The main greenhouse gases in the atmospheres of the terrestrial planets are

Answers

Answer 1

Answer:

Answered

Explanation:

Terrestrial Planets are the planets that have solid surface and are smaller in size. Mercury, Venus, Earth and Mars are the terrestrial planets of our solar system.

The main greenhouse gases in the atmospheres of the terrestrial planets are, Carbon dioxide( the atmosphere of Venus has mainly CO_2 in it making it hottest planet of the solar system because of greenhouse effect). Water vapor and Cloroflorocarbons in the Earth atmosphere. Traces of methane and nitrous oxide are also present.


Related Questions

What was: The Big Bang (Science)
ANSWER FOR 10 POINTS!!

Answers

Answer:The universe sprang into existence as singularity around 13.7 billion years ago.

Explanation:

(a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h?
(b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0 m above its starting point, how much thermal energy was generated by friction?
(c) What is the average force of friction if the hill has a slope of 2.5º above the horizontal?

Answers

Answer:

Explanation:

a ) Let the height achieved be h .

We shall apply law  of conservation of mechanical energy.

1 /2 mv² = mgh

h = v² / 2g

v = 110 km/h

= 30.55 m /s

h = [tex]\frac{30.55\times30.55}{2\times9.8}[/tex]

h = 47.61 m

b )

Kinetic energy of car in the beginning

= 1/2 x 750 x (30.55)²

= 349988.43 J

Potential energy at 22 m height

= 750 x 9.8 x 22

= 161700 J

Energy lost due to frictional force

= 349988.43 - 161700

= 188288.43 J

c )

Distance covered along the slope

d = 22 / sin2.5

= 22 / 0.043619

d = 504.36 m

If F be average frictional force

work done by friction

F x d

= F x 504.36

so

F x 504.36 = 188288.43

F = 188288.43 / 504.36

= 373.32 N

Final answer:

Using the conservation of energy principle, the car's initial kinetic energy is converted into potential energy as it ascends the hill. The potential energy at the given height can be used to determine the thermal energy generated by friction. Calculating the average force of friction requires knowing this thermal energy and the distance traveled, considering the slope angle.

Explanation:

To calculate the height a car can coast up with negligible work done by friction, we can use the principle of conservation of energy. Specifically, the car's initial kinetic energy (due to its initial speed) will be converted into potential energy (due to gaining height) as it coasts uphill until it comes to a stop.

(a) The Height a Car Can Coast Up

Initial kinetic energy (KE) is given by the equation KE = \(\frac{1}{2}mv^2\), where m is the mass of the car and v is its speed. If we convert 110 km/h to meters per second (30.56 m/s), we can calculate the available kinetic energy. The potential energy (PE) at the height h is given by PE = mgh, where g is the acceleration due to gravity (9.81 m/s^2) and h is the height. Setting KE equal to PE, we can solve for h.

(b) Thermal Energy Generated by Friction

If the car actually reaches a height of 22.0 m, we can calculate the difference in the theoretical and actual potential energy to find the thermal energy due to friction. Subtracting the actual potential energy from the total initial kinetic energy gives us the energy lost to friction.

(c) Average Force of Friction

To calculate the average force of friction on a slope of 2.5°, we will use the energy lost to friction divided by the distance traveled along the slope and correct for the slope angle. This gives the component of the friction force that acts parallel to the hill's surface.

how many newtons of force will 2 pieces of paper have if one has a charge of .2 Coilombs and the other has a charge of .3 Coulombs and they are .005 meters apart?

What will happen if they are the same charge (+ or - ) Opposite charges ?

Answers

1) The electrostatic force between the two pieces of paper is [tex]2.16\cdot 10^{13} N[/tex]

2)

If the charges of the two pieces of paper are both + or both -, they repel each otherIf the charges of one piece of paper is positive and the other one is negative, they attract each other

Explanation:

1)

The electrostatic force between two charged objects is given by Coulomb's law:

[tex]F=k\frac{q_1 q_2}{r^2}[/tex]

where:

[tex]k=8.99\cdot 10^9 Nm^{-2}C^{-2}[/tex] is the Coulomb's constant

[tex]q_1, q_2[/tex] are the two charges

r is the separation between the two charges

In this problem, we have the following situation:

[tex]q_1 = 0.2 C[/tex] is the charge on the first piece of paper

[tex]q_2 = 0.3 C[/tex] is the charge on the second piece of paper

[tex]r=0.005 m[/tex] is their separation

Substituting into the equation, we find the magnitude of the electrostatic force between them:

[tex]F=k\frac{q_1 q_2}{r^2}=(8.99\cdot 10^9) \frac{(0.2)(0.3)}{(0.005)^2}=2.16\cdot 10^{13} N[/tex]

2)

The electrostatic force can be either attractive of repulsive, depending on the relative sign of the charges of the objects involved.

In particular, we have:

If the two charges have same sign (both positive or both negative), the force between them is repulsiveIf the two charges have opposite sign (one positive and one negative), the force between them is attractive

Therefore, in this case:

If the charges of the two pieces of paper are both + or both -, they repel each otherIf the charges of one piece of paper is positive and the other one is negative, they attract each other

Learn more about electric force:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

A team of eight dogs pulls a sled with waxed wood runners on wet snow (mush!). The dogs have average masses of 19.0 kg, and the loaded sled with its rider has a mass of 210 kg. (a) Calculate the magnitude of the acceleration starting from rest if each dog exerts an average force of 185 N backward on the snow. (b) What is the magnitude of the acceleration once the sled starts to move

Answers

Answer

given,

number of dog = 8

mass of each dog= 19 Kg

mass of sled = 210 Kg

average force = 185 Nss

a) writing all the horizontal force

   force acting by dog - friction force = (M + 8m) a

   8 F_d - μ m g = (M + 8m) a

assuming coefficient of friction of snow be μ = 0.14

    8 x 185 - 0.14 x 210 x 9.8 = (210 + 8 x 19 ) x a

               a = 3.29 m/s²

b)  the kinetic friction of coefficient is less than static friction

 hence, we can suggest that acceleration of the sled will increase once the sled start to move.

                a > 3.29 m/s²

Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 1.6×104 m/s when at a distance of 2.7×1011 m from the center of the sun, what is its speed when at a distance of 4.8×1010 m?

