The mean of a normally distributed group of weekly incomes of a large group of executives is $1,000 and the standard deviation is $100. What is the z-score (value of z) for an income of $1,100

Answers

Answer 1

Answer:

The z-score (value of z) for an income of $1,100 is 1.

Step-by-step explanation:

We are given that the mean of a normally distributed group of weekly incomes of a large group of executives is $1,000 and the standard deviation is $100.

Let X = group of weekly incomes of a large group of executives

So, X ~ N([tex]\mu=1,000 ,\sigma^{2} = 100^{2}[/tex])

The z-score probability distribution for a normal distribution is given by;

               Z = [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = mean income = $1,000

            [tex]\sigma[/tex] = standard deviation = $100

The Z-score measures how many standard deviations the measure is away from the mean. After finding the Z-score, we look at the z-score table and find the p-value (area) associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X.

Now, we are given an income of $1,100 for which we have to find the z-score (value of z);

So, z-score is given by = [tex]\frac{X-\mu}{\sigma}[/tex] = [tex]\frac{1,100-1,000}{100}[/tex] = 1

Hence, the z-score (value of z) for an income of $1,100 is 1.

Answer 2

The z-score for an income of $1,100 is 1.0.

The z-score is a measure of how many standard deviations a particular value, in this case, income, is from the mean of a normally distributed dataset. The formula to calculate the z-score is:

z = (x - μ) / σ

Where:

x is the value being evaluated.μ is the mean of the distribution.σ is the standard deviation of the distribution.

Given the mean (μ) is $1,000 and the standard deviation (σ) is $100, we can substitute these values into the formula to find the z-score of an income of $1,100.

z = ($1,100 - $1,000) / $100

z = $100 / $100

z = 1

Therefore, the z-score for an income of $1,100 is 1.0. This means the income of $1,100 is one standard deviation above the mean.


Related Questions

A rhombus has a base of 8 centimeters and a height of 4.2 centimeters. What is its area? Do not round your answer.

A = cm2

Answers

Answer:

[tex]33.6\ cm^{2}[/tex]

Step-by-step explanation:

Given that

The Base of a rhombus = 8 centimetres

Height of a rhombus = 4.2 centimetres

Based on the above information, the area of a rhombus is

[tex]Area\ of\ rhombus = Base \times height[/tex]

[tex]= 8 \times 4.2[/tex]

[tex]= 33.6\ cm^{2}[/tex]

By multiplying the base of a rhombus with the height of a rhombus we can get the area of the rhombus and the same is applied & shown in the computation part i.e to be shown above

Determine which of (a)-(d) form a solution to the given system for any choice of the free parameter. (HINT: All parameters of a solution must cancel completely when substituted into each equation.) 3x1 + 8x2 − 14x3 = 9 x1 + 3x2 − 4x3 = 1

Answers

Answer:

Please see attachment

Question:

The options are;

(a) (9 - 2s1, 3 + 3s1, s1)

solution

not a solution

(b) (-4 - 5s1, s1,  -(3 + s1)/2)

solution

not a solution

(c) (11 + 10s1, -3 - 2s1, s1)

solution

not a solution

(d) ((6 - 4s1)/3, s1, -(7 - s1)/4)

solution

not a solution

Answer:

The options that form a solution of the given system are;

(b) and (c)

Step-by-step explanation:

Here we have

3·x₁ + 8·x₂ − 14·x₃ = 9

x₁ + 3·x₂ − 4·x₃ = 1

(a) (9 - 2·s₁, 3 + 3·s₁,s₁)

3·(9 - 2·s₁) + 8·(3 + 3·s₁) − 14·s₁ = 4s₁+51

Not a solution

(b) (-4 - 5s₁, s₁, -(3 + s1)/2)

3·(-4 - 5s₁) + 8·(s₁) − 14·-(3 + s1)/2 = 9

(-4 - 5s₁) + 3·(s₁) − 4·-(3 + s1)/2 = 2

Solution

(c) (11 + 10s₁, -3 - 2s₁, s₁ )

3·(11 + 10s₁) + 8·(-3 - 2s₁) − 14·s₁  = 9

(11 + 10s₁) + 3·(-3 - 2s₁) − 4·s₁ = 2

Solution

(d) ((6 - 4s1)/3, s1, -(7 - s1)/4)

3·(6 - 4s1)/3+ 8·s1− 14·-(7 - s1)/4 = 0.5s₁ +30.5  

Not a solution

Researchers are studying rates of homeowners in a certain town. They believe that the proportion of people ages 36-50 who own homes is signifificantly greater than the proportin of people age 21-35 who own homes and want to test this claim. The results of the surverys are: Homeowners Renters Total


Ages 21-35 18 38 56



Ages36-50 40 22 62


TOTAL 58 60 118



What are the null hypothesis and alternative hypothesis for this situation

Answers

Answer:

Being p1 the proportion for people of ages 36-50 and p2 the proportion for people of ages 21-35, the null and alternative hypothesis will be:

[tex]H_0: p_1-p_2=0\\\\H_a: p_1-p_2>0[/tex]

Step-by-step explanation:

A hypothesis test on the difference of proportions needs to be performed for this case.

