Suppose 150W of heat flows by conduction from the blood capillaries beneath the skin to the body's surface area of 1.5 m^2. If the temperature difference is 0.50 ºC, estimate the average distance of capillaries below the skin surface. Use 'mm' as your units.

Answers

Answer 1

Answer:

[tex]l =1mm[/tex]

Explanation:

Given:

Rate of heat transfer, P = 150 W

Body surface Area, A = 1.5 m²

Temperature difference, ΔT = 0.50°C

Also,

The rate of heat transfer, P is given as:

[tex]P = \frac{kA\Delta T}{l}[/tex]

Where,

l =length of material (or here it isaverage distance of the capillaries below the skin surface)

k = Thermal conductivity

Here the transfer of heat is through the skin. Thus, k for human tissue is given as 0.2

substituting the values in the above equation, we get

[tex]150 = \frac{0.2\times 1.5\times 0.50}{l}[/tex]

or

[tex]l = \frac{0.2\times 1.5\times 0.50}{150}[/tex]

or

[tex]l = 1\times 10^{-3}m=1mm[/tex]

Answer 2
Final answer:

Using the formula for thermal conduction, it is estimated that the capillaries lie about 3 mm below the skin surface. This is a simplification, actual distances can vary based on specific factors.

Explanation:

To estimate the average distance between the capillaries and skin surface, we can use the formula for thermal conduction, which states that heat flow equals the thermal conductivity constant (k) times the surface area of the skin (A) times the temperature difference (ΔT), divided by the thickness of the skin (d), or Q = k*A*ΔT/d.

Assuming that human skin has a thermal conductivity similar to water (k~0.6 W/mK), we can rearrange the formula to solve for d: d = k*A*ΔT/Q. Plugging in the given values, we get d = (0.6 W/mK * 1.5 m^2 * 0.50 ºC) / 150 W, which simplifies to approximately 0.003 m, or 3 mm.

This estimate suggests that, on average, the capillaries lie about 3 mm below the skin surface. However, this is a simplification and actual distances can vary based on factors such as the specific region of the body, individual physiology, and more. Thermal conduction is just one mechanism of heat transfer in the body, along with convection and radiation.

Learn more about Thermal Conduction here:

https://brainly.com/question/33165098

#SPJ11


Related Questions

A fire hose ejects a stream of water at an angle of 35.0° above the horizontal. The water leaves the nozzle with a speed of 25.0 m/s. Assuming that the water behaves like a projectile, how far from a building should the fire hose be located to hit the highest possible fire?

Answers

Final answer:

To find the distance from the building where the water will hit the highest possible fire, we analyze the horizontal and vertical components of the water's motion. Using the given information, we calculate the horizontal distance using the horizontal velocity and time, and the vertical distance using the vertical velocity and time. By finding the time at which the water reaches its maximum height, we can determine the horizontal distance.

Explanation:

A fire hose ejects a stream of water at an angle of 35.0° above the horizontal with a speed of 25.0 m/s. To find the distance from the building where the water will hit the highest possible fire, we can analyze the horizontal and vertical components of the water's motion. The horizontal distance can be calculated using the horizontal velocity and time, while the vertical distance can be determined using the vertical velocity and time. By finding the time at which the water reaches its maximum height, we can calculate the horizontal distance.

Using the given information, we can determine that the initial horizontal velocity is 25.0 m/s * cos(35.0°) = 20.4 m/s, and the vertical velocity is 25.0 m/s * sin(35.0°) = 14.3 m/s. The time it takes for the water to reach its maximum height (where the vertical velocity becomes zero) can be found using the equation vy = v0y - gt, where vy is the vertical velocity, v0y is the initial vertical velocity, g is the acceleration due to gravity, and t is the time. Solving for t, we get t = v0y / g. Plugging in the values, we have t = 14.3 m/s / 9.8 m/s^2 = 1.46 seconds. Finally, we can find the horizontal distance by multiplying the initial horizontal velocity by the time: x = v0x * t = 20.4 m/s * 1.46 s = 29.8 m. Therefore, the fire hose should be located approximately 29.8 meters away from the building to hit the highest possible fire.

Learn more about Projectile motion here:

https://brainly.com/question/29545516

#SPJ12

The fire hose should be located approximately 59.8 meters from the building from the building to hit a fire at the highest point the water stream can reach.

Projectile Motion in Fire Hose Stream

To determine how far from a building a fire hose should be located to hit the highest possible fire, we need to analyze the projectile motion of the water stream ejected.

The water stream is ejected at an angle of 35.0° above the horizontal with an initial speed of 25.0 m/s. We will assume the water reaches its highest point where its vertical component of velocity becomes zero.

Step-by-Step Calculation

Horizontal and Vertical Components of Velocity:
Initial Velocity, [tex]v_0 = 25.0 m/s[/tex]
Angle, [tex]\theta = 35.0^o[/tex]
Horizontal component, [tex]v_x = v_0 \times cos(\theta) = 25.0 \times cos(35.0^o) = 20.48 m/s[/tex]
Vertical component, [tex]v_y = v_0 \times sin(\theta) = 25.0 \times sin(35.0^o) = 14.34 m/s[/tex]Time to reach maximum height:
At maximum height, [tex]v_y = 0[/tex]
Using the first equation of motion, [tex]v = u + at:[/tex]
[tex]0 = 14.34 - 9.8 \times t\\t = 14.34 / 9.8 = 1.46 s[/tex]Total time of flight:
Total time to reach maximum height and come back down: [tex]T_{total} = 2 \times t = 2 \times 1.46 = 2.92 s[/tex]Horizontal distance covered (Range):
Range, [tex]R = v_x \times T_{total} = 20.48 m/s \times 2.92 s = 59.8 m[/tex]

A 0.012 kg ping pong ball placed 1.8 m away from 0.3 kg billbard ball. calculate gravitational force between two objects

Answers

Answer:

7.4 x 10^-14 N

Explanation:

m = 0.012 kg, M = 0.3 kg, r = 1.8 m

Let the gravitational force be F.