Answers

Answer:

v₂ = 7.6 x 10⁴ m/s

Explanation:

given,

speed of comet(v₁) = 1.6 x 10⁴ m/s

distance (d₁)= 2.7 x 10¹¹ m

to find the speed when he is at distance of(d₂) 4.8 × 10¹⁰ m

v₂ = ?

speed of planet can be determine using conservation of energy

K.E₁ + P.E₁ = K.E₂ + P.E₂

[tex]\dfrac{1}{2}mv_1^2-\dfrac{GMm}{r_1} = \dfrac{1}{2}mv_2^2-\dfrac{GMm}{r_2}[/tex]

[tex]\dfrac{1}{2}v_1^2-\dfrac{GM}{r_1} = \dfrac{1}{2}v_2^2-\dfrac{GM}{r_2}[/tex]

[tex]v_2^2= v_1^2 + \dfrac{2GM}{r_2}-\dfrac{2GM}{r_1}[/tex]

[tex]v_2= \sqrt{v_1^2 +2GM(\dfrac{1}{r_2}-\dfrac{1}{r_1})}[/tex]

[tex]v_2= \sqrt{(1.6\times 10^4)^2 +2\times 6.67 \times 10^{-11}\times 1.99 \times 10^{30}(\dfrac{1}{4.8\times 10^{10}}-\dfrac{1}{2.7\times 10^{11}})}[/tex]

v₂ = 7.6 x 10⁴ m/s

The speed when at a distance of [tex]4.8*10^{10} m[/tex] is mathematically given as

vf = 6.92 * 10^(4) m/s

What is the speed when at a distance of [tex]4.8*10^{10} m[/tex]?

Generally, the equation for the conservation of energy is mathematically given as

E = (1/2)mv^2 - GmM/r

Where

E_i = E_f

Hence

(1/2)mv_i^2 - [tex]\frac{GmM}{(r_i)}[/tex] = (1/2)mv_f^2 - [tex]\frac{GmM}{(r_f)}[/tex]

[tex]v_f = \sqrt{[(v_i)^2 + 2MG((1/r_f) - (1/r_i))]}[/tex]

Therefore

[tex]v_f = \sqrt{(2.1*10^4)^2 + 2(1.9891 * 10^{31})*(6.67 * 10^{-11})(\frac{1}{4.9} * 10^{10}) - (\frac{1}{2.5} * 10^{11}))} *20.408 *10^{12}[/tex]

[tex]v_f = \sqrt{(441000000) + 435.38 * 10^{7}}[/tex]

vf = 6.92 * 10^(4) m/s

Read more about Speed

https://brainly.com/question/4931057

A 2 kg object moves in a circle of radius 4 m at a constant speed of 3 m/s. What is the angular momentum of the object with respect to an axis perpendicular to the circle and through its center? 7. (A) 9 Nm/kg.
(B) 12 m2/s.
(C) 13.5 kg m2/s2.
(D) 18 N m /kg.
(E) 24 kg m2/s

Answers

Answer:

The angular momentum in this case is [tex] \mathbf{24\,\frac{kg\,m^{2}}{s}} [/tex]

Explanation:

The angular momentum of a point mass moving around an axis of rotation is the cross product between the distance of the object to the axis (r) of rotation and the linear momentum (p) of the particle:

[tex] \overrightarrow{L}=\overrightarrow{r}\times\overrightarrow{p} [/tex] (1)

But linear momentum is defined as mv, so (1) is:

[tex]\overrightarrow{L}=\overrightarrow{r}\times m\overrightarrow{v} [/tex](2)

And its magnitude is:

[tex]L=rmv*\sin\theta=(4)(2)(3)\sin(90)=\mathbf{24\,\frac{kg\,m^{2}}{s}} [/tex] (3)

It is important to note that [tex] \theta [/tex] is the angle between the radius vector and the velocity vector, because the axis of rotation is perpendicular to the circle and through its center this angle is equal to 90° and [tex] \sin(90) = 1 [/tex]

Humans can see several thousand shades of color but have cone photoreceptors that are sensitive to only three (perhaps four) wavelengths of light. What is the best explanation for why we see so many colors?
Select one:
a.Color perception is dependent on the millions of rods as well as cone photoreceptors.
b.Color perception is achieved by activation of various combinations between the three cone types.
c.Shades of color are purely psychological and learned by association with age, infants only seeing in black and white. Incorrect
d. Colors are added and enhanced in the primary visual cortex of the brain.

Answers

Answer:

B. Color perception is achieved by activation of various combinations between the tree cone types.

Explanation:

Human eye have only three photo receptor ( three wavelength) but they can see several thousands of shades of color because color perception is gained by combination of these three wave length cone types ( RED, BLUE AND GREEN) into various combinations. Our retina have two types of cell:- cone cells and cylindrical cells. Cone cells are responsible for the identification of color.

While painting the top of an antenna 275 m in height, a worker accidentally lets a 1.00 L water bottle fall from his lunchbox. The bottle lands in some bushes at ground level and does not break.

Answers

Answer:

The force of impact of the water bottle is F = 13,475 N

Explanation:

Given data,

The height of the antenna, h = 275 m

The mass of the 1 L water bottle, m = 1 kg

Let the bottle moves distance immediately after the impact is, d = 0.2 m

The force exerted by the bottle on the bushes at the ground is given by the formula,

                                   F = mgh / d

Substituting the values

                                   F = 1 x 9.8 x 275 / 0.2

                                      = 13,475 N

The value of the force of impact can be reduced by increasing the value of d, it is like the lowering the hand along with the motion of the ball to catch it thereby reduce the force of impact.

The force of impact of the water bottle is F = 13,475 N

What are the major steps of solar system formation in the correct order?

Answers

Answer:(1) Pre-solar nebula

(2). Planet formation

Explanation:

Nebular hypothesis says that the Solar System formed from the gravitational collapse of a fragment of a giant molecular cloud.

One of the collapsing fragments called the pre-solar nebula formed what became the Solar System.

The planet can also be formed by accretion. Accretion is a process in which planets began as dust grains in orbit around the central protostar.

When the terrestrial planets were forming, they remained immersed in a disk of gas and dust.

Which of the following is true of Giovanni Pierluigi da Palestrina’s Pope Marcellus Mass?
a. It demonstrates the Protestant practice of simple congregational singing
b. The text is in Palestrina’s native language of Italian
c. All the parts were originally sung by men and boys
d. It was banned by the Council of Trent 1

Answers

Answer: c is true

Explanation: the boy choirstars sang the soprano and alto. Although Palestrina choir is made up of six voice part of soprano, alto, tenor, baritone and bass and the choir sings without instruments.

Final answer:

In the case of Giovanni Pierluigi da Palestrina’s Pope Marcellus Mass, the correct statement is that all the parts were originally sung by men and boys. It was not written in Italian, does not represent Protestant music tactics and was not banned by the Council of Trent.