We have two sample proportions and we want to test if the true population proportions differ from each other, usign the information given by the sample statistics.

The claim is that the proportion of people of ages 36-50 who own homes is significantly greater than the proportin of people age 21-35 who own homes.

The term "higher" will define the alternative hypothesis, that is the hypothesis that represents what is claimed. The null hypothesis always include the equal sign, and will state that both proportions do not differ.

Being p1 the proportion for people of ages 36-50 and p2 the proportion for people of ages 21-35, the null and alternative hypothesis will be:

[tex]H_0: p_1-p_2=0\\\\H_a: p_1-p_2>0[/tex]

Final answer:

The null hypothesis (H0) is that the proportion of homeowners ages 36-50 is equal to the proportion of homeowners ages 21-35 (H0: P1 = P2), and the alternative hypothesis (Ha) is that the proportion of homeowners ages 36-50 is greater than that of ages 21-35 (Ha: P1 > P2).

Explanation:

To answer the question, the null hypothesis (H0) and the alternative hypothesis (Ha) must be formulated based on the given data about homeownership across different age groups. In this research, the null hypothesis would state that the proportion of homeowners who are ages 36-50 is equal to the proportion of homeowners who are age 21-35. Mathematically, this can be represented as H0: P1 = P2.

The alternative hypothesis is what the researchers are trying to support, which is that the proportion of homeowners who are ages 36-50 is significantly greater than the proportion of homeowners who are age 21-35, represented as Ha: P1 > P2.

It is important to note that a hypothesis test will be used to determine if there is enough statistical evidence to reject the null hypothesis in favor of the alternative hypothesis.

a bag contain 2 red balls and 2 black balls. what is the probability of picking out black ball out of the bag?

Answers

Answer:

2/4

Step-by-step explanation:

2+2=4 so 2/4

50%

Answer:

50% chance

Step-by-step explanation:

since half of the balls are red and half are black there will be a 50%chance of picking a black one from the bag

Factor the polynomial completely using the
X method
2 + 16x + 48
Which equivalent four-term polynomial can be created
using the X method?
O2 + 8x + 8x + 48
ox2 - 12x - 4x + 48
x2 + 12x + 4x + 48
ac
0x28x 8x +
() Intro

Answers

Answer:

its answer C

Step-by-step explanation:

x² - 12x + 4x + 48

Which expression is equivalent to 10\sqrt(5)?

Answers

Answer:

A.

Its the simplkified version of the question and they both have the same out come which is 22.4

The equivalent expression for 10√5 is √500.

What is an equivalent expression?

An equivalent expression is an expression that has the same value but does not look the same. When you simplify an expression, you're basically trying to write it in the simplest way possible.

For the given situation,

The expression is 10√5.

If a square number lies inside the square root, then we write that number outside the square root. So,

⇒ [tex]10\sqrt{5}[/tex]

⇒ [tex]\sqrt{10^{2}(5) }[/tex]

⇒ [tex]\sqrt{(100)(5)}[/tex]

⇒ [tex]\sqrt{500}[/tex]

Hence we can conclude that the equivalent expression for 10√5 is √500.

Learn more about equivalent expression here

https://brainly.com/question/11326971

#SPJ2

Assume that the Poisson distribution applies and that the mean number of hurricanes in a certain area is 6.7 per year. a. Find the probability​ that, in a​ year, there will be 4 hurricanes. b. In a 35​-year ​period, how many years are expected to have 4 ​hurricanes? c. How does the result from part​ (b) compare to a recent period of 35 years in which 3 years had 4 ​hurricanes? Does the Poisson distribution work well​ here?

Answers

Answer:

a) 10.34% probability​ that, in a​ year, there will be 4 hurricanes.

b) 3.62 years are expected to have 4 ​hurricanes

c) Either 3 or 4 hurricanes(discrete number) are close to the mean of 3.62, which means that the Poisson distribution works well in this case.

Step-by-step explanation:

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of sucesses

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given interval.

6.7 per year.

This means that [tex]\mu = 6.7[/tex]

a. Find the probability​ that, in a​ year, there will be 4 hurricanes.

This is P(X = 4).

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 4) = \frac{e^{-6.7}*(6.7)^{4}}{(4)!} = 0.1034[/tex]

10.34% probability​ that, in a​ year, there will be 4 hurricanes.

b. In a 35​-year ​period, how many years are expected to have 4 ​hurricanes?

Each year, 0.1034 probability of 10 hurricanes.

In 35 years

35*0.1034 = 3.62

3.62 years are expected to have 4 ​hurricanes

c. How does the result from part​ (b) compare to a recent period of 35 years in which 3 years had 4 ​hurricanes? Does the Poisson distribution work well​ here?

Either 3 or 4 hurricanes(discrete number) are close to the mean of 3.62, which means that the Poisson distribution works well in this case.

