of these depending on the form wanted*:

[tex]y=\frac{-5}{8}x+6[/tex]

[tex]5x+8y=48[/tex]

[tex]y-11=\frac{-5}{8}(x+8)[/tex]

[tex]y-\frac{7}{2}=\frac{-5}{8}(x-4)[/tex]

*There are other ways to write this equation.

Step-by-step explanation:

So we are given two points on a line: (-8,11) and (4,7/2).

We can find the slope by using the formula [tex]\frac{y_2-y_1}{x_2-x_1} \text{ where } (x_1,y_1) \text{ and } (x_2,y+2) \text{ is on the line}[/tex].

So to do this, I'm going to line up my points vertically and then subtract vertically, then put 2nd difference over 1st difference:

( 4  ,  7/2)

-(-8 ,    11)

----------------

12      -7.5

So the slope is -7.5/12 or -0.625 (If you type -7.5 division sign 12 in your calculator).

-0.625 as a fraction is -5/8 (just use the f<->d button to have your calculator convert your decimal to a fraction).

Anyways the equation of a line in slope-intercept form is y=mx+b where m is the slope and b is y-intercept.

We have m=-5/8 since that is the slope.

So plugging this into y=mx+b gives us y=(-5/8)x+b.

So now we need to find b. Pick one of the points given to you (just one).

Plug it into y=(-5/8)x+b and solve for b.

y=(-5/8)x   +b with (-8,11)

11=(-5/8)(-8)+b

11=5+b

11-5=b

6=b

So the equation of the line in slope-intercept form is y=(-5/8)x+6.

We can also put in standard form which is ax+by=c where a,b,c are integers.

y=(-5/8)x+6

First step: We want to get rid of the fraction by multiplying both sides by 8:

8y=-5x+48

Second step: Add 5x on both sides:

5x+8y=48 (This is standard form.)

Now you can also out the line point-slope form, [tex]y-y_1=m(x-x_1) \text{ where } m \text{ is the slope and } (x_1,y_1) \text{ is a point on the line }[/tex]

So you can say either is correct:

[tex]y-11=\frac{-5}{8}(x-(-8))[/tex]

or after simplifying:

[tex]y-11=\frac{-5}{8}(x+8)[/tex]

Someone might have decided to use the other point; that is fine:

[tex]y-\frac{7}{2}=\frac{-5}{8}(x-4)[/tex]

So our answers could be any of these depending on the form wanted*:

[tex]y=\frac{-5}{8}x+6[/tex]

[tex]5x+8y=48[/tex]

[tex]y-11=\frac{-5}{8}(x+8)[/tex]

[tex]y-\frac{7}{2}=\frac{-5}{8}(x-4)[/tex]

Terry invested money in a biotech stock whose growth is modeled by the function f(x) = 0.01(2)x, where x represents number of days. Find the approximate average rate of change from day 2 to day 10.

Answers

Answer:

The average rate of change is 1.275

Step-by-step explanation:

The average rate of change of f(x) from x=a to x=b is given by:

[tex]\frac{f(b)-f(a)}{b-a}[/tex]

The money Terry invested is modeled by the function [tex]f(x)=0.01(2)^x[/tex] where x represents number of days.

The average rate of change from day 2 to day 10 is given by:

[tex]\frac{f(10)-f(2)}{10-2}[/tex]

[tex]f(10)=0.01(2)^{10}=10.24[/tex]

[tex]f(2)=0.01(2)^{2}=0.04[/tex]

The average rate of change becomes:

[tex]\frac{10.24-0.04}{8}[/tex]

[tex]=\frac{10.2}{8}=1.275[/tex]

Answer:

The average rate of change is 1.275

You are told that a sample of size 225 the mean is 48.5 and the standard deviation is 1.8 the study is reported with 90% confidence level explain how to determine if 48.8 is within the confidence interval

Answers

Answer with explanation:

