The spacing of gravitational field lines indicates the _____ of the field.

Answers

Answer 1
The relative magnitude of a vectorial field is proportional to the density of field lines. This is true also for the gravitational field: so, the spacing between the gravitational field lines indicates the intensity of the gravitational field. The smaller is the spacing between the lines, the stronger is the field's intensity, and viceversa.

Related Questions

What resistance is needed in this rc circuit if the flash is to charge to 90% of its full charge in 22 s ?

Answers

Missing part in the text of the problem:
"a flash unit for a camera has a capacitance of1200μF."

Solution:
In a RC circuit, the charge of the capacitor at time t follows the relationship:
[tex]Q(t) = Q_0 (1-e^{- \frac{t}{\tau} })[/tex]
where [tex]Q_0 [/tex] is the full charge, and [tex]\tau = RC[/tex] is the time constant of the circuit. 

We can isolate [tex]\tau[/tex] from the previous equation:
[tex] \frac{Q(t)}{Q_0} = 1-e^{ \frac{t}{\tau} } [/tex]
[tex] \frac{t}{\tau} = -ln(1- \frac{Q(t)}{Q_0}) [/tex]
[tex]\tau = - \frac{t}{ln(1- \frac{Q(t)}{Q_0} )} [/tex]

We can now using the data of the problem. We know that after a time t=22.0s, the capacitor is at 90% of tis charge, therefore [tex] \frac{Q(t)}{Q_0} = 0.9[/tex]. So we find
[tex]\tau = - \frac{22}{ln(1-0.9)}=9.55 s [/tex]

And from this value we can find the value of the resistance R, since we know that [tex]\tau = RC[/tex]. Given [tex]C=1200 \mu F = 1200 \cdot 10^{-6} F[/tex], we have
[tex]R= \frac{\tau}{C}= \frac{9.55s}{1200 \cdot 10^{-6}F}=7958 \Omega = 7.96 k \Omega [/tex]

Consider a ball rolling down the decreasing slope inside a semicircular bowl (the slope is steep at the top rim, gets less steep toward the bottom, and is zero (no slope) at the bottom). As the ball rolls from the rim downward toward the bottom, its rate of gaining speed

Answers

The answer would be:
It's rate of gaining speed decreases.
The rate at which speed changes is called acceleration, 
You can think of this problem as an inclined plane. But the angle of an inclined plane is constantly decreasing.
We know that on a frictionless inclined plane acceleration of an object is:
[tex]a=gsin(\theta)[/tex]
Where g is the gravitational acceleration of the Earth and [tex] \theta[/tex] is the angle of an inclined plane. 
Using our analogy, the ball would start on an inclined plane with a 90-degree angle and that angle would continue to decrease to zero. 
The sine function is 1 at 90 degrees and is equal to zero at 0 degrees. Since our acceleration is proportional to the sine, and sine function is decreasing with the angle, our acceleration is also decreasing.

The earth's radius is about 4000 miles. kampala, the capital of uganda, and singapore are both nearly on the equator. the distance between them is 5000 miles as measured along the earth's surface. part a the flight from kampala to singapore takes 8.3 hours. what is the plane's angular velocity relative to the earth's surface? give your answer in â/h.

Answers

Plane's angular velocity relative to the earth's surface = 0.15 rad/hr

Explanation:

Radius of earth, r = 4000 miles

Angular velocity is the ratio of linear velocity and radius.

         [tex]\omega =\frac{v}{r}[/tex]

Linear distance from Kampala to Singapore = 5000 miles

Time taken = 8.3 hours

         Distance = Time x Velocity

         5000 = 8.3 x Velocity

         Velocity, v = 602.41 mph

Substituting in angular velocity equation

        [tex]\omega =\frac{v}{r}=\frac{602.41}{4000}=0.15rad/hr[/tex]

Plane's angular velocity relative to the earth's surface = 0.15 rad/hr

Final answer:

The plane's angular velocity in hours can be calculated using the angle in radians covered in one hour's flight and the Earth's radius, applying the formula for angular velocity.

Explanation:

To find the plane's angular velocity relative to the Earth's surface, we need to calculate how many radians the plane covers in an hour and then convert this to angular velocity in degrees per hour. The formula for angular velocity (ω) is ω = θ / t, where θ is the angle in radians and t is the time in seconds. Given that the Earth's circumference is approximately 24,900 miles, we can determine the angle by using the proportion θ / (2π) = distance / Earth's circumference. With the plane's distance being 5000 miles and the Earth's radius being 4000 miles, we use the arc length formula s = rθ, where s is the arc length (5000 miles), r is the radius of the Earth (4000 miles), and θ is the angle in radians. Solving this for θ gives us θ = s / r.