Final answer:

Using the Poisson distribution with a mean of 6.7 hurricanes per year, the probability of exactly 4 hurricanes occurring in one year is calculated. Multiplying this probability by 35 provides the expected number of years with 4 hurricanes in a 35-year period, which is then compared to an actual historical period to evaluate the fit of the Poisson distribution to the data.

Explanation:

The student's question pertains to the application of the Poisson distribution to determine the probability of certain events. Given that the mean number of hurricanes in a certain area is 6.7 per year, we can use the Poisson formula to calculate the probabilities:

To find the probability that there will be 4 hurricanes in a year, we use the formula:

P(x; μ) = ( × e^-μ) / x!

To determine how many years are expected to have 4 hurricanes in a 35-year period, we multiply the probability found in part a by 35.

When comparing the expected number of years with 4 hurricanes to an actual 35-year period where 3 years had 4 hurricanes, it can be seen whether the Poisson distribution provides a good fit for the actual data.

what is the measure of angle C

Answers

Answer:

pls I can't see any diagram anywhere

If the 18th term of a geometric sequence is 177,147 and the 24th term is 129,140,163 what is the 10th term?

Answers

Answer:

the term is 2/3(6)n-1

Step-by-step explanation:

Common ratio, r= 6

3rd term=24

Finding first term=

24=a 6^{2}  

24=36a

a=24/36

a=2/3

F (x) = -3x+5x^2+8 has blank roots.

Answers

Answer:

F (x) = -3x+5x^2+8 has complex roots.

Step-by-step explanation:

number of roots?

ok.

f(x) =   5xx - 3x + 8  =   5xx + 5x  - 8x  + 8   ( I was guessing what numbers would sum to -3)

nope.

ok try discriminant:    (-3)^2 - 4*5 * 8 =   9 - 160  < 0

2 complex roots

The number of students in an elementary school t years after 2002 is given by s(t) = 100 ln(t + 5) students. The yearly cost to educate one student t years after 2002 can be modeled as c(t) = 1500(1.05t) dollars per student. (a) What are the input units of the function f(t) = s(t) · c(t)?

Answers

The input units of the function f(t) are students multiplied by dollars per student.

The function[tex]\( f(t) = s(t) \cdot c(t) \)[/tex] represents the total cost to educate all the students in the elementary school t years after 2002. To determine the input units of this function, we need to analyze the units of its individual components.

s(t) is the number of students at time t. Its unit is "students."

c(t) is the cost to educate one student at time t. Its unit is "dollars per student."

When you multiply s(t)  by c(t), the units combine as follows:

[tex]\[ f(t) = s(t) \cdot c(t) = \text{"students"} \times \left(\frac{\text{"dollars"}}{\text{"student"}}\right) = \text{"students"} \cdot \text{"dollars per student"} \][/tex]

Therefore, the input units of the function f(t) are students multiplied by dollars per student.

Of the 219 white GSS2008 respondents in their 20s, 63 of them claim the ability to speak a language other than English. With 99% confidence, what is the upper limit of the population proportion based on these statistics

Answers

Answer:

The upper limit for population proportion is 0.3666

Step-by-step explanation:

We are given the following in the question:

Sample size, n = 219

Number of people who have ability to speak a language other than English, x = 63

[tex]\hat{p} = \dfrac{x}{n} = \dfrac{63}{219} = 0.2877[/tex]

99% Confidence interval:

[tex]\hat{p}\pm z_{stat}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]

[tex]z_{critical}\text{ at}~\alpha_{0.05} = 2.58[/tex]

Putting the values, we get:

[tex] 0.2877\pm 2.58(\sqrt{\dfrac{ 0.2877(1- 0.2877)}{219}})\\\\ = 0.2877\pm 0.0789\\\\=(0.2088,0.3666)[/tex]

is the required 99% confidence interval for population proportion.

Thus, the upper limit for population proportion is 0.3666

Answer:

The upper limit of the 99% confidence interval for the population proportion based on these statistics is 0.3665.

Step-by-step explanation:

We are given that of the 219 white GSS 2008 respondents in their 20's, 63 of them claim the ability to speak a language other than English.

So, the sample proportion is : [tex]\hat p[/tex]  = X/n = 63/219

Firstly, the pivotal quantity for 99% confidence interval for the population proportion  is given by;

     P.Q. =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion = [tex]\frac{63}{219}[/tex]

           n = sample of respondents = 219

           p = population proportion

Here for constructing 99% confidence interval we have used One-sample z proportion statistics.

So, 99% confidence interval for the population​ proportion, p is ;

P(-2.5758 < N(0,1) < 2.5758) = 0.99  {As the critical value of z at

                        0.5% level of significance are -2.5758 & 2.5758}

P(-2.5758 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 2.5758) = 0.99

P( [tex]-2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99

P( [tex]\hat p-2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99

99% confidence interval for p = [ [tex]\hat p-2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+2.5758 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]]

   = [ [tex]\frac{63}{219} -2.5758 \times {\sqrt{\frac{\frac{63}{219}(1-\frac{63}{219})}{219} } }[/tex] , [tex]\frac{63}{219} +2.5758 \times {\sqrt{\frac{\frac{63}{219}(1-\frac{63}{219})}{219} } }[/tex] ]

   = [0.2089 , 0.3665]

Therefore, 99% confidence interval for the population proportion based on these statistics is [0.2089 , 0.3665].

