the two forces acting on a falling object are gravity and?....1.force, 2. friction, 3. air resistance, and 4. net force?​

Answers

Answer 1

The two forces acting on a falling object are gravity and air resistance (option 3). Gravity causes the object to accelerate toward Earth, while air resistance acts in the opposite direction, slowing the object down.

The two forces acting on a falling object are gravity and air resistance (option 3). When an object is dropped, it accelerates toward the center of the Earth due to the force of gravity. In a vacuum, where there is no air, the only force acting on a falling object is its weight, which is the force due to gravity acting on an object of mass m. However, in the real world, objects are not in perfect free-fall because they experience air resistance, which opposes the motion of the object as it falls through the air.


Related Questions

I need some help with my science homework about energy, work, and power. It would be greatly appreciated :)

Answers

Answer:

1. B

Explanation:

Work = Force × Distance

Work = 4N × 1.5M

How much time would it take to exert 700W of power while doing 700J of work?​

Answers

Answer:

The answer to your question is time = 1 s

Explanation:

Data

time = ?

Power = 700 W

Work = 700 J

Power is defined as the work done per unit of time.

Formula

Power = Work / Time

-Solve for time

Time = Work/Power

-Substitution

Time = 700 / 700

-Result

Time = 1 s

Conclusion

In 1 second and with 700 J there will be produced 700 watts

Suppose you want to make a nested function call (i.e. a call to a function from inside of another function) using a jal rather than a call for performance reasons. How would the push and pop pseudo-ops be proprely ordered along with the jal so that the previous return address isn't lost?
a) pop $ra
jal nested_function_label
nop
push $ra

b) push $ra
jal nested_function_label
nop
pop $ra
c) push $ra
pop $ra
jal nested_function_label
nop
d) jal nested_function_label
nop
pop $ra
push $ra

Answers

Answer:

As we need to use a nested loop in our function,hence push $ra

pop $ra

jal nested_function_label

nop is the correct option.

what does a electric field of two positive charges look like

Answers

Hope this helped you

:)

Have a great day!

Which statement best describes what happens when a sound source is moving? (1 point)

Grupo de opciones de respuesta

As the sound source approaches the observer, the pitch decreases and continues to do so as it passes the observer.

As the sound approaches the observer, the pitch increases; as it passes the observer, the pitch decreases.

As the sound source approaches the observer, the pitch decreases; as it passes the observer, the pitch increases.

As the sound source approaches the observer, the pitch increases and continues to do so as it passes the observer.

Answers

Answer:

As the sound approaches the observer, the pitch increases; as it passes the observer, the pitch decreases.

Explanation:

The crests come closer when it approaching, and go farther when the source passes the observer.

why is it painful to lift a heavy load with a thin piece of string?

Answers

Explanation:

A thin piece of string has lower force than of a heavy load.

When the load is being lifted, the force exerted by the load is much more greater than the string, which eventually hits our hands.

For example, a heavy bag. You tie a thin string to it and try to lift it. The force exerted by the bag will hit the string harder, reaching for your plams. As the thin string has less force, its reaction force is not enough to hit back the greater force. Also, the less the surface area, the more difficult the grip gets. But, if you attach a thick rope or belt, the force exerted my the bag is automatically minimized as the reaction force of the thick rope is near about the action force. Hence, greater the surface area, better the grip.

*action force: force exerted by the bag

*reaction force: the force hit back by the rope

It is painful to lift a heavy load with a thin piece of string because the string has a small cross-sectional area and cannot withstand a large amount of tension without breaking.

What is tensile strength?

Tensile strength is the maximum amount of tensile stress that a material can withstand before it breaks or undergoes permanent deformation. It is a measure of the material's ability to resist external forces that try to pull it apart or elongate it.

Tensile strength is an important mechanical property of materials, and it is commonly used in engineering and design to select materials for specific applications. The tensile strength of a material is typically determined through a tensile test, where a sample of the material is subjected to a gradually increasing tensile force until it breaks.