Explanation:

Out of the provided options, the statement that is true of Giovanni Pierluigi da Palestrina’s Pope Marcellus Mass is that all the parts were originally sung by men and boys (option c). The work is a significant one in the history of polyphonic choral music and it marked a departure from the complex style of the early Renaissance period. Instead of Italian, the mass is actually written in Latin, which was the language conventionally used in the liturgy of the Catholic Church (thus discrediting option b). Unlike Protestant music of the time (which negates option a), it does not emphasize congregational singing but instead focuses on the choir. It was also never banned by the Council of Trent. (disproving option d)

Learn more about Pope Marcellus Mass here:

https://brainly.com/question/34611671

#SPJ6

A mountain biker encounters a jump on a race course that sends him into the air at 35,2° to the horizontal. If he lands at a horizontal distance of 30,1 m and 14,7 m below his launch point, what is his initial speed?

Answers

Final answer:

The initial speed of the mountain biker can be determined using principles of projectile motion, by first calculating the time of flight from the vertical displacement and then substitifying this into the equation for horizontal displacement.

Explanation:

This problem can be solved using principles of projectile motion, where motion is analysed separately along the vertical and horizontal axes.

The time of flight can be determined by considering the vertical displacement and using the equation y = V0y*t - 0.5*g*t^2, where y is the vertical displacement, V0y is the initial vertical velocity, t is the total time, and g is the acceleration due to gravity. Solving for t, we can substitute this into the equation for horizontal displacement x = V0x*t, where x is the horizontal displacement and V0x is the initial horizontal velocity. This allows us to solve for the initial speed.

Learn more about Projectile Motion here:

https://brainly.com/question/29545516

#SPJ3

The mountain biker's initial speed is found using the principles of projectile motion by resolving into horizontal and vertical components and solving a quadratic equation. The initial speed needed to achieve the jump is approximately 13.65 m/s.

Determining the Initial Speed of the Mountain Biker

To find the initial speed of the mountain biker, we'll use the principles of projectile motion. We'll perform a step-by-step analysis considering horizontal and vertical components separately.

Given data:

Angle of projection: 35.2°Horizontal distance: 30.1 mVertical distance: -14.7 m (below launch point)

Step-by-Step Solution

Step 1: Separate the initial speed into horizontal (Vx) and vertical (Vy) components:

[tex]V_x = V_0 \cos(35.2^o) \\V_y = V_0 \sin(35.2^o)[/tex]

Step 2: Use the horizontal motion formula to express time (t):

[tex]x=V_xt[/tex]

[tex]$\begin{equation}t = \frac{x}{Vx} = \frac{30.1}{V_0 \cos(35.2^o)}\end{equation}$[/tex]

Step 3: Use the vertical motion formula considering the displacement:

[tex]$\begin{equation}y = V_y t + \frac{1}{2} a t^2\end{equation}$[/tex]

Substituting known values and simplifying, we have:

[tex]$\begin{equation} -14.7 = (V_0 \sin(35.2^o)) \times \frac{30.1}{V_0 \cos(35.2^o)} + \frac{1}{2}(-9.8) \left( \frac{30.1}{V_0 \cos(35.2^o)}\right)^2\end{equation}$[/tex]

[tex]or, -14.7=V_0\times0.57\times \frac{30.1}{V_0\times 0.817} -4.9\times (\frac{30.1}{V_0\times 0.817})^2 \\or,-14.7=20.99-4.9\times\frac{906.01}{V_0^2\times0.66} \\or, 6650.9/V_0^2=20.99+14.7\\or,V_0^2=6650.9/35.69\\or, V_0=13.65m/sec[/tex]

The initial speed is 13.65 m/sec.

An insulated thermos contains 106.0 cm3 of hot coffee at a temperature of 80.0 °C. You put in 11.0 g of ice cube at its melting point to cool the coffee. What is the temperature of the coffee once the ice has melted and the system is in thermal equilibrium? Treat the coffee as though it were pure water. (Answer in °C)

Answers

Answer:

the final temperature is T f = 64.977 ° C≈ 65°C

Explanation:

Since the thermus is insulated, the heat absorbed by the ice is the heat released by the coffee. Thus:

Q coffee + Q ice = Q surroundings =0 (insulated)

We also know that the ice at its melting point , that is 0 °C ( assuming that the thermus is at atmospheric pressure= 1 atm , and has an insignificant amount of impurities ).

The heat released by coffee is sensible heat : Q = m * c * (T final - T initial)

The heat absorbed by ice is latent heat and sensible heat : Q = m * L + m * c * (T final - T initial)

therefore

m co * c co * (T fco - T ico) + m ice * L + m ice * c wat  * (T fwa - T iwa) = 0

assuming specific heat capacity of coffee is approximately the one of water c co = c wa = 4.186 J/g°C and the density of coffee is the same as water

d co = dw = 1 gr/cm³

therefore m co = d co * V co = 1 gr / cm³ * 106 cm³ = 106 gr

m co * c wat * (T f  - T ico) + m ice * L + m ice * c wat  * (T f - T iwa) = 0

m co * c wat * T f+ m ice * c wat  * T f  = m ice * c wat  * T iwa  + m co * c wat * Tico -m ice * L

T f  = (m ice * c wat  * T iwa  + m co * c wat * Tico -m ice * L ) /( m co * c wat * + m ice * c wat )

replacing values

T f = (11 g * 4.186 J/g°C * 0°C +  106 g * 4.186 J/g°C*80°C - 11 g * 334 J/gr) / ( 11 g * 4.186 J/g°C +  106 g * 4.186 J/g°C* ) = 64,977 ° C

T f = 64.977 ° C

A stuntman is being pulled along a rough road at a constant velocity by a cable attached to a moving truck. The cable is parallel to the ground. The mass of the stuntman is 119 kg, and the coefficient of kinetic friction between the road and him is 0.697. Find the tension in the cable.

Answers

Answer:

T = 812.8414 N

Explanation:

Using the law of newton we found the vertical(y) and horizontal(x) forces as:

∑[tex]F_x[/tex] = T - [tex]F_k[/tex] = ma

Where T is the tension, [tex]F_k[/tex] is the friction force, m is the mass of the stuntman and a is the aceleration of the stuntman.

but a is equal to 0 because he is moving at a constant velocity, so:

T - [tex]F_k[/tex] = 0

T = [tex]F_k[/tex]

Also,

[tex]F_k[/tex] = [tex]U_kN[/tex]

where [tex]U_k[/tex] is the coefficient of kinetic friction and N is the normal force.

For find N we use:

∑[tex]F_y =[/tex] N - mg = 0

N = mg

N = (119)(9.8)

N = 1166.2

Finally we solve for T as:

T = [tex]U_kN[/tex]

T = (0.697)(1166.2)

T = 812.8414 N

Draw a free-body diagram of the rod ab. Assume the contact surface at b is smooth.