F = G M m / r^2

F = (6.67 x 10^-11 x 0.3 x 0.012) / (1.8)^2

F = 7.4 x 10^-14 N

A wagon is rolling forward on level ground. Friction is negligible. The person sitting in the wagon is holding a rock. The total mass of the wagon, rider, and rock is 93.1 kg. The mass of the rock is 0.292 kg. Initially the wagon is rolling forward at a speed of 0.456 m/s. Then the person throws the rock with a speed of 15.4 m/s. Both speeds are relative to the ground. Find the speed of the wagon after the rock is thrown (a) directly forward in one case and (b) directly backward in another.

Answers

Answer:

a) 0.41 m/s

b) 0.51 m/s

Explanation:

(a)

M = total mass of wagon, rider and the rock = 93.1 kg

V = initial velocity of wagon = 0.456 m/s

m = mass of the rock = 0.292 kg

v = velocity of rock after throw = 15.4 m/s

V' = velocity of wagon after rock is thrown

Using conservation of momentum

M V = m v + (M - m) V'

(93.1) (0.456) = (0.292) (15.4) + (93.1 - 0.292) V'

V' = 0.41 m/s

b)

M = total mass of wagon, rider and the rock = 93.1 kg

V = initial velocity of wagon = 0.456 m/s

m = mass of the rock = 0.292 kg

v = velocity of rock after throw = - 15.4 m/s

V' = velocity of wagon after rock is thrown

Using conservation of momentum

M V = m v + (M - m) V'

(93.1) (0.456) = (0.292) (- 15.4) + (93.1 - 0.292) V'

V' = 0.51 m/s

An electric heater is rated at 1430 W, a toaster at 890 W, and an electric grill at 1760 W. The three appliances are connected in parallel to a common 120 V circuit. How much total current does this circuit draw?

Answers

Answer:

34.01 A

Explanation:

[tex]P_{heater}[/tex] = Power of the electric heater = 1430 W

[tex]P_{toaster}[/tex] = Power of the toaster = 890 W

[tex]P_{grill}[/tex] = Power of the electric grill = 1760 W

V = Voltage of the battery connected in parallel to appliances = 120 volts

Using ohm's law, current drawn by heater is given as

[tex]i_{heater} = \frac{P_{heater}}{V}[/tex]

[tex]i_{heater} = \frac{1430}{120}[/tex]

[tex]i_{heater} [/tex] = 11.92 A

Using ohm's law, current drawn by toaster is given as

[tex]i_{toaster} = \frac{P_{toaster}}{V}[/tex]

[tex]i_{toaster} = \frac{890}{120}[/tex]

[tex]i_{toaster} [/tex] = 7.42 A

Using ohm's law, current drawn by grill is given as

[tex]i_{grill} = \frac{P_{grill}}{V}[/tex]

[tex]i_{grill} = \frac{1760}{120}[/tex]

[tex]i_{grill} [/tex] = 14.67 A

Total circuit drawn is given as

[tex]i_{total} [/tex] = [tex]i_{heater} [/tex] + [tex]i_{toaster} [/tex] + [tex]i_{grill} [/tex]

[tex]i_{total} [/tex] = 11.92 + 7.42 + 14.67

[tex]i_{total} [/tex] = 34.01 A

Two workers are sliding 390 kg crate across the floor. One worker pushes forward on the crate with a force of 450 N while the other pulls in the same direction with a force of 200 N using a rope connected to the crate. Both forces are horizontal, and the crate slides with a constant speed. What is the crate's coefficient of kinetic friction on the floor?

Answers

Answer:

The coefficient of kinetic friction [tex]\mu= 0.16989[/tex]

Explanation:

From Newton's second law

[tex]\sum\overset{\rightarrow}{F}=m\cdot\overset{\rightarrow}{a}[/tex]

If the velocity is constant, that means the summation of all forces must be equal to zero. Draw the free-body diagram to obtain the sums of forces in x and y. It must include the Friction Force, in the opposite direction of the displacement, the weight ([tex]W=mg=390*9.81=3825.9N[/tex]), the Normal Force, which is the is the consequence of Newton's third law and the forces from the two workers.

The sum in y is:

[tex]\sum F_{y}=F_{N}-3825.9=0[/tex]

Solving for the [tex]F_{N}[/tex]:

[tex]F_{N}=$ $3825.\,\allowbreak9N[/tex]

The sum in x is:

[tex]\sum F_{x}=450+200-F_{f}=0[/tex]

Solving for the [tex]F_{f}[/tex]:

[tex]$F_{f}=650.0N[/tex]

The formula of the magnitude of the Friction force is

[tex]F_{f}=\mu F_{N}[/tex]

That means the coefficient of friction is:

[tex]\mu=\frac{F_{f}}{F_{N}}=\frac{650.0}{3825.\,\allowbreak9}=\allowbreak0.16989[/tex]

A composite wall 8 m long and 4 m high consists of 4 cm of brick, 8 cm of concrete, 6 cm of fiberglass and 10 cm of corkboard. The inside temperature is 18°C, and the outside temperature is 40°C. How much heat is flow into the house through this wall in 10 hours?

Answers

Answer:

Heat flow through walls in 10 hours is

[tex]Q = 6.1 \times 10^6 J[/tex]

Explanation:

Thermal conductivity of all the materials is as follows

1). Concrete = 0.8

2). Brick = 0.6

3). Fibreglass = 0.04

4). Corkboard = 0.04

Area of the wall is given as

[tex]A = (8 \times 4) = 32 m^2[/tex]

now the thermal resistance due to each wall is given as

[tex]R_1 = \frac{0.04}{0.6(32)} = 2.08 \times 10^{-3}[/tex]

[tex]R_2 = \frac{0.08}{0.8(32)} = 3.125 \times 10^{-3}[/tex]

[tex]R_3 = \frac{0.06}{0.04(32)} = 46.87 \times 10^{-3}[/tex]

[tex]R_2 = \frac{0.10}{0.04(32)} = 78.13 \times 10^{-3}[/tex]

Now total thermal resistance of all walls

[tex]R = R_1 + R_2 + R_3 + R_4[/tex]

[tex]R = (2.08 + 3.125 + 46.87 + 78.13) \times 10^{-3}[/tex]

[tex]R = 0.130[/tex]

now rate of heat transfer per second is given as

[tex]\frac{dQ}{dt} = \frac{T_1 - T_2}{R}[/tex]

[tex]Q = \frac{40 - 18}{0.130}(10 \times 3600)[/tex]

[tex]Q = 6.1 \times 10^6 J[/tex]

An AC voltage source and a resistor are connected in series to make up a simple AC circuit. If the source voltage is given by ΔV = ΔVmax sin(2πft) and the source frequency is 16.9 Hz, at what time t will the current flowing in this circuit be 55.0% of the peak current?