The tensile strength of a material depends on its composition, microstructure, and processing conditions. For example, materials that have a high degree of crystallinity and are free from defects or impurities generally have a higher tensile strength than materials with a less ordered microstructure or defects. In addition, the processing conditions, such as temperature and strain rate, can also affect the tensile strength of a material.

The tensile strength is typically reported in units of force per unit area, such as megapascals (MPa) or pounds per square inch (psi). The higher the tensile strength of a material, the greater its ability to withstand tensile stress without breaking or undergoing permanent deformation.

Here in the Question,

It is painful to lift a heavy load with a thin piece of string because the string has a small cross-sectional area and cannot withstand a large amount of tension without breaking. When a heavy load is attached to the string and lifted, the weight of the load creates a tension force in the string that is equal to the weight of the load. If the tension force in the string exceeds its maximum tensile strength, it will break.

The maximum tensile strength of a string depends on its material properties and cross-sectional area. When a thin piece of string is used to lift a heavy load, the tension force in the string can easily exceed its maximum tensile strength, causing it to break. This sudden release of tension can also cause the load to drop suddenly, which can lead to injury.

This can be explained using the concept of stress and strain. Stress is the force applied to an object per unit area, while strain is the deformation of the object due to the applied stress. When a heavy load is attached to a thin piece of string, the weight of the load creates a large stress in the string, which can cause it to undergo plastic deformation and break. This is because the string has a small cross-sectional area, which means that the stress is concentrated over a small area, leading to a high level of strain.

Therefore, a thicker piece of string or rope has a larger cross-sectional area, which means that the stress is spread out over a larger area. This allows it to withstand a greater amount of tension before breaking. Therefore, it is important to use a string or rope with a sufficient cross-sectional area when lifting heavy loads to prevent injury and damage.

To learn more about Plastic deformation click:

https://brainly.com/question/13111132

#SPJ2

The photoelectric effect can be thought of as a simple function: light is an input, and electrons, which produce electricity, are the output. The model in this interactive is missing a few parts to harness this electricity effectively, what are they?

Answers

Answer:

(1) Conductive medium (2) Load.

Explanation:

Electricity is essentially Flow of electrons in conductive medium such as wire and to harness it there needs to be a load in the circuitry to use up the energy of the moving electrons through the wire.

this is how solar cells work, in them there are Silicon P and N Junctions connected in series and parallel ( quite alot of them) forming a large plate , which then can be connected to a load through wires to harness electricity produced.

Any measurement that includes both magnitude and direction is called

Answers

A measurement that includes both magnitude and direction is called a vector, which is essential for analyzing motion and forces in physics.

Any measurement that includes both magnitude and direction is called a vector. Vectors are physical quantities that have both an amount, known as magnitude, and a specified direction in space. For example, velocity is a vector because it describes not only how fast an object is moving, but also the direction of movement.

This contrasts with a scalar, which is a quantity that has only magnitude and no direction, such as mass or time. In physics, understanding vectors is crucial for analyzing motion, forces, and other concepts that depend on both the amount and the direction of a quantity.






The speed of propagation equals the frequency times the wavelength.
O
True
O
False​

Answers

Answer:

true

Explanation:

because I say it's true

Answer:help me with my physics please

Explanation:

Three different planet-star systems, which are far apart from one another, are shown above. The masses of the planets are much less than the masses of the stars.
In System A , Planet A of mass Mp orbits Star A of mass Ms in a circular orbit of radius R .

In System B , Planet B of mass 4Mp orbits Star B of mass Ms in a circular orbit of radius R .

In System C , Planet C of mass Mp orbits Star C of mass 4Ms in a circular orbit of radius R .
(a) The gravitational force exerted on Planet A by Star A has a magnitude of F0 . Determine the magnitudes of the gravitational forces exerted in System B and System C .

___ Magnitude of gravitational force exerted on Planet B by Star B

___ Magnitude of gravitational force exerted on Planet C by Star C
(b) How do the tangential speeds of planets B and C compare to that of Planet A ? In a clear, coherent paragraph-length response that may also contain equations and/or drawings, provide claims about

why the tangential speed of Planet B is either greater than, less than, or the same as that of Planet A , and
why the tangential speed of Planet C is either greater than, less than, or the same as that of Planet A .