Learn more about Angular Velocity here:

https://brainly.com/question/30733452

#SPJ3

a 50kg box is being pushed along a horizontal surface. the coefficient of kinetic friction between the box and the ground is 0.35.what horizontal force must be exerted on the box for it to accelerate at 1.20m/s^2

Answers

For Newton's second law, the resultant of the forces acting on the box is equal to the product between the mass of the box m and its acceleration a:
[tex]\sum F = ma[/tex] 
We are interested only in what happens on the x-axis (horizontal direction). Only two forces act on the box in this direction: the force F, pushing the box along the surface, and the frictional force [tex]F_f = \mu m g[/tex] which has opposite direction of F (because it points against the direction of the motion). Therefore we can rewrite the previous equation as
[tex]F-F_f = ma[/tex]
and solve to find F:
[tex]F=ma+F_f =m(a+\mu g)=(50 kg)(1.2 m/s^2+(0.35)(9.81 m/s^2))=[/tex]
[tex]=232 N[/tex]

Answer:

Net horizontal force, [tex]F_{net}=231.5\ N[/tex]

Explanation:

It is given that,

Mass of the box, m = 50 kg

The coefficient of kinetic friction between the box and the ground is 0.35, [tex]\mu=0.35[/tex]

Acceleration of the box, [tex]a=1.2\ m/s^2[/tex]

We know that the frictional force acts in opposite direction to the direction of motion. The net force acting on it is given by :

[tex]F_{net}=f+ma[/tex]

[tex]F_{net}=\mu mg+ma[/tex]

[tex]F_{net}=m(\mu g+a)[/tex]

[tex]F_{net}=50\times (0.35\times 9.8+1.2)[/tex]

[tex]F_{net}=231.5\ N[/tex]

So, the net force acting on the box is 231.5 N. hence, this is the required solution.

What is the energy of a photon with a frequency of 1.7 × 1017 Hz? Planck’s constant is 6.63 × 10–34 J•s.
1.1 × 10–17 J 
1.1 × 10–16 J
8.3 × 10–16 J
8.3 × 10–15 J

Answers

The energy carried by a single photon is given by
[tex]E=hf[/tex]
where h is the Planck's constant and f is the frequency of the photon.

The photon of our exercise has a frequency of [tex]f=1.7 \cdot 10^{17} Hz[/tex], therefore its energy is
[tex]E=hf=(6.63 \cdot 10^{-34}Js)(1.7 \cdot 10^{17} Hz)=1.1 \cdot 10^{-16} J[/tex]

Answer:

The correct answer is B.

Explanation:

Got a 100% on the Exam

A book rests on a table, exerting a downward force on the table. the reaction to this force is:

Answers

The upward force the table exerts on the ground!
Equal and opposite forces.

When a clock reads 5.0 seconds a cart's velocity in the negative x direction is 3.0 m/s. when the clock reads 6.0 seconds, the cart's velocity in the positive x direction is 4.0 m/s. what is the magnitude (in m/s2) of the average acceleration of the cart?

Answers

Impulse is the change of momentum before and after the collision:
I = mv₁ - mv₂ = m (v₁-v₂)
m mass
v velocity

Impuls also is defined as the average force during a short period of time:
I = F * t = m * a * t
F average force
t time difference
m mass
a average acceleration

Combined:
m(v₁- v₂) = m * a * t
a = (v₁- v₂) / t
= (4m/s - (-3m/s)) / 6s - 5s
= 7m/s / 1s
= 7 m/s²


The kinematic we find the average acceleration of the body is 7 m/s²

Given parameters

The velocity at two instant of time t₁ = 5.0 s, v₁ = -3.0 m / s

           t₂= 6.0 s,  v₂ = 4.0 m / s

To find

The average acceleration of the body

Kinematics studies the movement of the carpus, establishing relationships between their position, speed and acceleration.

Average acceleration is defined as the change in velocity in a given time interval

             a_ {avg} = [tex]\frac{\Delta v}{\Delta t}[/tex]

Let's apply this expression to our case

let's set a reference frame where the positive direction of the x axis is positive, so v₁ is negative

         

             a_ {avg} = [tex]\frac{v_2 -v_1}{t_2 -t_1}[/tex]

             a_ {avg} = [tex]\frac{4- (-3)}{6-5}[/tex]

             a_ {avg} = 7 m / s²

In conclusion using kinematics we find the average acceleration of the body is 7 m / s²

learn more about average acceleration here:

https://brainly.com/question/17355747

The compound PCl5 decomposes into Cl2 and PCl3. The equilibrium of PCl5(g) Cl2(g) + PCl3(g) has a Keq of 2.24 x 10-2 at 327°C. What is the equilibrium concentration of Cl2 in a 1.00 liter vessel containing 0.235 mole of PCl5 and 0.174 mole of PCl3? Remember to use the correct number of significant digits. Cl2 = Are the products or reactants favored?

Answers

To find the equilibrium concentration of Cl2 in the decomposition of PCl5, we start with initial concentrations, assume x is the change at equilibrium, and apply the equilibrium expression using Keq = 2.24 x 10^-2. Solving this for x yields the equilibrium concentration of Cl2, showing whether reactants or products are favored.

To determine the equilibrium concentration of Cl2 when PCl5 decomposes into Cl2 and PCl3, we can start with the provided concentrations and use the equilibrium constant (Keq).

The equilibrium equation for this decomposition is:
PCl5(g) \<=> Cl2(g) + PCl3(g)
and the given Keq is 2.24 x 10-2 at 327°C.