Answers

0.005366 seconds is the time will the current flowing in this circuit be 55.0% of the peak current.

In a simple AC circuit with a resistor connected to an AC voltage source, the current flowing through the circuit can be calculated using Ohm's law:

I(t)=ΔV(t)/R

Where: I(t) is the current at time

ΔV(t) is the instantaneous voltage at time t

R is the resistance of the resistor.

Given that the source voltage is [tex]\bigtriangleup V=\bigtriangleup V_{max}sin(2 \pi ft)[/tex], and you want to find the time  t at which the current is 55% of the peak current, you need to find the time when [tex]I(t)=0.55\times I_{peak}.[/tex]

Find the peak current [tex]I_{peak}[/tex].

The peak current corresponds to the current when the source voltage is at its peak value  [tex]\bigtriangleup V_{max}[/tex] ​ .

Using Ohm's law:

[tex]I_{peak}=\frac{\bigtriangleup V_{max}}{R}[/tex]

The time t when the current  I(t) is 55% of the peak current:

[tex]I(t)=0.55 \times I_{peak}[/tex]

Substitute the expressions for I(t) and  [tex]I_{peak}[/tex].

[tex]\frac{\bigtriangleup V(t)}{R}=0.55 \times \frac{\bigtriangleup V_{max}}{R}[/tex]

2πft=arcsin(0.55)

t=arcsin(0.55)/2πf

t= 0.5716/2×3.14×16.9

t=0.5716/106.132

t=0.0053s

Hence, at approximately 0.005366 seconds after the start of the AC cycle (or 5.366 ms 5.366ms), the current flowing in the circuit will be 55.0% of the peak current.

To learn more on Ohms law click here:

https://brainly.com/question/1247379

#SPJ12

A brave child decides to grab onto an already spinning merry‑go‑round. The child is initially at rest and has a mass of 34.5 kg. The child grabs and clings to a bar that is 1.45 m from the center of the merry‑go‑round, causing the angular velocity of the merry‑go‑round to abruptly drop from 55.0 rpm to 17.0 rpm. What is the moment of inertia of the merry‑go‑round with respect to its central axis?

Answers

Answer:

[tex]I_1 = 32.5 kg m^2[/tex]

Explanation:

Here as we know that total angular momentum is always conserved for child + round system

so here by angular momentum conservation we have

[tex]I_1 \omega_1 = (I_1 + I_2)\omega_2[/tex]

here we have

[tex]I_2 = mR^2[/tex] (inertia of boy)

[tex]I_2 = (34.5)(1.45^2)[/tex]

[tex]I_2 = 72.5 kg m^2[/tex]

now we have

[tex]I_1(2\pi 55) = (I_1 + 72.5)(2 \pi 17)[/tex]

[tex]I_1 = (I_1 + 72.5)(0.31)[/tex]

[tex]I_1(1 - 0.31) = 22.4[/tex]

[tex]I_1 = 32.5 kg m^2[/tex]

Final answer:

The total moment of inertia of the merry-go-round with the child can be calculated by considering the child as a point mass at a given distance from the axis of rotation. The decrease in the angular velocity of the merry-go-round when the child jumps on is due to the increase in the moment of inertia. The moment of inertia of the merry-go-round itself is close to the total moment of inertia because it has far more mass distributed away from the axis.

Explanation:

The subject is based on the physics concept of moment of inertia, which depends not only on the object's mass but also on its distribution relative to the axis of rotation. The moment of inertia initially decreases when the child, initially at rest, grabs onto the already spinning merry-go-round. This abrupt decrease in angular velocity is because of the increase in moment of inertia caused by the child.

To find the total moment of inertia (I), we first calculate the child’s moment of inertia (Ic) by considering the child as a point mass at a distance of 1.45 m from the axis of rotation. The formula for this is Ic = mR², where m is the child's mass (34.5 kg) and R is the distance from the center (1.45 m).

Then, we calculate for the angular velocity change from 55 rpm to 17 rpm. The goal is to find the moment of inertia of the merry-go-round itself, which should be close to the total moment of inertia because it has much more mass distributed away from the axis than the child does.

Learn more about Moment of Inertia here:

https://brainly.com/question/30051108

#SPJ11

An electric field of 4.0 μV/m is induced at a point 2.0 cm from the axis of a long solenoid (radius = 3.0 cm, 800 turns/m). At what rate is the current in the solenoid changing at this instant?

Answers

Answer:

The rate of current in the solenoid  is 0.398 A/s

Explanation:

Given that,

Electric field [tex]E = 4.0\ \mu V/m[/tex]

Distance = 2.0 cm

Radius = 3.0 cm

Number of turns per unit length = 800

We need to calculate the rate of current

Using formula of electric field for solenoid

[tex]E = \dfrac{x}{2}\mu_{0}n\dfrac{dI}{dt}[/tex]

Where, x = distance

n = number of turns per unit length

E = electric field

r = radius

Put the value into the formula

[tex]4.0\times10^{-6}=\dfrac{2.0\times10^{-2}}{2}\times4\pi\times10^{-7}\times800\times\dfrac{dI}{dt}[/tex]

[tex]\dfrac{dI}{dt}=\dfrac{4.0\times10^{-6}\times2}{2.0\times10^{-2}\times4\pi\times10^{-7}\times800}[/tex]

[tex]\dfrac{dI}{dt}=0.397\ A/s[/tex]

Hence, The rate of current in the solenoid  is 0.398 A/s.