Answers

a) 4F0

b) Speed of planet B is the same as speed of planet A

Speed of planet C is twice the speed of planet A

Explanation:

a)

The magnitude of the gravitational force between two objects is given by the formula

[tex]F=G\frac{m_1 m_2}{r^2}[/tex]

where

G is the gravitational constant

m1, m2 are the masses of the 2 objects

r is the separation between the objects

For the system planet A - Star A, we have:

[tex]m_1=M_p\\m_2 = M_s\\r=R[/tex]

So the force is

[tex]F_A=G\frac{M_p M_s}{R^2}=F_0[/tex]

For the system planet B - Star B, we have:

[tex]m_1 = 4 M_p\\m_2 = M_s\\r=R[/tex]

So the force is

[tex]F=G\frac{4M_p M_s}{R^2}=4F_0[/tex]

So, the magnitude of the gravitational force exerted on planet B by star B is 4F0.

For the system planet C - Star C, we have:

[tex]m_1 = M_p\\m_2 = 4M_s\\r=R[/tex]

So the force is

[tex]F=G\frac{M_p (4M_s)}{R^2}=4F_0[/tex]

So, the magnitude of the gravitational force exerted on planet C by star C is 4F0.

b)

The gravitational force on the planet orbiting around the star is equal to the centripetal force, therefore we can write:

[tex]G\frac{mM}{r^2}=m\frac{v^2}{r}[/tex]

where

m is the mass of the planet

M is the mass of the star

v is the tangential speed

We can re-arrange the equation solving for v, and we find an expression for the speed:

[tex]v=\sqrt{\frac{GM}{r}}[/tex]

For System A,

[tex]M=M_s\\r=R[/tex]

So the tangential speed is

[tex]v_A=\sqrt{\frac{GM_s}{R}}[/tex]

For system B,

[tex]M=M_s\\r=R[/tex]

So the tangential speed is

[tex]v_B=\sqrt{\frac{GM_s}{R}}=v_A[/tex]

So, the speed of planet B is the same as planet A.

For system C,

[tex]M=4M_s\\r=R[/tex]

So the tangential speed is

[tex]v_C=\sqrt{\frac{G(4M_s)}{R}}=2(\sqrt{\frac{GM_s}{R}})=2v_A[/tex]

So, the speed of planet C is twice the speed of planet A.

Dan is gliding on his skateboard at 3.00 m/s. He suddenly jumps backward off the skateboard, kicking the skateboard forward at 8.00 m/s. Dan's mass is 70.0 kg and the skateboard's mass is 6.00 kg. How fast is Dan going as his feet hit the ground?

Answers

Answer:

The velocity of Dan is 2.57m/s as his feet hit the ground

Explanation:

The impact experience by Dan and the skate board is an elastic collision

Collision is elastic when the kinetic energy is not conserved and if there is rebound after collision

Given that

U= initial velocity of Dan and the skate board 3m/s

M1 =mass of Dan 70kg

M2= mass of Skate board 6kg

V1= final velocity of Dan?

V2= Final velocity of skate board 8m/s

The expression for Dan and the skate board collision can be expressed as

Momentum before impact momentum after impact

(M1+M2)U=M1V1+M2V2

Substituting our data we have

(70+6)3=(70*V1)+(6*8)

228=70V1+48

Solving for V1

228-48=70V1

V1=180/70

V1=2.57m/s

The tub of a washer goes into its spin-dry cycle, starting from rest and reaching an angular speed of 2.0 rev/s in 10.0 s. At this point, the person doing the laundry opens the lid, and a safety switch turns off the washer. The tub slows to rest in 12.0 s. Through how many revolutions does the tub turn during this 22 s interval? Assume constant angular acceleration while it is starting and stopping.