Hence, the upper limit of the population proportion based on these statistics is 0.3665.

janelle wishes to finance a car for $33,000. the bank's annual interest rate is 3.5%, and she can choose between durations of five or six years. calculate the monthly payment and total amount paid for both duration options.use the formula,p = ar (1+r)^n/(1+r)^n-1where a is the amount to finance, r is the monthly interest rate, and n is the number of months to pay. show all of your steps.

Answers

Answer:

For a duration of 5 years, Monthly Payment =$600.42

For a duration of 6 years, Monthly Payment =$508.83

Step-by-step explanation:

[tex]P=\dfrac{ar (1+r)^n}{(1+r)^n-1} \\[/tex]

where a= Amount to Finance=$33,000

Annual interest rate = 3.5%=0.035

r=Monthly Interest Rate= 0.035 ÷ 12 =[tex]\frac{7}{2400}[/tex]

n=number of months to pay

For a duration of 5 years

n=5X12=60 months

[tex]P=\dfrac{ar (1+r)^n}{(1+r)^n-1} \\\\P=\dfrac{33000 X\frac{7}{2400} (1+\frac{7}{2400} )^{60}}{(1+\frac{7}{2400})^{60}-1} \\=\dfrac{96.25 (1.1909)}{1.1909-1}\\=\dfrac{96.25 (1.1909)}{0.1909}\\=\dfrac{114.62}{0.1909}=\$600.42[/tex]

For a duration of 6 years

n=6X12=72 months

[tex]P=\dfrac{ar (1+r)^n}{(1+r)^n-1} \\\\P=\dfrac{33000 X\frac{7}{2400} (1+\frac{7}{2400} )^{72}}{(1+\frac{7}{2400})^{72}-1} \\=\dfrac{96.25 (1.2333)}{1.2333-1}\\=\dfrac{96.25 (1.2333)}{0.2333}\\=\dfrac{118.71}{0.2333}=\$508.83[/tex]

Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α = 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter μ = 8t. (Round your answers to three decimal places.) (a) What is the probability that exactly 9 small aircraft arrive during a 1-hour period?

Answers

Answer:

0.124 = 12.4% probability that exactly 9 small aircraft arrive during a 1-hour period.

Step-by-step explanation:

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of sucesses

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given time interval.

Rate of 8 per hour

This means that [tex]\mu = 8[/tex]

(a) What is the probability that exactly 9 small aircraft arrive during a 1-hour period?

This is P(X = 9).

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 9) = \frac{e^{-8}*8^{9}}{(9)!} = 0.124[/tex]

0.124 = 12.4% probability that exactly 9 small aircraft arrive during a 1-hour period.

Juan wants to know the cross-sectional area of a circular pipe. He measures the diameter which he finds, to the nearest millimeter, to be 5 centimeters.


To find the area of the circle, Juan uses the formula where A is the area of the circle and r is its radius. He uses 3.14 for π. What value does Juan get for the area of the circle? Make sure you include your units.

Answers

Answer:

Step-by-step explanation:

Hi there,

To get started, recall the area of a bound circle formula:

[tex]A = \pi r^{2}[/tex]    where r is radius of the circle. However, Juan used an approximate value of π, 3.14. So for our purposes, the formula becomes:

[tex]A=[/tex] [tex](3.14)r^{2}[/tex]

Juan measured the circle's diameter, so we can find radius from diameter first. Radius is simply twice the length of the diameter; from one circle endpoint to the center, to the endpoint across, making a straight line:

[tex]d=2r[/tex] ⇒ [tex]r=\frac{d}{2} = \frac{5 \ cm}{2} = 2.5 \ cm[/tex]

Now plug in to obtain area:

[tex]A = (3.14)(2.5 cm)^{2} =19.625 \ cm^{2}[/tex]

The area is 19.265 centimetres squared.

Cross-sections are the area shapes when you cut through a 3D volume; if you cut through a pipe perpendicular to where it flows, you can see it is a circle! If you cut straight through a cube, it would be a square, etc.

If you liked this solution, hit Thanks or give a Rating!

thanks,

Which term could have the greatest common factor of 5m squared n squared

Answers

Answer: I think it’s B and D on eduinuity 2021

Step-by-step explanation:

The required 5m²2n² is the greatest common factor of (b) 5m⁴n₃ and (d) 15m²n².

What is the greatest common factor?

The greatest common factor (GCF) is the largest positive integer that divides two or more numbers without leaving a remainder. In other words, it is the largest number that is a factor of all the given numbers.

For example, the GCF of 12 and 18 is 6, because 6 is the largest positive integer that divides both 12 and 18 without leaving a remainder.

here,
The terms that could have the greatest common factor of 5m²n² are:
5m⁴n₃, since 5m²n² is a factor of both 5m⁴n³ and 5m²n².
15m²n², since 5m²n² is a factor of both 15m²n² and 5m²2n².