During a tennis serve, a racket is given an angular acceleration of magnitude 150 rad/s^2. At the top of the serve, the racket has an angular speed of 12.0 rad/s. If the distance between the top of the racket and the shoulder is 1.30 m, find the magnitude of the total acceleration of the top of the racket.

Answers

Final answer:

The magnitude of the total acceleration of the top of the racket during the serve, considering both tangential and radial components, is approximately 270.5 m/s^2.

Explanation:

To find the magnitude of the total acceleration of the top of the racket, we need to consider both tangential and radial (centripetal) acceleration components. The tangential acceleration (at) is directly provided by the angular acceleration (α), and is calculated by multiplying the angular acceleration by the radius (r), so at = α × r. Here, α = 150 rad/s2 and r = 1.30 m, giving at = 195 m/s2. The radial acceleration (ar), also known as centripetal acceleration, depends on the angular speed (ω) and the radius (r), and is calculated with the formula ar = ω2 × r. Given ω = 12.0 rad/s and r = 1.30 m, we find ar = 187.2 m/s2. Finally, the total acceleration (a) is the square root of the sum of the squares of at and ar, resulting in a = √(at2 + ar2). This gives us a = √(1952 + 187.22) m/s2, and by calculating, we find the magnitude of the total acceleration to be approximately 270.5 m/s2.

While doing an experiment you measure the length of an object to be 32.5cm. The measuring device that you are using measures to a millimeter. How can you decrease the error associated with your measurements

Answers

Answer and Explanation:

By measuring in millimeter we can decrease the associated error with the measurement because when we measure in smaller unit the measurement is more precise  and accurate rather than when we measure in larger unit so when we measure 325 millimeter instead of 32.5 cm then there is chance of less error produced.

Light that is polarized along the vertical direction is incident on a sheet of polarizing material. Only 92% of the intensity of the light passes through the sheet and strikes a second sheet of polarizing material. No light passes through the second sheet. What angle does the transmission axis of the second sheet make with the vertical?

Answers

Final answer:

The transmission axis of the second sheet makes a right angle (90 degrees) with the vertical given that no light passes through it. This is based on Malus's Law for polarization.

Explanation:

The phenomenon described in your question is polarization, which is a characteristic of transverse waves such as light. The sheet of polarizing material allows only the light polarized in the same direction as the sheet's axis of transmission to pass through it. Following Malus's Law for polarization, we can determine that if no light passes through the second polarizer, its transmission axis must be at a right angle (90 degrees) to the initial polarization direction, which is vertical in this case.

The Malus's Law is an equation that describe the intensity of the light after passing through a polarizer as: I = I0 cos^2 θ where I0 is the initial intensity of the light, θ is the angle between the light polarization direction and the transmission axis of the polarizer. If I = 0, then cos^2 θ = 0, which indicates that θ is 90 degrees. This concept comes under the area of wave optics in Physics.

Learn more about Polarization here:

https://brainly.com/question/33242453

#SPJ12

Final answer:

The transmission axis of the second sheet of polarizing material makes a 90-degree angle with the vertical because it must be perpendicular to the first sheet's axis for no light to pass through. Hence, with the first polarizer vertical, the second must be horizontal.

Explanation:

The question asks about the angle that the transmission axis of the second sheet of polarizing material makes with the vertical, given that no light passes through. According to the principles of light polarization, if no light passes through a second sheet of polarizing material, it means the transmission axis of the second sheet is perpendicular to the axis of the first one.

Since the first sheet polarizes light vertically, this implies the transmission axis of the second sheet must be horizontal. Therefore, as per common geometric considerations where vertical and horizontal lines are perpendicular, the angle between the vertical (first filter axis) and horizontal (second filter axis) is 90 degrees.

Learn more about Light Polarization here:

https://brainly.com/question/29217577

#SPJ3

A man is holding a 6.0-kg (weight = 59 N) dumbbell at arm's length, a distance of 0.56 mfrom his shoulder. What is the torque on the shoulder joint from the weight of the dumbbell if thearm is held at 15° above the horizontal? On the picture, draw the lever arm for this force

Answers

Answer:

[tex]\vec \tau = 31.9 N[/tex]

Explanation:

As we know that torque due to a force is given by the formula

[tex]\vec \tau = \vec r \times \vec F[/tex]

here we know that force is exerted due to weight of the mass hold in his hand

so we have

F = mg = 59 N

Now Lever arm is the perpendicular distance on the line of action of force from the axis about which the system is rotated

so here we can say

[tex]r = Lcos\theta [/tex]

[tex]r = 0.56 cos15 = 0.54 m[/tex]

now we have

[tex]\vec \tau = (0.54)(59)[/tex]

[tex]\vec \tau = 31.9 Nm[/tex]

A copper wire has a circular cross section with a radius of 1.25 mm. If the wire carries a current of 3.70 A, find the drift speed in mm/s of the electrons in this wire. (Note: the density of charge carriers (electrons) in a copper wire is n = 8.46 × 1028 electrons/m3)

Answers

Answer:

0.0557 mm / s

Explanation:

r = 1.25 mm = 1.25 x 10^-3 m, i = 3.7 A, n = 8.46 x 10^28 per cubic metre,

e = 1.6 x 10^-19 C

Let vd be the drift velocity

use the formula for the current in terms of drift velocity

i = n e A vd

3.7 = 8.46 x 10^28 x 1.6 x 10^-19 x 3.14 x 1.25 x 1.25 x 10^-6 x vd

vd = 5.57 x 10^-5 m/s

vd = 0.0557 mm / s

A force of 36.0 N is required to start a 3.0-kg box moving across a horizontal concrete floor. Part A) What is the coefficient of static friction between the box and the floor? Express your answer using two significant figures. Part B) If the 36.0-N force continues, the box accelerates at 0.54 m/s^2. What is the coefficient of kinetic friction? Express your answer using two significant figures.