Let's assume x is the amount of PCl5 that decomposes to form x moles of Cl2 and x moles of PCl3 at equilibrium:

Initial moles of PCl5 = 0.235 molInitial moles of PCl3 = 0.174 molChange for PCl5 = -xChange for Cl2 = +xChange for PCl3 = +x

At equilibrium, we will have:

[PCl5] = (0.235 - x) mol / 1.00 L[Cl2] = x mol / 1.00 L[PCl3] = (0.174 + x) mol / 1.00 L

The Keq expression is:

Keq = [PCl3][Cl2] / [PCl5]

Plugging in the equilibrium concentrations:

2.24 x 10-2 = ((0.174 + x) × x) / (0.235 - x)

This equation can be solved for x to find the equilibrium concentration of Cl2. With the calculated value of x, it is possible to determine the favorability of the reaction. A small Keq value (< 1) typically indicates that reactants are favored, which suggests in this case, PCl5 would be favored at equilibrium.

An arrow is shot from a bow at an angle of 35 degrees above horizontal with an initial speed of 50 m/s what is the arrows horizontal x and y components ?

Answers

These kinds of problems can be broken down to a simple right triangle where we want the side lengths.  Knowing the hypotenuse (50) and the angle, we can get the  other sides with trigonometry.  These sides are then the components of the original vector.  I drew it up for you here.

Answer: Horizontal component of arrow :40.955 m/s

Vertical component of arrow :28.675 m/s

Explanation:

The initial speed of the arrow = u = 50 m/s

The horizontal component of the arrow =[tex]u_x=u\cos\theta [/tex]

The horizontal component of the arrow =[tex]u_y=u\sin\theta [/tex]

Angle between the velocity vector and x component = 35°

Horizontal component of arrow :

[tex]\cos\theta=\frac{u_x}{u}[/tex]

[tex]\cos35^o=0.8191=\frac{u_x}{50}[/tex]

[tex]u_x=0.8191\times 50=40.955 m/s[/tex]

Vertical component of arrow :

[tex]\sin\theta=\frac{u_y}{u}[/tex]

[tex]\sin35^o=0.5735=\frac{u_y}{50}[/tex]

[tex]u_y=0.5735\times 50=28.675 m/s[/tex]

Horizontal component of arrow :40.955 m/s

Vertical component of arrow :28.675 m/s

Three uncharged capacitors with equal capacitances are combined in parallel. the combination is connected to a 5.55-v battery, which charges the capacitors. the charging process involves 3.45 Ã 10-4 c of charge moving through the battery. find the capacitance of each capacitor.

Answers

Let's call [tex]C_{eq}[/tex] the equivalent capacitance of the circuit. The relationship between the  capacitance, the charge Q in the circuit and the potential difference V applied on the capacitor is
[tex]C_{eq}= \frac{Q}{V} [/tex]
Using [tex]Q=3.5 \cdot 10^{-4}C[/tex] and [tex]V=5.55 V[/tex], we find
[tex]C_{eq}= \frac{3.5 \cdot 10^{-4}C}{5.5 V} =6.4 \cdot 10^{-5}F[/tex]

In reality, the circuit consists of 3 capacitors in parallel, each one having same capacitance C. When 3 capacitors are connected in parallel, their equivalent capacitance is:
[tex]C_{eq}=C+C+C=3C[/tex]
We know [tex]C_{eq}[/tex], so we can find C:
[tex]C= \frac{C_{eq}}{3}= \frac{6.4 \cdot 10^{-5}F}{3} =2.1 \cdot 10^{-5}F [/tex]

The equivalent capacitance of the number of capacitance connected in the parallel series is the sum of  the individual capacitance.

The capacitance of each capacitor is [tex]2.1\times10^{-5}\rm F[/tex].

What is equivalent capacitance of parallel series?

The equivalent capacitance of the number of capacitance connected in the parallel series is the sum of  the individual capacitance.

It can be given as,

[tex]C_{eq}=\dfrac{Q}{V}[/tex]

Here, [tex]Q[/tex] is the charge and [tex]V[/tex] is the voltage.

Given information-

The voltage of the battery is 5.55 V.

The value of charge is [tex]3.45\times10^{-4}[/tex] C.

Put the values in the above formula as,

[tex]C_{eq}=\dfrac{3.45\times10^{-4}}{5.55}\\C_{eq}=6.4\times10^{-4}\rm F[/tex]

Given that the three uncharged capacitors with equal capacitance are combined in parallel.

For the parallel connection of the capacitance the equivalent capacitance can be given as,

[tex]C_{eq}=C+C+C[/tex]

Here, [tex]C[/tex] is the capacitance of each capacitors. Put the values,

[tex]6.4\times10^{-4}\rm =3C\\C=2.1\times10^{-5}\rm F[/tex]

Hence the capacitance of each capacitor is [tex]2.1\times10^{-5}\rm F[/tex].

Learn more about the equivalent capacitance here;

https://brainly.com/question/5626146

A uniform rod XY of weight 10.0N is freely hinged to a wall at X. It is held horizontal by a force F acting from Y at an angle 30° to the horizontal, as shown.