Answers

Answer:

See attachment

Explanation:

A(n) _____ generator collects charges on a charge-carrying belt, transfers the charges onto a large metal sphere, and discharges the charges, thereby releasing up to 5,000,000 volts of electricity or more.

Answers

Answer:

Explanation:

This generator is called Vande Graff generator.

It collects the charge from the belts and accumulate on a large sphere.

It is used to accelerate the charge particles and based on the principle of corona discharge and charge resides on the outer surface.

An angstrom is about the size of an atom and a fermi is about the size of the nucleus of an atom. Given that 1 angstrom unit = 10⁻¹⁰ m and 1 fermi = 10⁻¹⁵ m, what is the relationship between these units?

Answers

Answer:

See explanation below

Explanation:

To do this, we need the relation between a fermi and angstrom. We know the relation between the angstrom and meters, and fermi and meters, so, we can actually solve this by doing the conversion of meters.

1 A = 1x10^-10 m

1 m = 1 A / 1x10^-10 m

1 m = 1x10^10 A

Now if we do the same thing with the fermi:

1 f = 1x10^-15 m

1 m = 1 f / 1x10^-15 m

1 m = 1x10^15 f

then:

1x10^10 A = 1x10^15 f

A/f = 1x10^10 / 1x10^15

A/f = 1x10^-5

A vessel at rest explodes, breaking into three pieces. two pieces, having equal mass, fly off perpendicular to one another with the same speed of 60 m/s. One goes along the negative x-axis and the other along the negative y-axis. The third piece has three times the mass of each other piece. What are the direction and magnitude of its velocity immediately after the explosion? What is the angle with respect to the x-axis? What is the magnitude of its velocity?

Answers

Answer:

v₃ = 28.2842 m/s

∅ = 45°

Explanation:

Given info

vi = 0 m/s

m₁ = m₂ = m

m₃ = 3m

mi = m₁ + m₂ + m₃ = m + m + 3m = 5m

v₁x= - 60 m/s

v₁y= 0 m/s

v₂x= 0 m/s

v₂y= - 60 m/s

We can apply the Principle of Conservation of Momentum as follows

pix = pfx   ⇒   mi*vix = m₁*v₁x + m₂v₂x + m₃*v₃x

⇒  5m*(0) = m*(-60) + m*(0) + 3m*v₃x

⇒  0 = -60*m + 3m*v₃x     ⇒    v₃x = 20 m/s (→)     (I)

piy = pfy   ⇒   mi*viy = m₁*v₁y + m₂v₂y + m₃*v₃y

⇒  5m*(0) = m*(0) + m*(-60) + 3m*v₃y

⇒  0 = -60*m + 3m*v₃y    ⇒    v₃y = 20 m/s (↑)     (II)

then

v₃ = √(v₃x² + v₃y²)

⇒  v₃ = √((20 m/s)² + (20 m/s)²) = 20√2 m/s = 28.2842 m/s

is the magnitude of its velocity immediately after the explosion

∅ = tan⁻¹(v₃y / v₃x)

⇒ ∅ = tan⁻¹(20 m/s / 20 m/s) = tan⁻¹(1) = 45°

is the direction of its velocity immediately after the explosion (the angle with respect to the x-axis)

Final answer:

The third piece of the exploding vessel moves along the positive x and y axes due to the conservation of momentum. The magnitude of its velocity can be derived by applying the Pythagorean theorem to its momentum components and its angle with respect to the x-axis is 45 degrees.

Explanation:

This question involves concepts from physics specifically dealing with the conservation of momentum in two-dimensional motion. As the vessel explodes, the total initial momentum of the vessel (at rest) should be equal to the total final momentum, given that no external force is acting on the system.

Since the two pieces with equal mass fly off perpendicular to each other at the same speed, the x and y-components of their momentum will cancel each other out as they are equal in magnitude but opposite in direction. Consequently, the third piece with thrice the mass must account for the total momentum. Therefore, its direction of motion will be along the positive x and y axes.

To figure out the magnitude of velocity, we use the Pythagorean theorem on the x and y momentum components (which are equal in this scenario). We then derive the velocity of the last piece by the ratio of its momentum to its mass. The angle with respect to the x-axis would be 45 degrees as it is moving equally along the positive x and y axes.

Learn more about Conservation of Momentum here:

https://brainly.com/question/33316833

#SPJ11

Sound waves are created by _____.
a. the compression of air molecules
b. the rarefaction of air molecules.
c. undulating displacement of air molecules caused by pressure changes.
d. None of the answers is correct.

Answers

Answer:

C. undulating displacement of air molecules caused by pressure changes.

Explanation:

Sound is a mechanical wave arising from the movement back and forth of the media objects through which the sound wave travels.If a sound wave moves through air from left to right, then particles of air will move both to the right and to the left as the sound wave's energy passes through it.

The sound wave is formed by air molecules that are displaced due to pressure changes.

Therefore the answer is C.

Sound waves are caused by the undulating displacement of air molecules due to pressure changes. Hence, option(c) is correct.

1. When an object like a speaker cone vibrates, it alternately compresses and expands the air around it.

2. The regions where air molecules are pushed together are called compressions, and the regions where they are spread apart are called rarefactions.

3. Sound waves travel through the air as longitudinal waves, consisting of alternating high-pressure (compression) and low-pressure (rarefaction) regions.

4. These pressure changes propagate at a speed of approximately 340 m/s in air, creating the disturbance known as a sound wave.

Compression: Area of high pressure where molecules are close together.Rarefaction: Area of low pressure where molecules are spread apart.

In a double-slit interference experiment, a special lamp emitting yellow light from heated sodium atoms is used to produce an interference pattern on a screen located 1.49 m from a pair of slits separated by 0.12 mm. If the distance between adjacent bright regions in the resulting pattern is 7.32 mm, what is the wavelength (in nm) of the sodium light?

Answers

Answer:

λ=589nm

Explanation:

The wavelength of the sodium light can be calculated using the next equation:

[tex] \lambda = \frac{\Lambda D}{L} [/tex]  

where Λ: is the distance between the adjacent bright regions, λ: is the wavelength of the sodium light, L: is the distance between slits and screen, and D: is the distance between slits.  

[tex] \lambda = \frac{7.32mm \cdot 0.12mm}{1490mm} = 5.89\cdot 10^{-4}mm = 589nm [/tex]

Therefore, the λ of the sodium light is 589 nm.  

I hope it helps you!

A person is using a rope to lower a 5.0-n bucket into a well with a constant speed of 2.0 m/s. What is the magnitude of the force exerted by the rope on the bucket?