Therefore, the correct options are (b) 5m⁴n₃ and (d) 15m²n².

Learn more about the greatest common factors here: https://brainly.com/question/11221202
#SPJ5

The complete question is given in the attachment below,


A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 433 gram setting. It is believed that the machine is underfilling the bags. A 15 bag sample had a mean of 423 grams with a standard deviation of 26. A level of significance of 0.1 will be used. Assume the population distribution is approximately normal. Determine the decision rule for rejecting the null hypothesis.

Answers

Answer:

[tex]t=\frac{423-433}{\frac{2.6}{\sqrt{15}}}=-14.896[/tex]    

[tex]df=n-1=15-1=14[/tex]  

We need to find in the t distribution with df=14 a value who accumulates 0.1 of the area in the left and we got [tex]t_{crit}= -1.345[/tex].

Since our calculated value for the statistic is is so much lower than the critical value we have enough evidence to reject the null hypothesis, and we can conclude that the true mean for this case is significantly less than 433 and then the machine is underfilling.

Step-by-step explanation:

Data given

[tex]\bar X=423[/tex] represent the sample mean

[tex]s=26[/tex] represent the sample standard deviation

[tex]n=15[/tex] sample size  

[tex]\mu_o =433[/tex] represent the value that we want to test

[tex]\alpha=0.1[/tex] represent the significance level for the hypothesis test.

t would represent the statistic (variable of interest)  

[tex]p_v[/tex] represent the p value for the test

System of hypothesis

We need to conduct a hypothesis in order to check if the true mean is less than 433 (underfilling), the system of hypothesis would be:  

Null hypothesis:[tex]\mu \geq 433[/tex]  

Alternative hypothesis:[tex]\mu < 433[/tex]  

The statistic is:

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex]  (1)  

Calculate the statistic

[tex]t=\frac{423-433}{\frac{2.6}{\sqrt{15}}}=-14.896[/tex]    

Decision rule

The degrees of freedom are:

[tex]df=n-1=15-1=14[/tex]  

We need to find in the t distribution with df=14 a value who accumulates 0.1 of the area in the left and we got [tex]t_{crit}= -1.345[/tex]

Since our calculated value for the statistic is is so much lower than the critical value we have enough evidence to reject the null hypothesis, and we can conclude that the true mean for this case is significantly less than 433 and then the machine is underfilling.

The weight of potato chip bags filled by a machine at a packaging plant is normally distributed with a mean of 15.0 ounces and a standard deviation of 0.1 ounces. What percentage of bags weigh more than 14.8 ounces

Answers

Answer:

97.73% of bags weigh more than 14.8 ounces.

Step-by-step explanation:

We are given that the weight of potato chip bags filled by a machine at a packaging plant is normally distributed with a mean of 15.0 ounces and a standard deviation of 0.1 ounces.

Let X = weight of potato chip bags filled by a machine

So, X ~ N([tex]\mu=15.0,\sigma^{2} =0.1^{2}[/tex])

The z-score probability distribution for normal distribution is given by;

               Z = [tex]\frac{ X -\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = mean weight = 15.0 ounces

            [tex]\sigma[/tex] = standard deviation = 0.1 ounces

The Z-score measures how many standard deviations the measure is away from the mean. After finding the Z-score, we look at the z-score table and find the p-value (area) associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X.

So, percentage of bags that weigh more than 14.8 ounces is given by = P(X > 14.8 ounces)

  P(X > 14.8 ounces) = P( [tex]\frac{ X -\mu}{\sigma}[/tex] > [tex]\frac{14.8-15.0}{0.1}[/tex] ) = P(Z > -2) = P(Z < 2)

                                                                   = 0.9773 or 97.73%

Now, in the z table the P(Z [tex]\leq[/tex] x) or P(Z < x) is given. So, the above probability is calculated by looking at the value of x = 2 in the z table which has an area of 0.9773.

Hence, 97.73% of bags weigh more than 14.8 ounces.

Final answer:

To find the percentage of bags weighing more than 14.8 ounces, we calculate the z-score for 14.8 ounces and use the normal distribution properties. A z-score of -2 corresponds to 2.28% of bags weighing less, so about 97.72% weigh more.

Explanation:

To determine what percentage of potato chip bags weigh more than 14.8 ounces when the mean weight is 15.0 ounces with a standard deviation of 0.1 ounces, we use the properties of the normal distribution. First, we calculate the z-score for 14.8 ounces:

Z = (X - μ) / σ = (14.8 - 15.0) / 0.1 = -2

The z-score tells us how many standard deviations away 14.8 ounces is from the mean. A z-score of -2 indicates that 14.8 ounces is 2 standard deviations below the mean. Using the z-score table or a calculator with normal distribution functions, we find the area to the left of z = -2. This area represents the percentage of bags weighing less than 14.8 ounces. Since we're interested in bags weighing more than 14.8 ounces, we subtract this value from 1 (or 100% if we're working with percentages).