Size of the sample = n =225

Mean[\text] \mu[/text]=48.5

Standard deviation [\text] \sigma[/text]= 1.8

[tex]Z_{90 \text{Percent}}=Z_{0.09}=0.5359\\\\Z_{score}=\frac{\Bar X -\mu}{\frac{\sigma}{\sqrt{\text{Sample size}}}}\\\\0.5359=\frac{\Bar X -48.5}{\frac{1.8}{\sqrt{225}}}\\\\0.5359=15 \times \frac{\Bar X -48.5}{1.8}\\\\0.5359 \times 1.8=15 \times (\Bar X -48.5)\\\\0.97=15 \Bar X-727.5\\\\727.5+0.97=15 \Bar X\\\\728.47=15 \Bar X\\\\ \Bar X=\frac{728.47}{15}\\\\\Bar X=48.57[/tex]

→Given Confidence Interval of Mean =48.8

→Calculated Mean of Sample =48.57 < 48.8

So, the value of Sample mean lies within the confidence interval.

Answer:

sample answer

Step-by-step explanation:

To find the margin of error, multiply the z-score by the standard deviation, then divide by the square root of the sample size.

The z*-score for a 90% confidence level is 1.645.

The margin of error is 0.20.

The confidence interval is 48.3 to 48.7.

48.8 is not within the confidence interval.

Is the following function an example
of exponential growth or decay?
f(x) = 198(0.73)x+1

Answers

Answer:

Exponential decay

Step-by-step explanation:

b = 0.73

Since the b is less than 1 (b<1), the rate is decreasing.

Solve the system by the substitution method.
min
y=-3X-6
3x-4y=9​

Answers

The work is attached but you just replace the y with what it is equal to which is -3x-6 in the equation

Sqrt7x( sqrt x - 7 sqrt 7)

Answers

Answer:

[tex]x\sqrt{7} - 49\sqrt{x}[/tex]

Step-by-step explanation:

We have to simplify the following expression: [tex]\sqrt{7x}(\sqrt{x} - 7\sqrt{7})[/tex]

Using distributive property:

[tex]\sqrt{7x}(\sqrt{x} - 7\sqrt{7}) = \sqrt{7x}\sqrt{x} - 7\sqrt{7}\sqrt{7x}[/tex]

⇒ [tex]x\sqrt{7} - 49\sqrt{x}[/tex]

So the most simplified form of the expression is the following: [tex]x\sqrt{7} - 49\sqrt{x}[/tex]

Certainly! To solve this problem, we will need to simplify the expression √(7x)(√x - 7√7).
First, let us consider the individual square root terms: √(7x) and √x. Recall that the square root of a product can be separated into the product of the square roots of the factors, so √(7x) can be expressed as √7 * √x.
Now we have:
√(7x)(√x - 7√7) = (√7√x)(√x - 7√7)
Next, we distribute √7√x into the terms within the parentheses:
(√7√x)(√x) - (√7√x)(7√7)
Simplify each term:
First term: (√7√x)(√x) = √7 * (√x * √x) = √7 * x
This is because the square root of a number multiplied by itself is just the number.
Second term: (√7√x)(7√7) = 7√7 * (√7√x) = 7 * (√7 * √7) * √x
               = 7 * 7 * √x
               = 49√x
This is because the square root of 7 squared is just 7.
Now we combine the two terms:
√7x = √7 * x - 49√x
And that is the simplified form of the given expression.

If f(x) = sqrt (4x+9) +2 which inequality can be used to find the domain of f(x)

Answers

Answer:

Step-by-step explanation:

the domain of x represents the values that x can be without the function being undefined.  the function of square rooting is undefined for negative numbers.  so in order to find the domain, you must ensure that the "stuff" in the square root is greater than, or equal, to zero.  hence, (4x+9)>= 0.  the answer is B

For this case we have the following function:

[tex]f (x) = \sqrt {4x + 9} +2[/tex]

By definition, the domain of a function is given by all the values for which the function is defined.

For the given function to be defined, then the root argument must be positive, that is:

[tex]4x + 9 \geq0[/tex]

Answer:

Option B

If the length of one leg of a right triangle is 3 and the hypotenuse is [tex]\sqrt{34}[/tex], what is the length of the other leg?