What is the value of F?
A- 5.0 N B- 8.7cm C- 10.0cm D-20.0cm

Answers

In order to solve the problem, we must require the equilibrium of all the torques acting on the rod. The fixed point is in X, so we have:
- The weight of the rod (mg) acting at the center of the rod (so, at a distance L/2 from X, where L is the length of the rod). So, the torque is 
[tex]T_W = mg \frac{L}{2} [/tex]
- The vertical component of F (so, [tex]F \sin 30^{\circ}[/tex]) applied in Y, so at a distance L from X. Its torque is
[tex]F \sin 30^{\circ} L[/tex]

The weight points downwards (so, the torque is clockwise), while the torque of F points anti-clockwise, so the equilibrium of torques is
[tex]F \sin 30^{\circ} L = mg \frac{L}{2} [/tex]
and since the weight is mg=10 N, re-arranging the equation we find
[tex]F = \frac{10 N}{2 sin 30^{\circ}} = 10 N[/tex]

The value of the horizontal force acting on the rod is 10 N. Therefore option (C) is correct.:

Given data:

The weight of rod is, W = 10.0 N.

The angle made by force with respect to horizontal is, [tex]\theta = 30^\circ[/tex].

To maintain the steady position (equilibrium condition), the vertical component of force F must be balanced by the moment of force due to weight.

Therefore,

[tex](Fsin\theta) \times L = W \times \dfrac{L}{2} \\\\(F \times sin30^{\circ}) = \dfrac{10}{2} \\F = 10 \;\rm N[/tex]

Thus, the value of the horizontal force acting on the rod is 10 N. And option (C) is correct.

Learn more about the equilibrium of forces here:

https://brainly.com/question/3876381?referrer=searchResults

When photons with a wavelength of 310 nm strike a magnesium plate the maximum velocity of the ejected electrons is 3.45*10^5 m/s. calculate the binding?

Answers

Given that the work function for sodium metal is 1.82 eV, what is the threshold frequency? 0. 1. 1. 0. 1. 1. 34. • When photons with a wavelength of 310 nm strike a magnesium plate, the maximum velocity of the ejected electrons is 3.45x10. 5 m/s. Calculate the binding energy of electrons to the magnesiumsurface. 1. 2. 2 +. 1.

rapid energy transfer between ____ and ____ energy make roller coasters thrilling

Answers

Hello there!

The answer is the following:

Rapid energy transfer between Potential and Kinetic energy makes roller coasters thrilling. 

Potential Energy is the energy related to the vertical position of the roller coaster cart. When it is at the highest point, the Potential Energy is at a maximum. 

Kinetic Energy is the energy related to the speed of the roller coaster cart. When the cart is at the highest point, the kinetic energy is at a minimum, but as it begins to go down, the Potential Energy is transformed into Kinetic Energy, making the cart to increase its speed and making it a thrilling experience. 

Paul and Ivan are riding a tandem bike together. They’re moving at a speed of 5 meters/second. Paul and Ivan each have a mass of 50 kilograms. What can Paul do to increase the bike’s kinetic energy?

A. He can let Ivan off at the next stop.
B. He can pedal harder to increase the rate to 10 meters/second.
C. He can reduce the speed to 3 meters/second.
D. He can pick up a third rider.

Answers

The formula is Ke = 1/2 m v^2
The two of them together have a Ke of mv^2. So you either increase m or v. That's what makes the problem difficult. He can do D or B. We have to choose.

A is no solution. The Ke goes down because Paul loses Ivan's mass.
C is out of the question 3 meters/sec is a big reduction from 5 m/s. So now what do we do about B and D?

The question is what does the third person add. The tandoms I've peddled only allow for 1 or 2 people to add to the motion. So the third person only adds mass. He does not have a v that he is contributing to. To say that he is going 5m/s is true, but he's not contributing anything to that motion.

I pick B, but it is one of those questions that the correctness of it is in the head of the proposer. Be prepared to get it wrong. Argue the point politely if you agree with me, but back off as soon as you have presented your case.

B <<<<====== answer. 

Answer: The correct answer is option C.

Explanation:

Kinetic energy is the energy possessed by the an object due to its motion.An its calculated by:

[tex]K.E.=\frac{1}{2}mass\times (velocity)^2[/tex]

Kinetic energy depends upon the mass and velocity of the an object.

So, Paul can increase the bike's kinetic energy by increasing the velocity of its bike. Hence, the correct answer is option C.

Increasing the mass will also increase the kinetic energy . But according to option (D) he has to stop the bike first by applying brakes which will reduce the kinetic energy of the bike.And then again have to perform the work to bring the bike in motion

14 gauge copper wire has a diameter of 1.6 mm. what length of this wire has a resistance of 4.8ω?

Answers

The relationship between resistance R and resistivity [tex]\rho[/tex] is
[tex]R= \frac{\rho L}{A} [/tex]
where L is the length of the wire and A its cross section.