Answers

Answer:

A) 1.2

B) 1.1

Explanation:

A)

F = force required to start the box moving = 36.0 N

m = mass of the box = 3 kg

[tex]F_{g}[/tex]  = weight of the box = mg = 3 x 9.8 = 29.4 N

[tex]F_{n}[/tex]  = normal force acting on the box by the floor

normal force acting on the box by the floor is given as

[tex]F_{n}[/tex]  = [tex]F_{g}[/tex] = 29.4

[tex]F_{s}[/tex]  = Static frictional force = F = 36.0 N

[tex]\mu _{s}[/tex] = Coefficient of static friction

Static frictional force is given as

[tex]F_{s}[/tex]  = [tex]\mu _{s}[/tex] [tex]F_{n}[/tex]

36.0  = [tex]\mu _{s}[/tex] (29.4)

[tex]\mu _{s}[/tex] = 1.2

B)

a = acceleration of the box = 0.54 m/s²

F = force applied = 36.0 N

[tex]f_{k}[/tex] = kinetic frictional force

[tex]\mu _{k}[/tex] = Coefficient of kinetic friction

force equation for the motion of the box is given as

F - [tex]f_{k}[/tex] = ma

36.0 - [tex]f_{k}[/tex] = (3) (0.54)

[tex]f_{k}[/tex] = 34.38 N

Coefficient of kinetic friction is given as

[tex]\mu _{k}=\frac{f_{k}}{F_{n}}[/tex]

[tex]\mu _{k}=\frac{34.38}{29.4}[/tex]

[tex]\mu _{k}[/tex] = 1.1

What is the average speed of an object that travels 50 meters in 2 seconds? Select one: a. 100 m/s b. 25 m/s c. 50 m/s d. 2 m/s

Answers

Answer:

Average speed, v = 25 m/s

Explanation:

It is given that,

Distance travelled by the object, d = 50 meters

Time taken, t = 2 seconds

Average speed is defined as the total distance divided by total time taken i.e.

[tex]v=\dfrac{d}{t}[/tex]

[tex]v=\dfrac{50\ m}{2\ s}[/tex]

v = 25 m/s

So, the sped of the object is 25 m/s. Hence, this is the required solution.

The average speed of an object that travels 50 meters in 2 seconds is calculated by dividing the distance by time, resulting in 25 m/s.

The average speed of an object is calculated by dividing the total distance travelled by the total time taken to travel that distance. In this case, the object travels 50 meters in 2 seconds, so the average speed is calculated as follows:

Average speed = Total distance \/ Total time = 50 meters \2 seconds = 25 meters per second (m/s).

Therefore, the correct answer to the question is b. 25 m/s.

J-s. If your 1400-kg car is parked in an 8.54-m-long garage, what is the uncertainty in its velocity? cm/s the tolerance is +/-2%

Answers

Answer:

[tex]\Delta v = 4.41 \times 10^{-37} cm/s[/tex]

Explanation:

As per Heisenberg's uncertainty principle we know that

[tex]\Delta P \times \Delta x = \frac{h}{4\pi}[/tex]

so here we have

[tex]\Delta P = m\Delta v[/tex]

[tex]\Delta x = 8.54 m[/tex]

now from above equation we have

[tex]m\Delta v \times (8.54) = \frac{h}{4\pi}[/tex]

[tex]1400(\Delta v) \times (8.54) = \frac{6.626 \times 10^{-34}}{4\pi}[/tex]

[tex]\Delta v = 4.41 \times 10^{-39} m/s[/tex]

[tex]\Delta v = 4.41 \times 10^{-37} cm/s[/tex]

Air that enters the pleural space during inspiration but is unable to exit during expiration creates a condition called a. open pneumothorax. b. empyema. c. pleural effusion. d. tension pneumothorax.

Answers

Answer:

The correct answer is d. tension pneumothorax.

Explanation:

The increasing build-up of air that is in the pleural space is what we call the tension pneumothorax and this happens due to the lung laceration that lets the air to flee inside the pleural space but it does not return.

Final answer:

Tension pneumothorax is the condition where air that enters the pleural space during inspiration but is unable to exit during expiration, causing a collapse of the lung and compression of surrounding structures.

Explanation:

Air that enters the pleural space during inspiration but is unable to exit during expiration creates a condition called tension pneumothorax. In this condition, there is a buildup of air in the pleural space, leading to a collapse of the lung and compression of surrounding structures. It is a medical emergency that requires immediate treatment.

Learn more about Conditions affecting the pleural space here:

https://brainly.com/question/10615855

#SPJ12

A box rests on the (horizontal) back of a truck. The coefficient of static friction between the box and the surface on which it rests is 0.24. What maximum distance can the truck travel (starting from rest and moving horizontally with constant acceleration) in 3.0 s without having the box slide?

Answers

Answer:

The distance is 11 m.

Explanation:

Given that,

Friction coefficient = 0.24

Time = 3.0 s

Initial velocity = 0

We need to calculate the acceleration

Using newton's second law

[tex]F = ma[/tex]...(I)

Using formula of friction force

[tex]F= \mu m g[/tex]....(II)

Put the value of F in the equation (II) from equation (I)

[tex]ma=\mu mg[/tex]....(III)

[tex]a = \mu g[/tex]

Put the value in the equation (III)

[tex]a=0.24\times9.8[/tex]

[tex]a=2.352\ m/s^2[/tex]

We need to calculate the distance,

Using equation of motion

[tex]s = ut+\dfrac{1}{2}at^2[/tex]

[tex]s=0+\dfrac{1}{2}2.352\times(3.0)^2[/tex]

[tex]s=10.584\ m\ approx\ 11\ m[/tex]

Hence, The distance is 11 m.

The truck can travel a maximum distance of 10.584 meters in 3.0 seconds without the box sliding.

To determine the maximum distance the truck can travel in 3.0 s without the box sliding, we start by calculating the maximum acceleration the box can experience before it starts to slide.