Answers

[tex]\huge{\boxed{5}}[/tex]

The Pythagorean theorum states that when [tex]a[/tex] and [tex]b[/tex] are sides and [tex]c[/tex] is the hypotenuse, [tex]a^2 + b^2 = c^2[/tex]

So, let's plug in the values. [tex]3^2 + b^2 = (\sqrt{34})^2[/tex]

Simplify. The square of a square root is the number inside the square root. [tex]9 + b^2 = 34[/tex]

Subtract 9 from both sides. [tex]b^2 = 25[/tex]

Get the square root of both sides. [tex]\sqrt{b^2} = \sqrt{25}[/tex]

[tex]b=\boxed{5}[/tex]

Answer:

5

Step-by-step explanation:

Use the Pythagorean theorem:

[tex]leg^2+leg^2=hypotenuse^2[/tex]

We have

[tex]leg=3,\ hypotenuse=\sqrt{34}[/tex]

Let's mark the other leg as x.

Substitute:

[tex]3^2+x^2=(\sqrt{34})^2[/tex]      use (√a)² = a

[tex]9+x^2=34[/tex]            subtract 9 from both sides

[tex]x^2=25\to x=\sqrt{25}\\\\x=5[/tex]

What is the value of x?
Enter your answer in the box

Answers

Answer:

25

Step-by-step explanation:

Those parallel lines tell us our triangles are similar. So that means the corresponding sides are proportional.

So we have that x corresponds to x+15 and

40 corresponds to 24+40.

So we have this proportion to solve:

[tex]\frac{x}{x+15}=\frac{40}{24+40}[/tex]

Let's simplify what we can:

[tex]\frac{x}{x+15}=\frac{40}{64}[/tex]

Cross multiply:

[tex](64)(x)=(x+15)(40)[/tex]

Multiply/distribute:

[tex]64x=40x+600[/tex]

Subtract 40x on both sides:

[tex]24x=600[/tex]

Divide both sides by 24:

[tex]x=\frac{600}{24}=25[/tex]

x=25

Answer:

x = 25.

Step-by-step explanation:

24/40 = 15/x

x = (40*15) / 24

x = 600/24

= 25.

Pleaseeeee help me with this question

Answers

How much does one song cost?

What is the following sum? Assume x > 0 and y > 0 sqrt x^2y^2+2 sqrt x^3y^4+xy sqrt y

Answers

Answer:

[tex]xy(1+2y\sqrt{x}+\sqrt{y})[/tex]

Step-by-step explanation:

Given expression,

[tex]\sqrt{x^2y^2}+2\sqrt{x^3y^4}+xy\sqrt{y}[/tex]

[tex]=(x^2y^2)^\frac{1}{2} + 2(x^3y^4)^\frac{1}{2} + xy\sqrt{y}[/tex]

[tex]\because (\sqrt{x}=x^\frac{1}{2})[/tex]

[tex]=(x^2)^\frac{1}{2} (y^2)^\frac{1}{2} + 2(x^3)^\frac{1}{2} (y^4)^\frac{1}{2} + xy\sqrt{y}[/tex]

[tex](\because (ab)^n=a^n b^n)[/tex]

[tex]=x^{2\times \frac{1}{2}} y^{2\times \frac{1}{2}} + 2(x^{3\times \frac{1}{2}})(y^{4\times \frac{1}{2}})+xy\sqrt{y}[/tex]

[tex]\because (a^n)^m=a^{mn}[/tex]

[tex]=x^1 y^1 + 2x^{1\frac{1}{2}} y^2 + xy\sqrt{y}[/tex]

[tex]=xy+2x.(x)^\frac{1}{2} y^2 + xy\sqrt{y}[/tex]

[tex]=xy+2xy^2\sqrt{x}+xy\sqrt{y}[/tex]

[tex]=xy(1+2y\sqrt{x}+\sqrt{y})[/tex]

Answer:

B is the right option

Step-by-step explanation:

On edg :))

Which expression is equivalent to (x 4/3 x2/3) ^1/3

Answers

Answer:

[tex]\large\boxed{x^\frac{2}{3}}[/tex]

Step-by-step explanation:

[tex]\left(x^\frac{4}{3}x^\frac{2}{3}\right)^\frac{1}{3}\qquad\text{use}\ a^na^m=a^{n+m}\\\\=\left(x^{\frac{4}{3}+\frac{2}{3}}\right)^\frac{1}{3}=\left(x^{\frac{6}{3}\right)^\frac{1}{3}=(x^2)^\frac{1}{3}\qquad\text{use}\ (a^n)^m=a^{nm}\\\\=x^{(2)\left(\frac{1}{3}\right)}=x^\frac{2}{3}[/tex]

12(80-x)=816 what does x equal?​

Answers

one way to solve:
960-12x=816
144=12x
12=x
Another way to solve
80-x=68
x=12
12(80-x)=816
960-12x=816
-12x=816-960
-12x= -144
X= -144/-12
X= 12

The answer is 12. Hope this helps!

Factor this expression completely. x2 + 6x + 9

Answers

Answer:

x² + 6x + 9  = (x + 3)(x + 3)

Step-by-step explanation:

It is given a quadratic equation

x² + 6x + 9

To find the factors of given expression

By using middle term splitting

Let f(x) = x² + 6x + 9

 = x² + 3x  + 3x + 9

 = x(x + 3) + 3(x + 3)

 = (x + 3)(x + 3)

Therefore the factors of x² + 6x + 9

(x + 3)(x + 3)

The expression [tex]\(x^2 + 6x + 9\)[/tex] factors completely to [tex]\((x + 3)^2\)[/tex].

To factor the expression [tex]\(x^2 + 6x + 9\)[/tex] completely, we can look for a pair of numbers that multiply to 9 (the constant term) and add up to 6 (the coefficient of the linear term).

The pair of numbers that satisfy these conditions is 3 and 3  because [tex]\(3 \times 3 = 9\) and \(3 + 3 = 6\).[/tex]

So, we can rewrite the expression as:

[tex]\[ x^2 + 3x + 3x + 9 \][/tex]

Now, we can group the terms:

[tex]\[ (x^2 + 3x) + (3x + 9) \][/tex]

Now, we can factor out the greatest common factor from each group:

[tex]\[ x(x + 3) + 3(x + 3) \][/tex]

Notice that both terms have a common factor of [tex]\(x + 3\)[/tex], so we can factor that out:

[tex]\[ (x + 3)(x + 3) \][/tex]

[tex]\[ (x + 3)^2 \][/tex]

The following function represents the value of a car, in dollars, after x years:
f(x) = 24,000(0.92)power of x

What does 0.92 represent?

A.The present value of the car

B.The value of the car after x years

C.The decrease in the value of the car, which is 92%

D.The decrease in the value of the car, which is 8%​

Answers

Answer:

Option D.The decrease in the value of the car, which is 8%

Step-by-step explanation:

we have a exponential function of the form

[tex]f(x)=a(b)^{x}[/tex]

where

y is the value of the car

x is the time in years

a is the initial value

b is the base

r is the rate of decrease

b=1+r

In this problem we have

a=$24,000 initial value of the car

b=0.92

so

0.92=1+r

r=0.92-1=-0.08=-8%-----> is negative because is a rate of decrease

Answer:

D.The decrease in the value of the car, which is 8%​

Step-by-step explanation:

Since, in the exponential function,

[tex]f(x)=ab^x[/tex]

a is the initial value,

b is the growth ( if > 1 ) or decay factor ( if between 0 and 1 ),

Here, the given equation that shows the value of car after x years,

[tex]f(x)=24000(0.92)^x[/tex]

By comparing,

b = 0.92 < 1

Thus, 0.92 is the decay factor that shows the decrease in the value of car,

∵ Decay rate = 1 - decay factor

= 1 - 0.92

= 0.08

= 8%

Hence, the value of car is decreasing with the rate of 8%.