The radius of the wire is half the diameter:
[tex]r= \frac{d}{2}= \frac{1.6 mm}{2}=0.8 mm=8\cdot 10^{-4} m [/tex]
and the cross section is
[tex]A=\pi r^2 = \pi (8\cdot 10^{-4} m)^2=2.01\cdot 10^{-6} m^2[/tex]

From the first equation, we can then find the length of the wire when [tex]R=4.8 \Omega[/tex] (copper resistivity: [tex]\rho = 1.724 \cdot 10^{-8} \Omega m[/tex])
[tex]L= \frac{AR}{\rho}= \frac{(2.01\cdot 10^{-6} m^2)(1.724 \cdot 10^{-8} \Omega m)}{4.8 \Omega}=7.21 \cdot 10^{-15} m [/tex]

A proton is fired from far away toward the nucleus of a mercury atom. mercury is element number 80, and the diameter of the nucleus is 14.0 fm. part a if the proton is fired at a speed of 3.4×107 m/s , what is its closest approach to the surface of the nucleus? assume the nucleus remains at rest. express your answer to two significant figures and include the appropriate units.

Answers

The initial kinetic energy of the proton is given by:
[tex]K= \frac{1}{2} mv^2[/tex]
where [tex]m=1.67\cdot 10^{-27}kg[/tex] is the proton mass and [tex]v=3.4\cdot 10^7 m/s[/tex] is the initial speed.

As the proton approaches the nucleus, it decelerates because of the repulsive electric field and its kinetic energy converts into electric potential energy. The proton will stop at a distance r from the center of the nucleus, and its potential energy at this distance will be:
[tex]U=k_e \frac{(80e)(e)}{r} [/tex]
where [tex]k_e = 8.99\cdot 10^9 N m^2 C^{-2}[/tex], 80e is the charge of the nucleus of mercury (which contains 80 protons), and [tex]e=1.6\cdot 10^{-19}C[/tex] is the proton charge.

For the conservation of energy,
[tex]K=U[/tex]
Rewriting it, we find
[tex]r=2k_e \frac{(80e)(e)}{mv^2}=3.4 \cdot 10^{-15} m =34 fm [/tex]

This is not the final answer, however, because this is the distance reached by the proton with respect to the center of the nucleus. So, to find the distance from the surface, we should subtract the radius of the nucleus, which is half the diameter: 14/2=7 fm. So
[tex]d=r-r_0=34 fm-7 fm=27 fm =2.7 \cdot 10^{-15 } m[/tex]

Answer:

[tex]27fm[/tex]

Explanation:

Kinetic Energy of proton

[tex]Kinetic Energy (K)=\frac{1}{2}mV^{2}[/tex]

[tex]m=Mass of proton[/tex]

[tex]V=Velocity of proton[/tex]

[tex]m=1.67\times 10^{-27} kg[/tex]

[tex]V=3.4\times 10^{7}ms^{-1}[/tex]

[tex]K=\frac{1}{2}\times 1.67\times 10^{-27}kg\times \left (3.4\times 10^{7}ms^{-1}  \right )^2[/tex]

[tex]K=\frac{19.305}{2}\times 10^{-13}J[/tex]

[tex]K=9.65\times 10^{-13}J[/tex]

For conservation of energy;

[tex]Kinetic Energy=Potential energy[/tex]

[tex]K= U[/tex]

So,

[tex]U= 9.65\times 10^{-13}J[/tex]

Here,

[tex]U=Potential Energy[/tex]

[tex]U=k_{e}\frac{q_{1}q_{2}}{r}[/tex]

Here,

[tex]k_{e}=Coulomb's law constant[/tex]

[tex]k_{e}=8.99\times 10^{9}Nm^{2}C^{-2}[/tex]

[tex]q_{1}=80e[/tex]

[tex]q_{2}=e[/tex]

[tex]e=1.602\times 10^{-19}C[/tex]

[tex]r=The distance that proton will stop from the center of the nucleus[/tex]

[tex]U=k_{e}\frac{80e\times e}{r}[/tex]

[tex]9.65\times 10^{-13}J=8.99\times 10^{9}Nm^{2}C^{-2}\frac{80\times1.6\times 10^{-19}\times1.6\times 10^{-19} }{r}[/tex]

[tex]r=8.99\times 10^{9}Nm^{2}C^{-2}\frac{80\times1.6\times 10^{-19}\times1.6\times 10^{-19} }{9.65\times 10^{-13}J}[/tex]

[tex]34fm[/tex]

[tex]r_{0}=Radius of the atom[/tex]

[tex]Radius\left ( r_{0} \right )=\frac{diameter\left ( d \right )}{2}[/tex]

[tex]Diameter of the nucleus of mercury atom=14fm[/tex]

[tex]Radius of atom =\frac{14fm}{2}[/tex]

[tex]r=7fm[/tex]

[tex]d=r-r_{0}[/tex]

[tex]d=34fm-7fm[/tex]

[tex]d=27fm[/tex]

Further Explanation:

When a proton approaches a nucleus, it decelerates. Because the repulsive electric field and its kinetic energy converts into electric potential energy.  

Then due to this, the proton will stop at a distance “r” from the center of the nucleus.  

To find the distance from the surface where the proton hits, we have to subtract the radius of the nucleus.  

Learn more:

1. Kinetic energy https://brainly.com/question/1621817 (answer by skyp)

2. Potential energy https://brainly.com/question/12489105 (answer by nitrotype2000)

3. Conservation of energy https://brainly.com/question/11911812 (answer by hrishisup)

Keywords:

Kinetic energy, potential energy, conservation of energy.  