Answers

Answer:

22 revolutions

Explanation:

2 rev/s = 2*(2π rad/rev) = 12.57 rad/s

The angular acceleration when it starting

[tex]\alpha_a = \frac{\Delta \omega}{\Delta t} = \frac{12.57}{10} = 1.257 rad/s^2[/tex]

The angular acceleration when it stopping:

[tex]\alpha_o = \frac{\Delta \omega}{\Delta t} = \frac{-12.57}{12} = -1.05 rad/s^2[/tex]

The angular distance it covers when starting from rest:

[tex]\omega^2 - 0^2 = 2\alpha_a\theta_a[/tex]

[tex]\theta_a = \frac{\omega^2}{2\alpha_a} = \frac{12.57^2}{2*1.257} = 62.8 rad[/tex]

The angular distance it covers when coming to complete stop:

[tex]0 - \omega^2 = 2\alpha_o\theta_o[/tex]

[tex]\theta_o = \frac{-\omega^2}{2\alpha_o} = \frac{-12.57^2}{2*(-1.05)} = 75.4 rad[/tex]

So the total angular distance it covers within 22 s is 62.8 + 75.4 = 138.23 rad or 138.23 / (2π) = 22 revolutions

If a wave has a speed of 100 m/s and a wavelength of 20 meters, what is the frequency?

Answers

Answer:

Frequency 5hz

Explanation:

Final answer:

To calculate the frequency of a wave with a speed of 100 m/s and a wavelength of 20 meters, divide the speed by the wavelength, resulting in a frequency of 5 Hz.

Explanation:

To find the frequency of a wave when you know its speed and wavelength, you can use the formula: speed = (wavelength) x (frequency). Rearranging this formula to solve for frequency gives us frequency = speed / wavelength. In this case, with a wave speed of 100 m/s and a wavelength of 20 meters, the calculation would be frequency = 100 m/s / 20 m.

Therefore, the frequency of the wave is 5 Hz. This means the wave completes 5 cycles per second.

Quasar spectra often show many absorption lines that all appear to be as a result of the same electron transition (such as level 1 to level 2 in hydrogen) but that fall at different wavelengths in the spectrum. Why do we think this is the case?

Answers

Answer: Because of different redshift of cloud.

Explanation:

We are seeing absorption lines from clouds of gas that lie between us and the quasar, and therefore each cloud has a different redshift.

A quasar's spectrum is hugely redshifted. And most astronomers think this large redshift tells us about the distance to the quasar.

A 1-kg rock is suspended from the tip of a horizontal meterstick at the 0-cm mark so that the meterstick barely balances like a seesaw when its fulcrum is at the 12.5-cm mark. From this information, the mass of the meterstick is _________.
A) 1/4 kg.B) 1/2 kg.C) 3/4 kg.D) 1 kg.E) none of the above

Answers

Explanation:

Given that,

Mass if the rock, m = 1 kg

It is  suspended from the tip of a horizontal meter stick at the 0-cm mark so that the meter stick barely balances like a seesaw when its fulcrum is at the 12.5-cm mark.

We need to find the mass of the meter stick. The force acting by the stone is

F = 1 × 9.8 = 9.8 N

Let W be the weight of the meter stick. If the net torque is zero on the stick then the stick does not move and it remains in equilibrium condition. So, taking torque about the pivot.

[tex]9.8\times 12.5=W\times (50-12.5)\\\\W=\dfrac{9.8\times 12.5}{37.5}[/tex]

W = 3.266 N

The mass of the meters stick is :

[tex]m=\dfrac{W}{g}\\\\m=\dfrac{3.266}{9.81}\\\\m=0.333\ kg[/tex]

So, the mass of the meter stick is 0.333 kg.

Final answer:

The mass of the meterstick is calculated using the principle of torque balance. The meterstick must have a mass that creates an equal opposite torque to the one created by the 1-kg rock. The calculation shows that the meterstick has a mass of 1/3 kg, which is not listed in the options, so the answer is (E) none of the above.

Explanation:

The mass of the meterstick can be found using the principle of moments, also known as the principle of leverage, which states that for an object to be in rotational equilibrium, the sum of the clockwise moments about the pivot (fulcrum) must equal the sum of the counterclockwise moments. In this case, the 1-kg rock is hanging from the 0-cm mark and the meterstick balances when the fulcrum is at the 12.5-cm mark. The torque created by the 1-kg mass is given by its mass multiplied by its distance from the fulcrum, or 1 kg × 12.5 cm.