Option 'D' is correct.

what is the value of x in the equation 1 / 5 x - 2 / 3 y equals 30 when y equals 15​

Answers

x=200
1/5x-(2/3)(15)=30
1/5x-(30/3)=30
1/5x-10=30
1/5x=40
x=200

(1/5)(200)-(2/3)(15)=30
(200/5)-(30/3)=30
40-10=30
30=30

How many deciliter are equivalent to 5 cups

Answers

Answer:

11.8294Step-by-step explanation:

Answer:

Step-by-step explanation:

How many deciliters are equivalent to 5 cups?

2.1097 deciliters

11.85 deciliters

118.5 deciliters

210.97 deciliters

ANSWER IS 11.85

Find the area of the triangle

Answers

Answer:

=14.69km²

Step-by-step explanation:

We can use the Hero's formula to calculate the area

A= √(s(s-a)(s-b)(s-c))

s is obtained by adding the lengths of the three sides of the triangle and then dividing by 2, a, b and c are the ides of the triangle.

S=(5+6+7)/2

=9

A=√(9(9-6)(9-5)(9-7))

=√(9×3×4×2)

=√216

=14.69km²

What is the sign of 3xy when x>0 and y<0?

Answers

Let see.

Numbers which are bigger than 0 are defined as positive numbers and have a prefix of + (plus).

Numbers which are smaller than 0 are defined as negative numbers and have a prefix of - (minus).

Let say number a is equal to the expression,

[tex]a=3xy[/tex]

Since y is negative we can change its prefix to -,

[tex]a=3x\cdot(-y)[/tex]

Any number (in this case 3x) multiplied by negative number will produce a negative number.

Therefore the sign or prefix of number a will be -.

Hope this helps.

r3t40

Final answer:

When you multiply a positive number and a negative number, the result is a negative number. Therefore, the sign of 3xy, when x > 0 and y < 0, is negative.

Explanation:

The question is asking for the sign of the product of two numbers, x and y, when x is positive (x > 0) and y is negative (y < 0). In mathematics, when you multiply a positive number and a negative number, the result is always a negative number.

So, the product of x and y or 3xy in this case, would be negative. This is due to the principle that the product of different signs (in this case, positive and negative) is always negative.

Learn more about Multiplication of positive and negative numbers here:

https://brainly.com/question/34274159

#SPJ3

If x + y = 12 and x - y = 3, then
x2 - y2 =​

Answers

[tex]x^2-y^2=(x-y)(x+y)\\\\x^2-y^2=3\cdot12=36[/tex]

What is the value of the expression 10 − ( fraction 1 over 2 )4 ⋅ 48?

2
4
5
7

Answers

Answer:

The answer is 7

Step-by-step explanation:

The expression is 10-(1/2)^4 * 48

Here PEMDAS rule applies:

where,

P= parenthesis

E= exponent

M= multiplication

D= division

A= addition

S= subtraction

So according to this rule first we will solve parenthesis and exponent.(PE)

10-(1/2)^4 *48

(1/2)^4 means, multiply 1/2 four times:

1/2*1/2*1/2*1/2=1/16

Therefore the expression becomes:

10-1/16*48

Now we have MD which is multiplication and division:

1/16*48 = 3

Now after solving the multiplication and division the expression becomes:

10-3.

After subtracting the terms we have:

10-3=7

Thus the answer is 7....

the medium in which a story is presented most affects the ​

Answers

Answer:

audience's perspective of a story - please give brainliest

Answer B. audience's perspective of the story

Given that x represents the number of small prints sold and y represents the number of large prints sold, determine which inequalities represent the constraints for this situation

Answers

Answer:

Part A) [tex]15x+25y\geq 700[/tex] and [tex]x> 3y[/tex]

Part B) The point (45,10) and the point (40,5)  satisfy the system

Step-by-step explanation:

Part A) Determine which inequalities represent the constraints for this situation

Let

x -----> the number of small prints sold

y -----> the number of large prints sold

we know that

The system of inequalities that represent this situation is equal to

[tex]15x+25y\geq 700[/tex] ----> inequality A

[tex]x> 3y[/tex] ----> inequality B

Part B) With combinations of small prints and large prints satisfy this system?

we know that

If a ordered pair is a solution of the system, then the ordered pair must satisfy both inequalities

Verify each case

case 1) (45,10)