Describe the energy transformations that occur from the time a skydiver jumps out of a plane until landing on the ground.

Answers

When the Skydiver jump out a plane, his Potential Energy is being converted or transform into Kinetic energy due to gravity. Hope this helps

Answer:

Before jumping from the plane, the skydiver has potential energy. When the skydiver jumps, the potential energy is transformed into kinetic energy, which increases until the skydiver reaches terminal velocity. Potential energy is then transformed into thermal energy.

Explanation:

Thats the answer

Why does light refract when it encounters the glass in a lens?
A) because it speeds up, which causes it to bend
B) because it slows down, which causes it to bend
C) because it hits a dense medium, which causes it to bounce off
D) because it gets absorbed, which causes it to lessen in intensity

Answers

Hey there Donnell!

The reason to why light refract when it encounters the glass in a lens would be because it slows down, which causes it to bend, this would be the reason why  light refract when it encounters the glass in a lens.

I hope this helps you!

Answer:

B) because it slows down, which causes it to bend

Explanation:Light hits the glass in a lens because it slows down, which causes it to bend. The material of a lens is more optically dense than the air it is traveling from.

5. Amy and Josh are coasting on their bicycles down a 10° slope at 15 m/s through still air. The mass of Amy and her bicycle is 60 kg. The mass of Josh and his bicycle is 90 kg. The cross-sectional area of Amy and her bicycle is 0.45, while the cross-sectional area of Josh and his bicycle is 0.60. The drag coefficient for both cyclists is 0.70. Other than gravity and air resistance, the external forces acting on the two bicycle and rider systems are the same. Which cyclist is more affected by air resistance? The Answer is Amy but what is the math invovled, Please Show Work and Help!

Answers

Forces in the x-direction:

[tex]ma = mg*sin \theta - cA v^{2} [/tex]

The acceleration:
[tex]a = g*sin \theta - \frac{cA}{m} v^2[/tex]

The first term is independent of mass, only the second term depends on mass m:
[tex]\frac{cA}{m} v^2 [/tex]
Amy:
[tex]\frac{0.45 * 0.7}{60} v^2 = 0.00525v^2[/tex]
Josh:
[tex] \frac{0.6 * 0.7}{90} v^2 = 0.00467v^2[/tex]

The negative impact on Amy is larger than on Josh.
Final answer:

Amy experiences less air resistance due to her smaller cross-sectional area compared to Josh, but as she has a lower mass, the air resistance has a more significant effect on her, making her more affected by air resistance.

Explanation:

To determine which cyclist, Amy or Josh, is more affected by air resistance, we can examine the force due to air resistance, which can be calculated using the formula:

Fd = (1/2)ρCdAv2

where Fd is the force of drag (air resistance), ρ is the air density (which we'll assume to be constant for both cyclists), Cd is the drag coefficient, A is the cross-sectional area, and v is the velocity.

Given that both cyclists have the same drag coefficient (Cd = 0.70) and are traveling at the same velocity (v = 15 m/s), the only variables that differ between the two are their cross-sectional areas. Since Amy has a smaller mass and a smaller cross-sectional area (A = 0.45 m2), the force of air resistance will be smaller in magnitude compared to Josh's due to his larger cross-sectional area (A = 0.60 m2).

However, air resistance's impact on an object is also related to the object's mass. A smaller force applied to a smaller mass can have a more significant effect than the same force applied to a larger mass. Therefore, even if the force of air resistance is absolutely higher for Josh, Amy, with her lower mass, would be more affected by it, as it would constitute a more substantial proportion of her total mass.

Which of the following is the main evidence of life in the early universe?
A.) Dinosaur fossils
B.) Rock layering
C.) Plant remains
D.) Cyanobacteria

Answers

A) Dinosaur fossils because they were proven that there was life before us. we also found out that our old skulls had dinosaur teeth in the heads. that showed us that we were on the food chain. but now we aren't because we now have protected cities.

Answer:

Cyanobacteria.

Explanation:

The oldest forms of life would be considered the cyanobacteria from the options, this bacteria are called extremists because they can survive in environments with littlo to zero oxygen andis thought that they have been present from the early begining of the universe because they are the only living organisms known to mankind that are able to survive under those conditions.

Tai ran from his home to a position 300 m south of his home in 100 seconds. What was his velocity? A.0.33 m/s south B.0.33 m/s north C.3 m/s north D.3 m/s south

Answers

[tex]velocity = distance / time = 300m/100s = 3m/s [/tex]

If an object that enters the Earth’s atmosphere does not completely disintegrate, its remains can impact the Earth true or flase

Answers

true, when entering earths atmosphere there are stages. also known as the Thermosphere. stage 3. Where tempatures are hotter then any other stage. but do not burn all the way. mainly like a "shooting star".

A generator has a terminal voltage of 113 v when it delivers 13.6 a, and 91 v when it delivers 25.3

a. calculate the emf. answer in units of v. 002 (part 2 of 2) 10.0 points calculate the internal resistance. answer in units of Ï.