For z = -2, the area to the left is approximately 0.0228 (or 2.28%). Therefore, the percentage of bags that weigh more than 14.8 ounces is about 100% - 2.28% = 97.72%.


Write the equation of a parabola whose graph
separates the blue points from the red points.

Answers

Final answer:

The equation of a parabola that separates the blue points from the red points can be written in the form y = ax² + bx + c, where a, b, and c are constants. The specific coefficients will determine the direction, width, and position of the parabola.

Explanation:

To create an equation for a parabola that separates the blue and red points, we need more information about the specific characteristics desired for the parabola. The general form of the equation y = ax² + bx + c allows us to customize the parabola's shape. The coefficient a determines the direction of the parabola (opening upwards or downwards), while b and c influence its horizontal shift and vertical position.

For example, if we want a parabola that opens upwards with its vertex at the origin (0,0) and separates the points above from those below, the equation could be y = ax², where a is a positive constant. If a horizontal shift or translation is needed, adjustments to b and c can be made accordingly.

In summary, the equation of the parabola depends on the specific requirements for separating the blue and red points, and the general form y = ax² + bx + c provides the flexibility to tailor the parabola's characteristics to meet those needs.

three students are chosen at random find the probability that all three were born on Wednesday

Answers

Final answer:

The probability that all three students were born on Wednesday is 1/343.

Explanation:

To find the probability that all three students were born on Wednesday, we need to consider the total number of possible outcomes and the number of favorable outcomes.

There are 7 days in a week, so each student has a 1/7 chance of being born on Wednesday. Since the students are chosen at random and the choices are independent, we can multiply the probabilities together to find the probability that all three students were born on Wednesday:

P(all three born on Wednesday) = (1/7) * (1/7) * (1/7) = 1/343.

Which fraction is equivalent to 3/4+1/6

Answers

Answer:

1/2

Step-by-step explanation:

Answer:

11/12

Step-by-step explanation:

If you convert 3/4 and 1/6,

you will get 9/12+2/12.

If you add both of them, you will get your answer.

Plot the function y(x)=e–0.5x sin(2x) for 100 values of x between 0 and 10. Use a 2- point-wide solid blue line for this function. Then plot the function y(x)=e–0.5x cos(2x) on the same axes. Use a 3-point-wide dashed red line for this function. Be sure to include a legend, title, axis labels, and grid on the plots

Answers

In the plot, I have graphed two functions on the same set of axes.

The first function, y(x) = e^(-0.5x) * sin(2x), is represented by a solid blue line with a 2-point line width.

The second function, y(x) = e^(-0.5x) * cos(2x), is shown with a dashed red line with a 3-point line width. Both functions are evaluated for 100 values of x ranging from 0 to 10.

The solid blue line represents the sine function, and the dashed red line represents the cosine function.

The legend, title, axis labels, and grid have been included to make the plot more informative and visually appealing.

In this plot, you can observe the oscillatory behavior of both functions as they decay exponentially with decreasing x.

The legend distinguishes between the two functions, and the grid helps in reading the values accurately.

The choice of line widths and colors enhances the visibility of the two functions, making it easier to compare their behavior over the specified range of x values.

for such more questions on functions

https://brainly.com/question/25638609

#SPJ3

How many games did Lisa score less than 13 points?
(Group of answer choices)
A) 15
B) 7
C) 5
D) 12

Answers

Answer:

it's B) 7

Step-by-step explanation:

Answer:

The answer is B

Step-by-step explanation:

So if Lisa scored less than 13 points then the answer has to lie in the intervals 1-12. You had 2 from intervals 1-6 and 5 from intervals 7-12 and you get 7

The demand of the computers is surely increasing in recent years. A survey shows that this phenomenon can be calculated by the function D(t) = 23.2sqrt(5 + 2.7t) Here, D represents the demand (measured by millions ) and t the time (measured by years ). It will take years that the demand of the computers reaches 132.2 millions . Round your answer to one decimal point

Answers

Answer:

  10.2

Step-by-step explanation:

Apparently, you want to find the solution for ...

  132.2 = 23.2√(5 +2.7t)

  132.2/23.2 = √(5 +2.7t) . . . . divide by 23.2

  (132.2/23.2)² = 5 +2.7t . . . . . square both sides

  (132.2/23.2)² -5 = 2.7t . . . . . subtract 5

  ((132.2/23.2)² -5)/2.7 = t . . . . divide by the coefficient of t

  10.2 ≈ t

It will take about 10.2 years for the demand for computers to reach 132.2 million.

find the area of a rhombus with a perimeter equal to 40 and a diagonal equal to 14 cm.

Answers

Answer:

  about 100 cm²

Step-by-step explanation:

The side length of the rhombus is 1/4 of the perimeter so is 10 cm. The length of half of the other diagonal will be the length of the leg of a right triangle with hypotenuse 10 and leg 7 (half the given diagonal).

  d= √(10² -7²) = √51

Then the area of the rhombus is the product of this and the given diagonal:

  A = (14 cm)(√51 cm) ≈ 99.98 cm²

The area of the rhombus is about 100 cm².