Answers

Answer:

5 N

Explanation:

The bucket is moving at a constant speed of 2m/s Therefore F=ma is 0 N for this to be correct the magnitude of the force exerted by the rope must be equal to the weight of the bucket which is 5 N

Answer:

Magnitude of force on the rope=5N

Explanation:

The bucket is lowered by a constant speed,therefore the tension on the rope must be equal to the weight of the bucket.

One way to keep the contents of a garage from becoming too cold on a night when a severe subfreezing temperature is forecast is to put a tub of water in the garage. If the mass of the water is 148 kg and its initial temperature is 22.3°C, how much energy must the water transfer to its surroundings in order to freeze completely?

Answers

The energy [tex]6.311 \times 10^{7} \mathrm{J}[/tex] is transferred to the surroundings from water in order to freeze completely.

Explanation:

Water will transfer to surrounding will come from cooling energy from 22.3°C  to 0°C and then freezing energy is

[tex]\mathrm{E}_{\mathrm{t}}=\mathrm{E}_{\text {cooling }}+\mathrm{E}_{\text {freezing }}[/tex]

[tex]\mathrm{E}_{\mathrm{t}}=\mathrm{M}\left(\mathrm{C}_{\mathrm{w}} \Delta \mathrm{t}+\mathrm{L}_{\mathrm{f}}\right)[/tex]

We know that,

\mathrm{C}_{\mathrm{W}}=4190 \mathrm{J} / \mathrm{kgk}

[tex]\mathrm{L}_{\mathrm{f}}=333 \times 10^{3} \mathrm{J} / \mathrm{kg}[/tex]

As per given question,

M = 148 kg

[tex]\Delta \mathrm{t}=22.3^{\circ} \mathrm{C}[/tex]

Substitute the values in the above formula,

[tex]\mathrm{E}_{\mathrm{t}}=148\left(4190 \times 22.3+333 \times 10^{3}\right)[/tex]

[tex]E_{t}=148\left(93437+333 \times 10^{3}\right)[/tex]

[tex]E_{t}=148 \times 426437[/tex]

[tex]\mathrm{E}_{\mathrm{t}}=6.311 \times 10^{7} \mathrm{J}[/tex]

The energy [tex]6.311 \times 10^{7} \mathrm{J}[/tex] is transferred to the surroundings from water in order to freeze completely.

To calculate the energy required to freeze a tub of water completely, we need to account for the energy needed to both cool the water to its freezing point and then to convert it to ice. This involves the specific heat capacity of water and the latent heat of fusion.

We use the formula Q = mc extDelta T to calculate the energy to change the temperature of water to 0°C, where:

Q is the heat transfer,m is the mass of the water,c is the specific heat capacity of water (4.18 kJ/kg°C), andextDelta T is the temperature change (22.3°C to 0°C).

Then, we calculate the energy needed for the phase change (freezing) using the formula Q = mLf, where:

Lf is the latent heat of fusion of water (333.55 kJ/kg).

The total energy is the sum of the energy to cool the water and the energy to freeze it.

Calculations:

To cool to 0°C: Q = (148 kg) * (4.18 kJ/kg°C) * (22.3°C) = 13854 kJTo freeze: Q = (148 kg) * (333.55 kJ/kg) = 49365 kJTotal energy: Q_total = 13854 kJ + 49365 kJ = 63219 kJ

A uniform plank of length 5.0 m and weight 225 N rests horizontally on two supports, with 1.1 m of the plank hanging over the right support. To what distance x can a person who weighs 522 N walk on the overhanging part of the plank before it just begins to tip?

Answers

Answer:

x = 0.6034 m

Explanation:

Given

L = 5 m

Wplank = 225 N

Wman = 522 N

d = 1.1 m

x = ?

We have to take sum of torques about the right support point.  If the board is just about to tip, the normal force from the left support will be going to zero.  So the only torques come from the weight of the plank and the weight of the man.

∑τ = 0  ⇒     τ₁ + τ₂ = 0  

Torque come from the weight of the plank = τ₁

Torque come from the weight of the man = τ₂

⇒  τ₁ = + (5 - 1.1)*(225/5)*((5 - 1.1)/2) - (1.1)*(225/5)*((1.1)/2) = 315 N-m (counterclockwise)

⇒  τ₂ = Wman*x = 522 N*x   (clockwise)

then

τ₁ + τ₂ = (315 N-m) + (- 522 N*x) = 0

⇒  x = 0.6034 m

You need to move a 105 kg sofa to a different location in the room. It takes a force of 102 N to start it moving. What is the coefficient of static friction between the sofa and the carpet? (use g = to about -10 m/s/s)

Answers

Answer:

0.0971

Explanation:

we know that

[tex]f max = kn[/tex]

that fmax is maximum of static friction , k is coefficient of friction and n is surface reaction force

so we know that from newtons second law

mg=n

so

kmg = 102

k = 102/mg = 102/(10*105) = 0.0971

Final answer:

The coefficient of static friction (μs) between the sofa and carpet is calculated by dividing the force required to start the sofa moving by the normal force, yielding μs = 102 N / 1050 N.

Explanation:

The coefficient of static friction μs is the ratio of the force of static friction Fs to the normal force N. It can be calculated using the equation μs = Fs / N, where Fs is the force required to start moving the object and N is the weight of the object acting perpendicular to the surface. Here, the normal force is equivalent to the weight of the sofa, which is the mass of the sofa multiplied by the acceleration due to gravity (g). With a mass of 105 kg and g approximated as -10 m/s2, the normal force is N = 105 kg × 10 m/s2 = 1050 N. The provided force to start the sofa moving is 102 N, so the coefficient of static friction is μs = 102 N / 1050 N.

A woman is standing in the ocean, and she notices that after a wave crest passes, five more crests pass in a time of 50.0 s. The distance between two successive crests is 32 m. Determine, if possible, the wave's
(a) period.
(b) frequency.
(c) wavelength.
(d) speed.
(e) amplitude.
If it is not possible to determine any of these quantities, then so state.

Answers

Answer

given,

number of crest (N)= 5

time(t) = 50 s

distance between to successive crest = 32 m

a) Period

   [tex]T = \dfrac{t}{N}[/tex]

   [tex]T = \dfrac{50}{5}[/tex]

  [tex]T = 10\ s[/tex]

b) frequency

   [tex]f = \dfrac{1}{T}[/tex]

   [tex]f = \dfrac{1}{10}[/tex]

   [tex]f =0.1\ Hz[/tex]

c) wavelength

   distance between to consecutive crest is wavelength

    wavelength = 32 m

d) speed

         v = f λ

         v = 0.1 x 32

         v = 3.2 m/s

e) Amplitude

    We cannot determine amplitude because data is not given.