For x=45, y=10

Inequality A

[tex]15x+25y\geq 700[/tex]

[tex]15(45)+25(10)\geq 700[/tex]

[tex]925\geq 700[/tex] ----> is true

Inequality B

[tex]x> 3y[/tex]

[tex]45> 3(10)[/tex]

[tex]45> 30[/tex] ----> is true

therefore

The point (45,10) satisfy the system

case 2) (35,15)

For x=35, y=15

Inequality A

[tex]15x+25y\geq 700[/tex]

[tex]15(35)+25(15)\geq 700[/tex]

[tex]900\geq 700[/tex] ----> is true

Inequality B

[tex]x> 3y[/tex]

[tex]35> 3(15)[/tex]

[tex]35> 45[/tex] ----> is not true

therefore

The point (35,15) does not satisfy the system

case 3) (30,10)

For x=30, y=10

Inequality A

[tex]15x+25y\geq 700[/tex]

[tex]15(30)+25(10)\geq 700[/tex]

[tex]700\geq 700[/tex] ----> is true

Inequality B

[tex]x> 3y[/tex]

[tex]30> 3(10)[/tex]

[tex]30> 30[/tex] ----> is not true

therefore

The point (30,10) does not satisfy the system

case 4) (40,5)

For x=40, y=5

Inequality A

[tex]15x+25y\geq 700[/tex]

[tex]15(40)+25(5)\geq 700[/tex]

[tex]725\geq 700[/tex] ----> is true

Inequality B

[tex]x> 3y[/tex]

[tex]40> 3(5)[/tex]

[tex]40> 15[/tex] ----> is true

therefore

The point (40,5)  satisfy the system

Final answer:

The question refers to the relationship between x (number of small prints sold) and y (number of large prints sold), in an uncertain context. Constraints would be limitations or restrictions on the values that x and y can take, often expressed as inequalities. As this problem lacks specific details (like total prints or budget limits), it's impossible to define specific inequalities representing these constraints without them.

Explanation:

In this situation, x and y are variables that represent the quantities of small and large prints sold respectively. As such, they can also be understood as independent and dependent variables. In Mathematics, an independent variable is one that stands alone and isn't changed by the other variables you are trying to measure. In contrast, the dependent variable is what you measure in the experiment and what is affected.

In this context, constraints would be limitations or restrictions on the values that x and y can have, often represented by inequalities.

Without specific detail in the context such as the total prints available, thus giving a limit on total sales, or the price information for small and large prints leading to a budget constraint, it is impossible to define any specific inequalities to represent these constraints. Additional information such as these is required to formulate appropriate inequalities.

Learn more about Inequalities here:

https://brainly.com/question/30231190

#SPJ12

Does anyone know how to do this ? Please help !

Answers

Ah, all you have to do is combine 2/5m and 3/5m.

In this case:

=2/5m - 4/5 - 3/5m

=-1/5m - 4/5

=-m/5-4/5

Answer:

[tex]\frac{-1}{5}m-\frac{4}{5}[/tex]

Step-by-step explanation:

You are given:

[tex]\frac{2}{5}m-\frac{4}{5}-\frac{3}{5}m[/tex]

Reorder using commutative property (putting like terms together):

[tex]\frac{2}{5}m-\frac{3}{5}m-\frac{4}{5}[/tex]

Now we are going to bring down the -4/5 (there is nothing to do there).

(2/5)m and -(3/5)m have the same denominator all we have to do is figure out what is 2-3 which is -1

[tex]\frac{-1}{5}m-\frac{4}{5}[/tex]