Answers

From Kirchhoff's voltage law, the formula would be:
EMF E = terminal voltage + voltage across 'internal resistance[R]' of generator 
Using Ohm's Law, v = ir, let set up a pair of simultaneous equations:
E = 113 + 13.6R would be eq 1
and 
E = 91 + 25.3R would be eq 2
Rearrange these: 
(E - 113) / 13.6 = R 
(E - 91) / 25.3 = R 
(E - 113) / 13.6 = (E - 91) / 25.3 
25.3(E - 113) = 13.6(E - 91) 
25.3E - 2858.9 = 13.6 E - 1237.6
25.3E - 13.6E = 2858.9 - 1237.6
11.7E = 1621.3
E = 1621.3 / 11.7
E = 138.57 v

At what separation will two charges, each of magnitude 6.0fYC,exert a force of 1.4N on each other?

a.0.48m

b.2.0m

c.5.1*10^6m

d.0.23m

e.40m

Answers

I assume that "fYC" is just a writing mistake and the two charges have magnitude [tex]q=6 \mu C=6 \cdot 10^{-6}C[/tex].
The electrostatic force between the two charges is
[tex]F=k_e \frac{q^2}{d^2} [/tex]
where [tex]k_e = 8.99 \cdot 10^9 Nm^2C^{-2}[/tex] is the Coulomb's constant, q is the magnitude of the two charges, and d is the separation between them.

We know the value of the force, F=0.14 N, so re-arranging the formula and using these data we can solve to find the value of d:
[tex]d= \sqrt{ \frac{k_e q^2}{F} } =0.48 m[/tex]

So, the separation between the two charges is 0.48 m.

This question involves the concept of Colomb's Law and electrostatic force.

The separation between charges will be "a. 0.48 m".

COLOMB'S LAW

According to Colomb's Law, every charge exerts an electrostatic force on the other charge, which is directly proportional to the product of the magnitudes of both the charges and inversely proportional to the square of the distance between them.

[tex]F = \frac{kq_1q_2}{r^2}[/tex]

where,

F = electrostatic force = 1.4 Nk = Colomb's constant = 9 x 10⁹ N.m²/C²q₁ = magnitude of first charge = 6 μC = 6 x 10⁻⁶ Cq₂ = magnitude of second charge = 6 μC = 6 x 10⁻⁶ Cr = distance between charges = ?

Therefore,

[tex]1.4 N = \frac{(9\ x\ 10^9\ N.m^2/C^2)(6\ x\ 10^{-6}\ C)(6\ x\ 10^{-6}\ C)}{r^2}\\\\r=\sqrt{\frac{(9\ x\ 10^9\ N.m^2/C^2)(6\ x\ 10^{-6}\ C)(6\ x\ 10^{-6}\ C)}{1.4\ N}}[/tex]

r = 0.48 m

Learn more about Colomb's Law here:

brainly.com/question/9774180

In a thermostat, what property of the bimetallic coil allows it to contract and expand? The two metals absorb different amounts of thermal energy. The two metals are placed perpendicular to each other. The two metals burn at different temperatures. The two metals turn into liquids when absorbing energy.

Answers

Hello!

In a thermostat, the property of the bimetallic coil that allows it to contract and expand is that The two metals absorb different amounts of thermal energy. 

This bimetallic coil is used to transform thermal energy into mechanical movement. Two metals with different thermal expansivity are joined together parallelly and the changes of temperature cause bending in different directions depending on if the temperature is rising or descending. 

The differences in the thermal energy absorption of the two metals are the basis for the mechanism of this device. 

Answer:

The two metals absorb different amounts of thermal energy.

Explanation:

Temperature controlling device in an electric equipment like a heater, is called a thermostat.

A bimetallic strip contains two different metals. Each metal has its own characteristic property of expansion or cooling. Coefficient of thermal expansion has a different value for different metals.

The metal that has a higher expansion coefficients will expand more when  heated, compared to the metal that has a lower coefficient of expansion.

In a thermostat used in a heating circuit, the electric contact is cut off due to the bending of the bimetallic strip, when the desired temperature is reached.

A capacitor with capacitance (c) = 4.50 μf is connected to a 12.0 v battery. what is the magnitude of the charge on each of the plates?

Answers

Final answer:

The magnitude of the charge on each plate of a 4.50 μF capacitor connected to a 12.0 V battery is 54 μC.

Explanation:

To find the magnitude of charge stored on each plate of a capacitor when a voltage is applied, you can use the formula Q = CV, where Q is the charge, C is the capacitance, and V is the voltage applied. Given a capacitor with a capacitance (C) of 4.50 μF and a voltage (V) of 12.0 V, we can calculate the charge (Q) as follows:

Q = CV = (4.50 μF) (12.0 V) = (4.50 × 10-6 F) (12.0 V) = 54 × 10-6 C = 54 μC

Therefore, the magnitude of the charge on each of the plates of the capacitor is 54 μC.

Learn more about Capacitor Charge Calculation here:

https://brainly.com/question/14048432

#SPJ12

To find the charge stored on a capacitor with given capacitance and voltage, use the formula Q = C × V. Substituting 4.50 μF and 12.0 V into the equation yields a charge of 5.40 × 10⁻⁵ C on each plate.

To determine the charge stored on a capacitor's plates, we use the formula:

Q = C × V

Where:

C is the capacitance in farads (F).V is the potential difference in volts (V).Q is the charge in coulombs (C).