The period of the wave is 10.0 seconds, frequency is 0.1 Hz, wavelength is 32 meters, and speed is 3.2 m/s. The amplitude cannot be determined with the given data.

We can determine multiple properties of the wave based on the given information. Here are the steps and corresponding solutions:

Period (T): Period refers to the time it takes for one complete wave cycle to pass a point. With 5 wave crests passing in 50.0 s, it took 50.0 s / 5 = 10.0 s for each crest to pass. Therefore, the wave period is 10.0 s.Frequency (f): Frequency is the number of wave crests passing a certain point per unit time. It is the inverse of the period. So, f = 1 / T = 1 / 10.0 s = 0.1 Hz. Therefore, the wave frequency is 0.1 Hz.Wavelength (">">λ"): The wavelength is the distance between successive crests, which is directly given as 32 m. Therefore, the wavelength is 32 m.Speed (v): The speed of a wave is calculated by the formula v = f  imes λ. Substituting the known values, v = 0.1 Hz  imes 32 m = 3.2 m/s. Therefore, the wave speed is 3.2 m/s.Amplitude (A): Amplitude is the maximum height of the wave crest above its equilibrium position. From the provided data, it is not possible to determine the amplitude directly.

At what speed, as a fraction of c, must a rocket travel on a journey to and from a distant star so that the astronauts age 15 years while the Mission Control workers on earth age 130 years?

Answers

Answer:

The velocity as a fraction of c is 0.986 c m/s

Solution:

As per the question:

Time measured by the astronaut, t = 15 yrs

Time measured in the frame of mission control, t' = 130 yrs

Now,

Using the formula of time dilation:

[tex]t' = \frac{t}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}[/tex]

Substituting appropriate values in the above eqn:

[tex]130 = \frac{15}{\sqrt{1 - \frac{v^{2}}{c^{2}}}}[/tex]

[tex]\sqrt{1 - \frac{v^{2}}{c^{2}}}= \frac{15}{130}[/tex]

Squaring both the sides we get:

[tex]1 - \frac{v^{2}}{c^{2}}= (\frac{15}{130})^{2}[/tex]

[tex]\frac{v^{2}}{c^{2}} = 1 - (\frac{15}{130})^{2}[/tex]

v = 0.986 c m/s

Final answer:

The rocket must travel at about 99.45% of the speed of light for the astronauts aboard to age 15 years while those on Earth age 130 years, according to the theory of special relativity and the phenomenon called time dilation.

Explanation:

The question asks about the speed a rocket needs to travel as a fraction of the speed of light (c) for the astronaut aboard to age 15 years while those back on Earth age 130 years - an application of time dilation in special relativity. The solution to this is in the theory of relativity proposed by Albert Einstein, which states that time passes at different speeds for people depending on their relative motion.

The time dilation formula is given by Δt = γΔτ, where Δτ is the 'proper time' experienced by the moving astronaut, Δt is the time experienced by the stationary observers on Earth, and γ is the Lorentz factor, defined as γ = 1 / sqrt(1 - (v^2/c^2)).

Here, Δt is 130 years, Δτ is 15 years, and we are asked to solve for v/c. Plugging in the given values and solving for v/c, we find that v/c = sqrt(1 - (15/130)^2), approximately equals to 0.9945 or 99.45% of the speed of light. Therefore, the rocket must travel at about 99.45% of the speed of light for the astronaut to age 15 years while those on Earth age 130 years.

Learn more about Time Dilation here:

https://brainly.com/question/30493090

#SPJ3

The height of a cylinder is decreasing at a constant rate of 8 inches per minute, and the volume is decreasing at a rate of 161 cubic inches per minute. At the instant when the height of the cylinder is 66 inches and the volume is 919 cubic inches, what is the rate of change of the radius? The volume of a cylinder can be found with the equation V=\pi r^2 h.V=πr 2 h. Round your answer to three decimal places.

Answers

Answer:

0.056 inches per minute

Explanation:

dh/dt = 8 inches per minute

dV/dt = 161 cubic inch per minute

h = 66 inches

V = 919 cubic inch

dr/dt = ? rate of change of radius

The volume of cylinder is given by

V = πr²h

where, r be the radius of cylinder

Differentiate both sides with respect to t

dV/dt = πr² x dh/dt + πh x 2r dr/dt .... (1)

When h = 66 inches, V = 919 cubic inches

So, 919 = 3.14 x r² x 66

r = 2.11 inch

Substitute the values in equation (1)

161 = 3.14 x 2.11 x 2.11 x 8 + 3.14 x 66 x 2 x 2.11 x dr/dt

dr/dt = 0.056 inches per minute

Final answer:

The rate of change of the radius of the cylinder, given the provided rates of change of volume and height and current volume and height, is approximately -0.123 inches/minute.

Explanation:

This problem is a classic example of related rates in calculus, specifically focusing on the cylinder. Given the volume of a cylinder is V = πr^2h, we know that the rate at which the volume is changing (dV/dt) is related to the rate at which the radius is changing (dr/dt) and the rate at which the height is changing (dh/dt). In this problem, we are given dV/dt (-161 cubic inches/minute) and dh/dt (-8 inches/minute). Using these given rates, the current volume and height, we can differentiate the volume formula with respect to time to find dr/dt.

Applying the chain rule, we get dV/dt = πr^2 dh/dt + 2πrh dr/dt. Substituting all given values and solving for dr/dt, we find that the rate of change of the radius when the height of the cylinder is 66 inches comes out to be approximately -0.123 inches/minute (rounded to three decimal places).

Learn more about Related Rates here:

https://brainly.com/question/29898746

#SPJ3

The red light from a helium-neon laser has a wavelength of 727.7 nm in air. Find the speed, wavelength, and frequency of helium-neon laser light in air, water, and glass. (The glass has an index of refraction equal to 1.50.)

Answers

Answer:

speed 2.997 10⁸, 2,254 10⁸, 1,999 10⁸ m / s

[tex]\lambda_{n}[/tex]  727.7, 547, 485 nm

Explanation:

The index of refraction is defined as the relationship between the speed of light in a vacuum and in a material medium

      n = c / v

Let's calculate the speed of light in the media

Air

The refractive index is very close to that of the vacuum n = 1,00029

In most experiments they are considered equal

     v = c/ n

     v = 2,998 10⁸ / 1,00029

     v = 2,997 10⁸ m / s

Water

n = 1.33

     v = 2.998 10⁸ / 1.33

     v = 2,254 10⁸ m / s

Glass

n = 1.50

     v = 2,998 10⁸ / 1,50

     v = 1,999 10⁸ m / s

Frequency and wavelength are related by the equation

      c = λ f

When a beam with a given frequency hits excites the electrons of the material and induces forced oscillations, which has the same frequency of the incident, so the frequency of the beam does not change when passing from one medium to the other.