Your flight has been delayed: At Denver International Airport, 85% of recent flights have arrived on time. A sample of 14 flights is studied. Round the probabilities to at least four decimal places.(a) Find the probability that all 12 of the flights were on time.(b) Find the probability that exactly 10 of the flights were on time.(c) Find the probability that 10 or more of the flights were on time.(d) Would it be unusual for 11 or more of the flights to be on time?

Answers

Final answer:

This problem can be approached as a binomial distribution. The probability of a particular number of flights on time is calculated using the binomial probability formula. Determining 'unusual' can be subjective but normally a probability less than 0.05 is considered unusual.

Explanation:

This problem is a binomial probability problem because we have a binary circumstance (flight is either on time or it isn't) and a fixed number of trials (14 flights). The binomial probability formula is P(X=k) = C(n, k) * (p^k) * ((1 - p)^(n - k)) where n is the number of trials, k is the number of successful trials, p is the probability of success on a single trial, and C(n, k) represents the number of combinations of n items taken k at a time.

(a) For all 12 flights on time, it seems there's a typo; there are 14 flights in the sample. We can't calculate for 12 out of 14 flights without the rest of the information.

(b) For exactly 10 flights, we use n=14, k=10, p=0.85: P(X=10) = C(14, 10) * (0.85^10) * ((1 - 0.85)^(14 - 10)).

(c) For 10 or more flights on time, it's the sum of the probabilities for 10, 11, 12, 13, and 14 flights on time.

(d) For determining whether 11 or more on-time flights is unusual, it depends on the specific context, but we could consider it unusual if the probability is less than 0.05.

Learn more about Binomial Probability here:

https://brainly.com/question/33993983

#SPJ3

Analyzing a sample of 14 flights at Denver International Airport, the probability of 10 or more flights arriving on time is 0.3783, and the probability of 11 or more flights arriving on time is 0.2142, which is not considered unusual.

(a) All 12 of the flights were on time.

(b) Exactly 10 of the flights were on time.

(c) 10 or more of the flights were on time.

(d) Would it be unusual for 11 or more of the flights to be on time?

We can use the binomial probability formula to solve this problem. The binomial probability formula is:

P(k successes in n trials) = (n choose k) *[tex](p)^k[/tex] * [tex](q)^(^n^-^k^)[/tex]

where:

n is the number of trials

k is the number of successes

p is the probability of success

q is the probability of failure

In this case, n = 14, p = 0.85, and q = 0.15.

(a) To find the probability that all 12 of the flights were on time, we can plug k = 12 into the binomial probability formula:

P(12 successes in 14 trials) = (14 choose 12) * [tex](0.85)^1^2[/tex]*[tex](0.15)^2[/tex]

Using a calculator, we can find that this probability is approximately 0.0032.

(b) To find the probability that exactly 10 of the flights were on time, we can plug k = 10 into the binomial probability formula:

P(10 successes in 14 trials) = (14 choose 10) *[tex](0.85)^1^0[/tex] *[tex](0.15)^4[/tex]

Using a calculator, we can find that this probability is approximately 0.1022.

(c) To find the probability that 10 or more of the flights were on time, we can add up the probabilities of 10, 11, 12, 13, and 14 successes:

P(10 or more successes) = P(10 successes) + P(11 successes) + P(12 successes) + P(13 successes) + P(14 successes)

Using a calculator, we can find that this probability is approximately 0.3783.

(d) To determine whether it would be unusual for 11 or more of the flights to be on time, we can find the probability of this event and compare it to a common threshold for unusualness, such as 0.05.

P(11 or more successes) = P(11 successes) + P(12 successes) + P(13 successes) + P(14 successes)

Using a calculator, we can find that this probability is approximately 0.2142. This probability is greater than 0.05, so it would not be considered unusual for 11 or more of the flights to be on time.

2•2•2•n•n using exponents. The product is?

Answers

Answer:

2^3 n^2 or 8n^2

Step-by-step explanation:

how long will it take to earn one dollar at the rate of $10 per hour

Answers

Answer:

6 minutes

Step-by-step explanation:

Since it's you have 10 dollars in one hour, and you want to find 1/10th of the dollar value, you'd multiply 1/10th, or 0.1 by the time as well. I converted it into minutes because we're finding a smaller unit of time than 1 hour.

60 min x 1/10 (or 60 min/10)=  6 minutes

I hope this helped!

6 minutes

If it takes 1 hour to earn $10, we convert that 1 hour to 60 minutes. Now we will divide 60 by 10, and that gives you 6. Therefore every 6 minutes you earn $1.

Hope this helps!