This is given by the static friction force, which is the product of the coefficient of static friction  and the normal force (N). Assuming the box’s weight is W = mg, the normal force is N = mg.

The maximum static friction force (f) is:

f = μ N = μ mg

Given μs = 0.24, we need to ensure:

f > ma

Therefore, 0.24mg = ma, solving for a gives us:

a = 0.24g = 0.24 × 9.8 m/s² ≈ 2.352 m/s²

Next, we need to calculate the maximum distance using the kinematic equation for constant acceleration:

d = ut + (1/2)at²

Where:

u = initial velocity = 0a = 2.352 m/s²t = 3.0 s

Substituting these values, we get:

d = 0 + (1/2) × 2.352 m/s² × (3.0 s)² = 0.5 × 2.352 × 9 = 10.584 m

Thus, the maximum distance the truck can travel without the box sliding is approximately 10.584 meters.

An electron moving with a speed of 1.50*10^7 m/sec is projected at right angles into a uniform magnetic field of flux density 6.50*10^-8 w/m^2. Calculate quantitatively the new path of the electron.

Answers

Answer:

the path of the moving charge will be circular path now

Radius = 1312.5 m

Explanation:

Force on a moving charge due to constant magnetic field is given by

[tex]\vec F = q(\vec v \times \vec B)[/tex]

since here force on the moving charge is always perpendicular to the velocity always as it is vector product of velocity and magnetic field so here magnitude of the speed is always constant

Also the force is since perpendicular to the velocity always

so here the path of the moving charge will be circular path now

now to find out the radius of this circular path

[tex]F = \frac{mv^2}{R}[/tex]

[tex]qvBsin90 = \frac{mv^2}{R}[/tex]

[tex]R = \frac{mv}{qB}[/tex]

[tex]R = \frac{9.1\times 10^{-31}(1.50 \times 10^7)}{1.6 \times 10^{-19}(6.50 \times 10^{-8})}[/tex]

[tex]R = 1312.5 m[/tex]

Which of these situations would NOT qualify as a perfectly inelastic collision? A. A frog that jumps onto and sits on a lily pad.
B. A bowling ball that knocks pins out of its way as it rolls down a lane
C. A fish, swimming in one direction, that comes upon and swallows another fish swimming towards it
D. A piece of bubble gum that flies through the air and sticks to a golf ball at rest

Answers

Answer:

Option (B)

Explanation:

In a perfectly inelastic collision, the two bodies collide each other after the collision.

A. As the frog and the lily pad stick together so it is a perfectly inelastic collision.

B. The bowling ball and the pin do not stick together so it is not an example of perfectly inelastic collision.

C. A fish swallows the another, so it is a perfectly inelastic collision.

D. Bubble gum sticks to the golf ball so it is a perfectly inelastic collision.

Define electric potential and inductance using sentences an elementary student could understand. Do not use math

Answers

Answer and Explanation:

1). Electric Potential:

Electric Potential can be defined as the amount of work required to move a unit  charge from infinity or reference point to a particular or specific point inside the electric field (without any accelerated motion of charge particle). The other terms for electric potential are 'electrostatic potential, potential difference(if a charge is moved from one point to another inside the field) or electric field potential.

2). Inductance:

It can be define as that property of electric circuits due to which it opposes any change in the voltage under the influence of changing magnetic field.

We can also say that the property of an electric conductor due to which it opposes any change in electric current passing through it. Any change in electric current results in the production of magnetic field which when varied results in the generation of Electro Motive Force (EMF) which according to Lenz law is produced in a way that it opposes its cause of production.

Answer:

this is my basic understanding o

. Electric Potential:

Electric Potential can be defined as the amount of work required to move a unit  charge from infinity or reference point to a particular or specific point inside the electric field (without any accelerated motion of charge particle). The other terms for electric potential are 'electrostatic potential, potential difference(if a charge is moved from one point to another inside the field) or electric field potential.

2). Inductance:

It can be define as that property of electric circuits due to which it opposes any change in the voltage under the influence of changing magnetic field.

We can also say that the property of an electric conductor due to which it opposes any change in electric current passing through it. Any change in electric current results in the production of magnetic field which when varied results in the generation of Electro Motive Force (EMF) which according to Lenz law is produced in a way that it opposes its cause of production.

Explanation:

While you watch a parade, a band on a float passes you. You detect the frequency of a note played on a flute to be 356 Hz when the float is coming toward you and 348 Hz after the float passes you. Part A At what speed is the float traveling

Answers

Answer:

Float is travelling at speed of 3.86 m/s

Explanation:

As per Doppler's effect we know that when source and observer moves relative to each other then the frequency is different from actual frequency

so here when source moves closer to the observer

[tex]f_1 = f_o(\frac{v}{v - v_s})[/tex]

now we have

[tex]356 = f_o(\frac{v}{v - v_s})[/tex]

again when source moves away from the observer then we have

[tex]f_2 = f_o(\frac{v}{v + v_s})[/tex]

[tex]348 = f_o(\frac{v}{v + v_s})[/tex]

now divide above two equations

[tex]\frac{356}{348} = \frac{v + v_s}{v - v_s}[/tex]

[tex]1.023 = \frac{v + v_s}{v - v_s}[/tex]

[tex]1.023( v - v_s) = (v + v_s)[/tex]

here we know that the speed of sound in air is 340 m/s

so we have

[tex]1.023(340 - v_s) = (340 + v_s)[/tex]

[tex]7.816 = 2.023 v_s[/tex]

now we have

[tex]v_s = 3.86 m/s[/tex]

Final answer:

The speed of the float in the parade is determined using the observed frequencies of the flute when the band is approaching and moving away informed by the Doppler Effect physics theory. You generate equations for both scenarios and solve for the speed of the source, using the average speed of sound in the air.

Explanation:

This problem relates to the Doppler Effect, which explains why the frequency of a sound changes when the source of the sound is moving in relation to the observer. The formula to calculate a Doppler Shift when the source is moving away (as in the float in the parade) is given by: f' = f [(v + v0) / v] and when the source is approaching is given by: f' = f [(v - v0) / v]. Where, f' is the observed frequency, f is the source frequency, v is the sound speed (340 m/s), and v0 is the speed of the source.