As speed changes the only way that equality is maintained is that the wavelength changes

      [tex]\lambda_{n}[/tex] = λ₀ / n

Air

      [tex]\lambda_{n}[/tex] =727.7 nm

Water

       [tex]\lambda_{n}[/tex] = 727.7 / 1.33  

      [tex]\lambda_{n}[/tex] = 547.14 nm

Glass

     [tex]\lambda_{n}[/tex] = 727.7 / 1.50

    [tex]\lambda_{n}[/tex] = 485.13 nm

A typical car has 16 L of liquid coolant circulating at a temperature of 95 ∘C through the engine's cooling system. Assume that, in this normal condition, the coolant completely fills the 2.0 −L volume of the aluminum radiator and the 14.0 −L internal cavities within the steel engine. When a car overheats, the radiator, engine, and coolant expand and a small reservoir connected to the radiator catches any resultant coolant overflow. Estimate how much coolant overflows to the reservoir if the system is heated from 95 ∘C to 105 ∘C. Model the radiator and engine as hollow shells of aluminum and steel, respectively. The coefficient of volume expansion for coolant is β=410⋅10−6/C∘

Answers

Answer:

[tex]\Delta V=0.0592\ L[/tex]

Explanation:

Given:

Initial temperature of the coolant, [tex]T_f=95^{\circ}C[/tex]final temperature of the coolant, [tex]T_f=105^{\circ}C[/tex]total volume of the coolant, [tex]V_c=16\ L[/tex]coefficient of volume expansion for coolant, [tex]\beta_c=410\times 10^{-6}\ ^{\circ}C^{-1}[/tex]volume of Al radiator, [tex]V_a=2\ L[/tex]volume of steel radiator,  [tex]V_s=14\ L[/tex]

We have:

coefficient of volume expansion for Aluminium, [tex]\beta_a=75\times 10^{-6}\ ^{\circ}C^{-1}[/tex]

coefficient of volume expansion for steel, [tex]\beta_a=35\times 10^{-6}\ ^{\circ}C^{-1}[/tex]

Now, change in volume of the coolant after temperature rises:

[tex]\Delta V_c=V_c.\beta_c.\Delta T[/tex]

[tex]\Delta V_c=16\times 410\times 10^{-6}\times (105-95)[/tex]

[tex]\Delta V_c=0.0656\ L[/tex]

Now, volumetric expansion in Aluminium radiant:

[tex]\Delta V_a=V_a.\beta_a.\Delta T[/tex]

[tex]\Delta V_a=2\times 75\times 10^{-6}\times (105-95)[/tex]

[tex]\Delta V_a=0.0015\ L[/tex]

Now, volumetric expansion in steel radiant:

[tex]\Delta V_s=V_s.\beta_s.\Delta T[/tex]

[tex]\Delta V_s=14\times 35\times 10^{-6}\times (105-95)[/tex]

[tex]\Delta V_s=0.0049\ L[/tex]

∴Total extra accommodation volume created after the expansion:

[tex]V_X=\Delta V_s+\Delta V_a[/tex]

[tex]V_X=0.0049+0.0015[/tex]

[tex]V_X=0.0064\ L[/tex]

Hence, the volume that will overflow into the small reservoir will be the volume of coolant that will be extra after the expanded accommodation in the radiator.

[tex]\Delta V=\Delta V_c-\Delta V_X[/tex]

[tex]\Delta V=0.0656-0.0064[/tex]

[tex]\Delta V=0.0592\ L[/tex]

Final answer:

When the system is heated from 95 °C to 105 °C, approximately 0.066 liters of coolant would overflow to the reservoir, using the coefficient of volume expansion for the coolant.

Explanation:

To estimate how much coolant overflows due to thermal expansion when the system is heated from 95 °C to 105 °C, we use the coefficient of volume expansion for coolant (given as β = 410×10-6/°C). Calculate the change in volume (ΔV) with the formula:

ΔV = βVΔ0ΔT

where:

β is the coefficient of volume expansionVΔ0 is the original volume of the coolant (16 L)ΔT is the change in temperature (105 °C - 95 °C = 10 °C)

Plugging in the values, we get:

ΔV = (410×10-6/°C)(16 L)(10 °C)

ΔV = 0.066 L

Therefore, approximately 0.066 liters of coolant would overflow to the reservoir. Since metals like aluminum and steel also expand, this is an approximation as we are not factoring in the expansion of the radiator and engine housing.

A 96.1 kg man sits on the stern of a 6 m long boat. The prow of the boat touches the pier, but the boat isn’t tied. The man notices his mistake, stands up and walks to the boat’s prow, but by the time he reaches the prow, it’s moved 3.66 m away from the pier. Assuming no water resistance to the boat’s motion, calculate the boat’s mass (not counting the man). Answer in units of kg.

Answers

Info:

weight: 96.1 kg

Length: 6 m

moved: 3.66 m

Answer:

m L = m d + M d

m L − m d = M d

m (L − x) = M x

M = m (L − x) / x

M = 96.1 kg (6 m − 3.66 m) / 3.66 m

M =  61.44098361 kg

The boats mass.

A 96.1 kg of man sits on a stem of a 6-meter longboat. The boat ouches the pier and but is not tied. The man notices a mistake and walks to the prow of the boat he moves a distance of 3.66 meters away from the pier. Thus assuming the given information the bot offers no resistance.

The mass of the boat will be equal to 61.4 kg.

As all the given information states that the boat is not tied and is at a distance f 3.66 m. The mass of boat will be  m L = m d + M dm L − m d = M d  m (L − x) = M xM = m (L − x) / x    then the M = 96.1 kg (6 m − 3.66 m) / 3.66 mHence the M =  61.44098361 kg.

Learn more about the man sits on the stern.

brainly.com/question/14519050.