A light bulb factory produces 1,188 light bulbs every hour. Approximately 3.83% of the light bulbs are defective, and do not work. Using the binomial distribution, what is the standard deviation of the number of defective bulbs produced in an hour

Answers

Answer:

The standard deviation of the number of defective bulbs produced in an hour is 6.615

Step-by-step explanation:

Binomial probability distribution

Probability of exactly x sucesses on n repeated trials, with p probability.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

In this problem, we have that:

[tex]p = 0.0383, n = 1188[/tex]

What is the standard deviation of the number of defective bulbs produced in an hour

[tex]\sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{1188*0.0383*(1-0.0383)} = 6.615[/tex]

The standard deviation of the number of defective bulbs produced in an hour is 6.615

Ben ran for president of his class is there a 410 students and he receive 72% of the vote how many students voted for Ben

Answers

Answer:

295

Step-by-step explanation:

multiply 410 x .72=295.2

you can not have .2 of a person, so you must round. Normally the question states what to round to, whether up or down, but generally .2 rounds down so: 295

Final answer:

295 students voted for Ben.

Explanation:

To calculate how many students voted for Ben in the class president election, we need to use the percentage of votes he received. Ben received 72% of the total votes from a class of 410 students.

First, convert the percentage to a decimal by dividing by 100:

72% = 72 ÷ 100 = 0.72

Then, multiply this decimal by the total number of students to find out how many voted for Ben:

Number of votes for Ben = 0.72 × 410

Now, we calculate the multiplication:

Number of votes for Ben = 295.2

Since we can't have a fraction of a vote, we'll round down to the nearest whole number. Thus, 295 students voted for Ben.

Other Questions
Under the U.S. Constitution, certain powers are given only to the federal government. These are called A. enumerated powers. B. reserved powers. C. federalism powers. D. concurrent powers. A spinner is divided into 4 equal parts. 1 part is colored red, 2 parts are colored blue, and 1 part is colored yellow. The spinner is spun 1000 times. Select all of reasonable possible outcomes 3350 J of heat is required to raise the temperature of a sample of AlF3 from 250C to 800C. What is the mass of the sample? I just want to know how to work this out. Please help me. Marie ______ des photos quand elle voyage.faitestapprendprend 7. The fundamental criticism directed against the new popular mass media culture in the 1950s, by such social critics as David Riesman and William H. Whyte,Jr., was that a. affluence tended to erode Americans' moral character. b. Americans had become affluent conformists unable to think for themselves. c. the wealth produced by the new mass economy was unevenly distributed. d. the open sexual displays of figures like Elvis Presley and Marilyn Monroe were morally dangerous. e. it did not reflect the cultural tastes and preferences of racial and ethnic minorities in America. Robert delivers papers every morning. On Sundays he has to deliver 57 papers and on each of the other days he only has to deliver 36 papers. How many papers does Robert deliver each week? A. 309 B. 399 C. 345 D. 273Reset Submit The material expelled when a meteorite strikes the surface of a planet is called ________ and the meteor strike creates a ________. comet; asteroid a celestial sphere; comet planetesimal; impact crater ejecta; impact crater 3/5 * (t + 41) = 3(3 t)t = Road users do NOT includeA people in vehiclesB. skateboardersC. small aircraft pilotsD. pedestrians At a back to school sale, backpacks are marked down 15%. If the original price was $34, then what is the sale price? How do get this answer? Read the excerpt from "Object Lesson, Part 2." "I see we'll have to do it the hard way," Ellery said. "Sorry I can't produce the thief with a flick of my wrist, the way it's done in books, but in real life, detection like crime is pretty unexciting stuff. We'll begin with a body search. It's voluntary, by the way. Anybody rather not chance a search? Raise your hand." Not a muscle moved. Which sentence from the excerpt adds the most suspense?( A)We'll begin with a body search. (B)It's voluntary, by the way.(C) Anybody rather not chance a search? (D) Not a muscle moved. A categorical imperative is... a. a requirement of reason that applies to all living creatures. b. a requirement of reason that demands that we conceptualize the world in certain ways. c. a requirement of reason that applies to us regardless of our desires. d. a requirement of reason that tells us that if we want something, we'd better act a certain way. What impact did the war have on citizens of the world? Mays Corp. reported free cash flows for 2018 of $491 million and investment in operating capital of $321 million. Mays Corp. incurred $146 million in depreciation expense and paid $309 million in taxes on EBIT in 2018. What is Mays Corp.s 2018 EBIT? What 4-5 elements from the periodic table are necessary in an ecosphere? The admission fee at an amusement park is $1.50 for children and $4 for adults. On a certain day, 272 people entered the park, and the admission fees collected totaled 758.00 dollars. How many children and how many adults were admitted? Suppose the surface-catalyzed hydrogenation reaction of an unsaturated hydrocarbon has a rate constant of 0.725 M/min. The reaction is observed to follow zero-order kinetics. If the initial concentration of the hydrocarbon is 5.90 M, what is the half-life of the reaction in seconds? *Please report 3 significant figures. Numbers only, no unit. No scientific notation. which of the following two questions are associated with aesthetics? How did President Abraham Lincolns assassination affect Reconstruction?A. It brought plans for Reconstruction to a halt. B. It gained the Democratic Partys support for the goals of Reconstruction. C. It changed the Reconstruction strategies the US government would pursue. D. It increased resistance to Reconstruction projects in the South.