Other Questions
The primary stress on one syllable of a word is called the ___? Which numbers are imaginary numbers ? Bernard solved the equation 5x+(-4)=6x+4 using algebra tiles.Which explains why Bernard added 5 negative x-tiles to both sides in the first step of the solution ? Two trains leave towns 1152km apart at the same time and travel toward each other. One train travels 14km/h slower than the other. If they meet in 4 hours, what is the rate of each train? Does this sound right for a thesis statement? "Martin Luther King, Jr. used stylistic elements such as the use of simile, imagery, metaphor, and other rhetorical devices, these stylistic elements helped King to influence the person reading the letter, these elements help persuade those reading this letter to see where Martin Luther King Jr. is coming from factually and emotionally." Cognitive-behavioral techniques: a. may substitute for drug treatments in case of severe hypertension. b. can be used without supervision and have no side effects. c. are expensive and highly difficult to implement. d. have been moderately successful in the treatment of hypertension. If there were no air resistance, a penny dropped from the top of a skyscraper would reach the ground 9.3 s later. To the nearest integer, what would the penny's speed in m/s be right as it reaches the ground if it was dropped from rest? Find all solutions to the equation sin(3x)cosx+sinx cos(3x)=0 on the interval [0,2pi]a- x=0,pi/4,pi/2,3pi/4,pi,3pi/2,2pib- x=0,pi/2,pi,3pi/2,2pic- x=0,pi,2pid- x=0,pi/2,3pi/2 Is the Illinois conceal carry law consistent with the social contract theory What is the total number of common tangents that can be drawn to the circles?A. 0B. 2C. 1D. 3 How would you do this problem? It gives me the right answer but I need to show my work. Which of the following statement(s) about cells is/are true?1. Mitosis --- division of somatic cells 2. Meiosis --- division of sex cells 3. Somatic cells are diploid 4. Sex cells are haploid A) 1, 2, 3, 4 B) 1 and 2 C) 3 and 4 D) 1 and 4 E) 1, 2 and 4 In a nuclear reactor, more fuel is burned than is consumed. a)-True b)- False Read the last sentence of the passage. Which of the following best summarizes this sentence?I hope this scandal will bring us all closer together in the end.I hope my resignation can help us move on.I hope you will all follow my example about how to be a good citizen.In passing this office to the Vice President, I also do so with the profound sense of the weight of responsibility that will fall on his shoulders tomorrow and, therefore, of the understanding, the patience, the cooperation he will need from all Americans.As he assumes that responsibility, he will deserve the help and the support of all of us. As we look to the future, the first essential is to begin healing the wounds of this Nation, to put the bitterness and divisions of the recent past behind us and to rediscover those shared ideals that lie at the heart of our strength and unity as a great and as a free people.By taking this action, I hope that I will have hastened the start of that process of healing which is so desperately needed in America.President Richard NixonAugust 8, 1974 The lengths of two sides of a right triangle are 5 inches and 8 inches. What is the difference between the two possiblelengths of the third side of the triangle? Round your answer to the nearest tenth.OOOO3.1 inches3.2 inches10.0 inches15.7 inches Find the value of EB.A. 5B. 11C. 31D. 25 Which of the following is known to promote fat storage in adipocytes? a. Glucagonb. Lipoprotein lipasec. Cellulite synthetased. Lipoprotein synthetase e. Adipose lipase The increased risk of lung cancer that results from smoking and asbestos exposure is an example of a/an _________ effect. A company has three product lines, one of which reflects the following results: Sales $ 215,000 Variable expenses 125,000 Contribution margin 90,000 Fixed expenses 140,000 Net loss $ (50,000 ) If this product line is eliminated, 60% of the fixed expenses are traceable fixed expenses, which can be eliminated and the other 40% are common fixed expenses that cannot be avoided. If management decides to eliminate this product line, the company's net income will ________. increase by $50,000 decrease by $90,000 decrease by $6,000 increase by $6,000 A student took a chemistry exam where the exam scores were mound-shaped with a mean score of 90 and a standard deviation of 64. She also took a statistics exam where the scores were mound-shaped, the mean score was 70 and the standard deviation was 16. If the student's grades were 102 on the chemistry exam and 77 on the statistics exam, then: a. the student did relatively better on the chemistry exam than on the statistics exam, compared to the other students in each class. b. it is impossible to say which of the student's exam scores indicates the better performance. c. the student did relatively better on the statistics exam than on the chemistry exam, compared to the other students in the two classes. d. the student's scores on both exams are comparable, when accounting for the scores of the other students in the two classes. e. the student did relatively the same on both exams