Consider a father pushing a child on a playground merry-go-round. The system has a moment of inertia of 84.4 kg · m². The father exerts a force on the merry-go-round perpendicular to its 1.50 m radius to achieve a torque of 375 N · m.
(a) Calculate the rotational kinetic energy (in J) in the merry-go-round plus child when they have an angular velocity of 14.8 rpm. J
(b) Using energy considerations, find the number of revolutions the father will have to push to achieve this angular velocity starting from rest. revolutions
(c) Again, using energy considerations, calculate the force (in N) the father must exert to stop the merry-go-round in four revolutions. N

Answers

Answer:

Part a)

[tex]KE = 101.4 J[/tex]

Part b)

[tex]N = 0.043 revolution[/tex]

Part c)

F = 2.7 N

Explanation:

Part a)

As we know that the rotational kinetic energy of the merry go round is given as

[tex]KE = \frac{1}{2}I\omega^2[/tex]

[tex]KE = \frac{1}{2}84.4(\omega^2)[/tex]

here we know that

[tex]\omega = 2\pi(\frac{14.8}{60})[/tex]

[tex]\omega = 1.55 rad/s[/tex]

Now we have

[tex]KE = \frac{1}{2}(84.4)(1.55^2)[/tex]

[tex]KE = 101.4 J[/tex]

Part b)

Now we know that work done due to torque = change in kinetic energy

[tex]W = KE_f - KE_i[/tex]

[tex]\tau (2N\pi) = 101.4 - 0[/tex]

[tex]375(2\pi N) = 101.4[/tex]

[tex]N = 0.043 revolution[/tex]

Part c)

In order to stop it in four revolutions we have

[tex]\tau(2\pi N) = \Delta KE[/tex]

[tex]FR(2\pi N) = 101.4[/tex]

[tex]F(1.5)(2\pi \times 4) = 101.4[/tex]

F = 2.7 N

Final answer:

The rotational kinetic energy is 100.64 J. The father needs to push approximately 0.0426 revolutions to start the merry-go-round. The required force to stop the merry-go-round after 4 revolutions is 2.68 N.

Explanation:

To answer this question, we first need to understand the concept of rotational kinetic energy, which is given by the equation K.E. = 0.5 * I * ω², where I is the moment of inertia and ω is the angular velocity. Next, we must familiarize ourselves with the concept of torque, which relates to the force applied to create rotational motion.

For the rotational kinetic energy when they have an angular velocity of 14.8 rpm, we first convert the angular velocity to rad/s using the formula ω = 2πN/60 where N is in rpm. Plugging in the given values, we get ω = 1.55 rad/s. We then plug I = 84.4 kg·m² and ω = 1.55 rad/s into the kinetic energy equation to get K.E. = 0.5 * 84.4 kg·m² * (1.55 rad/s)² = 100.64 J. For the number of revolutions required to achieve this angular velocity, we first calculate the work done using the formula Work = Torque * Θ, where Θ is the angular displacement in rad. We equate the work done to the kinetic energy we found in the previous part, resulting in 100.64 J = 375 N·m * Θ. Solving for Θ gives us Θ = 0.268 rad. Finally, we convert this to revolutions using the formula 1 rev = 2π rad, yielding 0.0426 revolutions. To calculate the required force to stop the merry-go-round, we use the same Work = Torque * Θ, but this timewe replaceg Θ with the angular displacement for 4 revolutions (4 * 2π rad = 25.12 rad). Equating the work (100.64 J) to the torque gives us the required force F = 100.64 J / (1.50 m * 25.12 rad) = 2.68 N.

Learn more about Rotational Motion here:

https://brainly.com/question/37888082

#SPJ3

Other Questions
How is thanksgiving a invented tradition Rosa is in a convenience store considering which soda to buy. She recalls a commercial for BigFizz she saw on TV last night. BigFizz is running a promotion where you look under the bottle cap, and one in five bottles has a voucher for a free soda. If Rosa decides to purchase a BigFizz based on this promotion, which is framed in terms of _________________ , she will use a _________________ strategy Branches of the FLDS sect (found in Texas, Utah, Arizona, and British Columbia) practice polygamy; are self-sustaining communities having limited contact with outside society; and are not allowed to watch television, listen to the radio, or read any text not approved by the "Prophet." Members of this sect could be classified as ________, according to Mertons strain theory. a. retreatists b. conformists c. rebels d. ritualists e. innovators Answer Correctly!When did the second era of the KKK begin?A. during Reconstruction in the 1860sB. during the Jim Crow era in the 1880sC. during World War I in the 1920sD. after World War II in the 1940s What year was veterans day first celebrated as a national holiday A firm that has total fixed costs of $20,000 sells its output for $150 per unit and has an average variable cost of $200. If the firm's cost and revenue curves are linear, how much output must the firm produce to break even? (A) The firm cannot break even. (B) 300 (C) 500 (D) 400 Vector V is in standard position and makes an angle of 50 with the positive x-axis. Its magnitude is 18. Write V in component form a, b and in vector component form ai + bj. (Round each answer to one decimal place.) The size of each interior angle of a regular polygon with n n sides is 140 Work out the size of each interior angle of a regular polygon with 2n sides. Find z such that 22% of the area under the standard normal curve lies to the right of z. (Round your answer to two decimal places.) Cellulose-digesting microorganisms live in the guts of termites and ruminant mammals. The microorganisms have a home and food, and their hosts gain more nutrition from their meals. This relationship is an example of _____. See Concept 54A. mutualismB. commensalismC. predationD. parasitismE. herbivory PLEASE PLEASE PLEASE ANSWER!! Sarah wants to make a quilt that is 6 feet wide and 8 feet long. She is patching together 4- inch sided squares of fabric to make the quilt. How many patches of fabric will Sarah need? A.) 120 patches B.) 216 patches C.) 432 patches D.) 1,728 patches A bank Certificate of Deposit is a: a Cash deposit in a savings account that earns interest b Certificate for deposits that are issued for half the face value c Savings instrument that requires a deposit for a period of time during which there is a penalty for withdrawals d Savings instrument that requires a deposit for a period of time during which the saver can withdraw money from the plan at any time without a penalty There were 128 threatened species of animals and 144 threatened species of plants in the United States in 2001. Write the ratio of threatened species of animals to threatened species of plants as a fraction in simplest form. Which of the following best defines the term commodity? a. A physical object we find, grow, or make to meet our needs and those of others. b. An activity that benefits people, such as health care, education, and entertainment. c. An economic system which adheres to the principles of socialism. d. A benefit given to those who participate in the capitalist market. Which of the following are solutions to the equation sinx cosx = 1/4? Check all that apply.A. /3+n/2B. /12+nC. /6+n/2D. 5/12+n ...? Write the equation in function form6y - 4x = 24 Which type of genetic exchange occurs among bacteria in which dna is carried into a bacterial cell by means of a virus? I need all the questions answered.Show Work What is one of the characteristics of multicultural literature?OA. It is often written under duress by activists and political prisoners.OB. It is often written by anthropologists who specialize in cultureclashes.OC. It is often written by writers in a majority culture who analyze aminority culture.OD. It is often written by writers whose families are immigrants. All of the following describe the molecular/cellular changes that occur in cones in response to light, except one. Choose the exception. Group of answer choices a) Hyperpolarization of membrane potential b) Reduction in the release of the neurotransmitter glutamate from cone synaptic terminals c) Activation of transducin d) Inactivation of phosphodiesterase.