In the problem, it's given that the observed frequencies when the band is approaching and moving away are 356 Hz and 348 Hz, respectively. By setting up two equations using the Doppler Shift formula for both observed frequencies, we can solve for v0. In this case, we use the average speed of sound in the air, which is about 340 m/s.

Learn more about Doppler Effect here:

https://brainly.com/question/15318474

#SPJ3

Optics (Lens) Problem A lens forms an image of an object. The object is 16.0cm from the lens. The image is 12cm from the lens on the same side as the object. a. What is the focal length of the lens? Is the lens converging or diverging? b. If the object is 8.5mm tall, how tall is the image? Is it erect or inverted? c. Draw a principal ray diagram.

Answers

Answer:

Part a)

[tex]f = -48 cm[/tex]

Since focal length is negative so its a diverging lens

Part b)

[tex]h_i = 6.375 mm[/tex]

Since the magnification is position for diverging lens so it is ERECT

Explanation:

Part a)

As we know by lens formula

[tex]\frac{1}{d_i} + \frac{1}{d_o} = \frac{1}{f}[/tex]

[tex]-\frac{1}{12cm} + \frac{1}{16} = \frac{1}{f}[/tex]

[tex]f = -48 cm[/tex]

Part b)

Since focal length is negative so its a diverging lens

Part c)

As we know that

[tex]\frac{h_i}{h_o} =\frac{d_i}{d_o}[/tex]

[tex]\frac{h_i}{8.5 mm} = \frac{12}{16}[/tex]

[tex]h_i = 6.375 mm[/tex]

Part d)

Since the magnification is position for diverging lens so it is ERECT

Part e)

What is the magnitude (in Newtons) of the force a 796-uC charge exerts on a 481-nC charge 23.1-cm away? 2 pts Question 5 A proton is released in a uniform electric field, and it experiences an electric force of 6.9x10-15-N toward the south. What is the magnitude (in N/C) of the electric field?

Answers

Answer:

(a) 64.58 N

(b) 43125 N/C

Explanation:

(a) q1 = 796 uC = 796 x 10^-6 C, q2 = 481 nC = 481 x 10^-9 C,

r = 23.1 cm = 0.231 m

Force, F = k q1 q2 / r^2

F = (9 x 10^9 x 796 x 10^-6 x 481 x 10^-9) / (0.231)^2

F = 64.58 N

(b) F = 6.9 x 10^-15 N

E = F / q

E = (6.9 x 10^-15) / (1.6 x 10^-19) = 43125 N/C

The International Space Station has a mass of 1.8 × 105 kg. A 70.0-kg astronaut inside the station pushes off one wall of the station so she accelerates at 1.50 m/s2. What is the magnitude of the acceleration of the space station as the astronaut is pushing off the wall? Give your answer relative to an observer who is space walking and therefore does not accelerate with the space station due to the push.

Answers

Answer:

[tex]a = 5.83 \times 10^{-4} m/s^2[/tex]

Explanation:

Since the system is in international space station

so here we can say that net force on the system is zero here

so Force by the astronaut on the space station = Force due to space station on boy

so here we know that

mass of boy = 70 kg

acceleration of boy = [tex]1.50 m/s^2[/tex]

now we know that

[tex]F = ma[/tex]

[tex]F = 70(1.50) = 105 N[/tex]

now for the space station will be same as above force

[tex]F = ma[/tex]

[tex]105 = 1.8 \times 10^5 (a)[/tex]

[tex]a = \frac{105}{1.8 \times 10^5}[/tex]

[tex]a = 5.83 \times 10^{-4} m/s^2[/tex]

The magnitude of the acceleration of the space station is mathematically given as

[tex]a = 5.83 * 10^{-4} m/s^2[/tex]

What is the magnitude of the acceleration of the space station as the astronaut is pushing off the wall?

Question Parameter(s):

The International Space Station has a mass of 1.8 × 105 kg. A 70.0-kg.

The station pushes off one wall of the station so she accelerates at 1.50 m/s2.

Generally, the equation for the  Force is mathematically given as

F = ma

Therefore

F = 70(1.50)

F= 105 N

In conclusion, the space station force

F = ma

105 = 1.8 * 10^5 a

a = 5.83 * 10^{-4} m/s^2

Read more about Speed

https://brainly.com/question/4931057

What will be the new volume when 128 mL of gas at 20.0°C is heated to 40.0°C while pressure remains unchanged? What will be the new volume when 128 mL of gas at 20.0°C is heated to 40.0°C while pressure remains unchanged? 64.0 mL 256 mL 120. mL 137 mL 128 mL

Answers

The answer will be 137 mL

A proton, traveling with a velocity of 4.5 × 106 m/s due east, experiences a magnetic force that has a maximum magnitude of 8.0 × 10−14 N and a direction of due south. What are the magnitude and direction of the magnetic field causing the force?

Answers

Answer:

Magnetic field, B = 0.11 i (in k direction)

Explanation:

It is given that,

Velocity of the proton, [tex]v=4.5\times 10^6\ m/s[/tex]

Magnetic force, [tex]F=8\times 10^{-14}\ N[/tex] (due south)

The magnetic force acting on the electron is given by :

[tex]F=qvB[/tex]

(-j) = (i) × (B)

[tex]B=\dfrac{F}{qv}[/tex]

q is the charge on proton

[tex]B=\dfrac{8\times 10^{-14}\ N}{1.6\times 10^{-19}\ C\times 4.5\times 10^6\ m/s}[/tex]

B = 0.11

So, the magnitude of 0.11 T is acting on the proton in and is acting directed upward above the plane. Hence, this is the required solution.

Final answer:

To calculate the magnitude of the magnetic field that causes a force on a moving proton, we use the rearranged Lorentz force law, with inputs of proton charge, velocity, and the force experienced. The direction of the magnetic field is determined by the right-hand rule, given the directions of the force and proton's velocity.