In this case, we have a capacitance C = 4.50 μF (which is 4.50 × 10⁻⁶ F) and a voltage V = 12.0 V.

By substituting these values into the formula, we get:

[tex]Q = 4.50 \times 10^{-6} \, \text{F} \times 12.0 \, \text{V}[/tex]

Q = 5.40 × 10⁻⁵C

Therefore, the magnitude of the charge on each of the plates is 5.40 × 10⁻⁵ C.

What properties of titanium make it attractive for use in race-car and jet-engine components?

Answers

Titanium's high quality to weight proportion and corrosion protection at room and hoisted temperature makes it appealing for use in elite applications. High cost of titanium is the key purpose behind not utilizing it in traveler autos. The cost of large scale manufacturing of the parts would drive the last items cost fundamentally.

Why aren’t organisms on the sea floor crushed by water pressure

Answers

Their internal pressure is balanced out with the external pressure of the water.
For exactly the same reason that you don't get crushed by air pressure.
Your body is built with exactly enough pressure inside, pushing out.

13) A branch falling from a tree is to gravity as a car driving on the road is to A) a driver's foot off of the accelerator, coasting. B) a driver's foot off the accelerator and on the break pedal. C) a driver's foot on the accelerator pressed down to maintain speed. D) a driver's foot on the accelerator and pressed down gradually more and more.

Answers

a driver's foot off the accelerator and on the break pedal. C

Its D: A driver's foot on the accelerator and pressed down gradually more and more.

a college student exerts 100N of force to lift his laundry basket the weighs 75N. at what rate is the basket accelerated upwards?

Answers

You can use the formula A=F/M, the rate that it is being accelerated upward is 3.3, so about 3.

The mass of the basket = weight/acceleration due to gravity. (75/10=7.5 kg)

100 (upward force from girl) minus 75 (downward force from basket) is 25.
So 25=7.5a, which becomes 25/7.5, which equals 3.33 kg x m/s.

And when rounded, the momentum is about 3, (or 3 p).

Hope this helps!
Other Questions
The transatlantic flow of people and goods such as corn, potatoes, horses, and sugar cane is called Social media interactivity has few barriers to participation. a. True b. False What do the butter churn and the dasher symbolize for the narrator in "Everyday Use"?A) Objects that were made by her ancestors and have been used for many generationsB) Objects that should be viewed and admired but never touched or usedC) Objects that are too old to be useful anymore and should be thrown awayD) Objects that were given to her family by the people who had oppressed them World War II began with the German invasion of BelgiumPolandFrance. WILL GIVE BRAINLIEST! If A, and B, are complementary angles and if mA is 37, what is mB?A. 37B. 53C. 74D. 143 Of all the Sunny Club members in a particular city, 25% prefer swimming on weekends and 75% prefer swimming on weekdays. It is found that 10% of the members in that city prefer swimming on weekends and are female, while 55% of the members in that city prefer swimming on weekdays and are female. The probability that a club member picked randomly is female, given that the person prefers swimming on weekends, is . NextReset A mitosis inhibitor is a medication that is designed to prevent mitosis in certain cells. How could these be helpful in the treatment of tumors? the thickness of a deep dish pizza is approximately 2 x 10^-1 feet. the thickness of a thin crust pizza is approximately 5 x 10^-2 feet. how many times smaller is the thickness of a thin crust pizza compared to the thickness of a deep dish pizza?A. 0.25B.0.4C4D25 True or false questionJazz music was a major influence on poets during the Harlem Renaissance TrueFalse There were n signers of the Declaration of Independence. The youngest was Edward Rutledge, who was x years old. The oldest was Benjamin Franklin, who was y years old. X is 25% of 104, 7 is 10% of y, and n is 80% of y. Y is what percent of (n+y-x)? Over their whole lifetime, about how much can someone with a professional degree expect to earn compared to someone with a high school diploma who didnt attend college?A. The same amount.B. Twice as much C. Three times as muchD. Four times as much Which statement is true about eating disorders? A) they often result in anxiety and difficulty sleeping through the night.B) they can result in kidney damage, low blood pressure, and dehydration.C) they usually develop because of a dramatic, unpleasant event in childhood. Cul es el tema de la frase que sigue? Usa los cognados y las palabras que sabes para entender. Hace muchos siglos, varios pases de Europa exploraron el globo y reclamaron tierra por todo el mundo. european exploration of the world the countries of the world travel Two boxes contained 155 lb of flour. If you take 20 lb from the first and add it to the second, the first box will contain 12/19 of what is now in the second. What amount of flour was originally in each box? Merle Fonda opened a new savings account. She deposited $40,000 at 10% compounded semiannually. At the start of the fourth year, Merle deposits an additional $20,000 that's also compounded semiannually at 10%. At the end of six years, what's the balance in Merle's account? The factorization of x2 + 3x 4 is modeled with algebra tiles.What are the factors of x2 + 3x 4? Find the annual interest rate.I = $54, P = $900, t = 18 months Qu simboliza el incienso? a. smbolo de dios c. smbolo del hombre b. smbolo del rey d. smbolo de la vida Which is a homologous structure to the human forearm? What are the two main steps of DNA replication