Explanation:

The student's question involves the effect of a magnetic field on a moving charged particle, specifically a proton, which falls under the subject of Physics. The Lorentz force law states that the force (F) on a charged particle is directly proportional to the charge (q), the velocity (v), and the magnetic field (B), and is given by the equation F = q(v x B), where v x B denotes the cross product of the velocity vector and the magnetic field vector. The force is perpendicular to both the velocity and the magnetic field.

To find the magnitude of the magnetic field, we can rearrange this equation to B = F / (q * v * sin(θ)), where θ is the angle between the velocity of the proton and the direction of the magnetic field. In the case where force is maximum, the angle is 90 degrees, and the sine of 90 degrees is 1. Given the maximum magnetic force (8.0 × 10⁻¹⁴ N), the charge of a proton (approximately 1.6 × 10⁻¹⁹ C), and the velocity of the proton (4.5 × 10⁶ m/s), we can calculate the magnitude of the magnetic field. As the force experienced by the proton is directed due south and the velocity is due east, the magnetic field must be pointing downwards to produce a force in that direction according to the right-hand rule.

Calculate the rate of heat transfer by radiation from a car radiator at 111 °C into a 45 °C environment, if the radiator has an emissivity of 0.75 and a 1.6 m^2 surface area.

Answers

Answer:

783.63 Watt

Explanation:

T = 111 degree C = 111 + 273 = 384 K

T0 = 45 degree C = 45 + 273 = 318 K

A = 1.6 m^2

e = 0.75

According to the Stefan's law, the energy radiated per second is given by

[tex]E = \sigma eA\left ( T^{4}- T_{0}^{4}\right )[/tex]

[tex]E = 5.67\times 10^{-8}\times 0.75\times 1.6 ( 384^{4}- 318^{4}\right ))[/tex]

E = 783.63 Watt

a football of mass 0.38 kg is traveling towards a boy at 2.8ms-1. the boy kicks the ball with a force of 21N, reversing its direction. if the time of imapct between the football and boy’s foot is 250ms. what is the new speed of trhe ball?

Answers

Answer:

Final speed in reverse direction will be 11 m/s

Explanation:

As per impulse momentum theorem we know that

Change in momentum of the object is product of force and time

so we have

[tex]P_f - P_i = F\Delta t[/tex]

now we have

[tex]P_f = mv_f[/tex]

[tex]P_i = mv_i[/tex]

[tex]\Delta t = 250 ms[/tex]

F = 21 N

now we have

[tex]0.38(v_f) - 0.38(-2.8) = 21(250\times 10^{-3})[/tex]

[tex]v_f = 13.82 - 2.8[/tex]

[tex]v_f = 11 m/s[/tex]

Other Questions
Choose the inverse of y=X2-2 Can someone please explain how this answer was produced? your culture influences the types of food you eat Be sure to answer all parts. Propane (C3H8) is a minor component of natural gas and is used in domestic cooking and heating. (a) Balance the following equation representing the combustion of propane in air. Include states of matter in your answer. C3H8(g) + O2(g) CO2(g) + H2O(g) (b) How many grams of carbon dioxide can be produced by burning 8.11 moles of propane? Assume that oxygen is the excess reactant in this reaction. 10 g Enter your answer in scientific notation. The combination of coke and steam produces a mixture called coal gas, which can be used as a fuel or as a starting material for other reactions. If we assume coke can be represented by graphite, the equation for the production of coal gas is2C(s)+2H2O(g)--->CH4(g)+CO2(g)Determine the standard enthalpy change for this reactionf rom the following standard enthalpies of reactions:C(s)+H2O(g)--->CO(g)+H2(g) delta H=131.3 kJCO(g)+H2O(g)--->CO2(g)+H2(g) delta H=-41.2 kJCH4(g)+H2O(g)--->3H2(g)+CO(g) delta H=206.1 kJ A simple random sample of size nequals15 is drawn from a population that is normally distributed. The sample mean is found to be x overbarequals31.1 and the sample standard deviation is found to be sequals6.3. Determine if the population mean is different from 25 at the alpha equals 0.01 level of significance. What's the cosmological principle? A person who can afford a monthly payment of __________ and signed a mortgage with a monthly payment of __________ was most likely the victim of predatory lending. A. $900; $800 B. $900; $1000 C. $900; $700 D. $900; $9002b2t Assume red and green are equally likely occurrences. Using Pascals triangle, what is the probability that you will get one green light in a row of five lights? a. 3/16 b. 1/32 c. 5/16 d. 5/32 Ms. Ramos buys a rare painting for m dollars. She sells it for 5 times the amount she paid for it, or 5m. Her profit is5m-mShe purchases another painting using half of the profit from the sale. Which expression represents how much MSRamos paid for the second painting?4m+2. 5m+2. 5m/2. 4m/2 What are the different types of vegetarianism? Veganism? a. Recommendations for nutrients vegans to potentially supplement? Y=-3x+4. What is the y intercept? Twenty one-slips of paper are each marked with a different letter of the alphabet and placed in a basket. A slip is pulled out, its letter recorded and the slip is replaced. This is done 6 times. Find the probability that the word riddle is formed. Assume that each letter in the word is also in the basket REALLY EASY NEED ANSWER BY 10:00 P. M. AND WILL GIVE BRAINLEIST. PLS HURRY IF YOU HAVE TIME PLEASE ANSWER OTHER QUESTIONS PLS THANK YOU. solve the equation below xcx -4=7A x=11/CB x=3/CC x= c/3D x= c/11 Which process drives darwins theory of evolution? two lines intersecting at a right angle What is the length of the unknown leg in the right triangle?6 mm8 mm78 mm134 mm How many points of intersection are there between line A and line B if they contain the points listed? Line A: (2, 8) and (2, 4) Line B: (4, 10) and (3, 11) 6.On a quiet day, the atmospheric pressure results in a force of about 10,0000 N on a window pane with an area of 1 square meter. a.Why does this large force not shatter the window? b.How will this change if a strong wind is blowing across the window pane?