For the meterstick to balance, its center of mass must be located directly above the fulcrum. Since the meterstick is uniform, its center of mass is in the middle, at the 50-cm mark. This means that the mass of the meterstick acts 50 cm - 12.5 cm = 37.5 cm away from the fulcrum. Let's denote the mass of the meterstick as 'M'. The counterbalance torque provided by the meterstick is given by M kg × 37.5 cm.

Setting the torques equal for a balanced system:
M kg × 37.5 cm = 1 kg × 12.5 cm, which simplifies to M = 1/3 kg. Since 1/3 kg is equivalent to approximately 0.33 kg, the correct answer is (E) none of the above, as none of the provided options matches this result.

Learn more about torque balance here:

https://brainly.com/question/17014679

#SPJ3

The function x = (5.2 m) cos[(5πrad/s)t + π/5 rad] gives the simple harmonic motion of a body. At t = 5.3 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion?

Answers

Answer:

(a) Displacement = - 3.0576 m

(b) Velocity  [tex]=-66.48[/tex] m/s

(c)Acceleration   = -753.39 m²/s

(d)The phase motion is 26.7 [tex]\pi[/tex].

(e)Frequency =2.5 Hz.

(f)Time period =0.4 s

Explanation:

Given function is

[tex]x= (5.2 m)cos[ (5\pi \ rad/s)t+ \frac\pi5][/tex]

(a)

The displacement includes the parameter t, so,at time t=5.3 s

[tex]x|_{t=5.3}= (5.2 m)cos[ (5\pi \ rad/s)5.3+ \frac\pi5][/tex]

           [tex]= (5.2 m)cos[ 26.5\pi+ \frac\pi5][/tex]

           =(5.2)(-0.588)m

           = - 3.0576 m

(b)

[tex]x= (5.2 m)cos[ (5\pi \ rad/s)t+ \frac\pi5][/tex]

To find the velocity of simple harmonic motion, we need to find out the first order derivative of the function.

[tex]v=\frac{dx}{dt}[/tex]

 [tex]=\frac{d}{dt} (5.2 m)cos[ (5\pi \ rad/s)t+ \frac\pi5][/tex]

  [tex]= (5.2 m)(-5\pi)sin[ (5\pi \ rad/s)t+ \frac\pi5][/tex]

  [tex]= -26\pi sin[ (5\pi \ rad/s)t+ \frac\pi5][/tex]

Now we can plug our value t=5.3 into the above equation

[tex]v= -26\pi sin[ (5\pi \ rad/s)5.3\ s+ \frac\pi5][/tex]

 [tex]=-66.48[/tex] m/s

(c)

To find the acceleration of simple harmonic motion, we need to find out the second order derivative of the function.

[tex]v= -26\pi sin[ (5\pi \ rad/s)t+ \frac\pi5][/tex]

[tex]a=\frac{d^2x}{dt^2}[/tex]

 [tex]=\frac{dv}{dt}[/tex]

 [tex]=\frac{d}{dt}( -26\pi sin[ (5\pi \ rad/s)t+ \frac\pi5])[/tex]

 [tex]= -26\pi (5\pi)cos[ (5\pi \ rad/s)t+ \frac\pi5][/tex]

 [tex]= -130\pi^2cos[ (5\pi \ rad/s)t+ \frac\pi5][/tex]

Now we can plug our value t=5.3 into the above equation

[tex]a= -130\pi^2cos[ (5\pi \ rad/s)5.3 \ s+ \frac\pi5][/tex]

  = -753.39 m²/s

(d)

The general equation of SHM is

[tex]x=x_mcos(\omega t+\phi)[/tex]

[tex]x_m[/tex] is amplitude of the displacement, [tex](\omega t+\phi)[/tex] is phase of motion, [tex]\phi[/tex] is phase constant.

So,

[tex](\omega t+\phi)=5\pi t+\frac\pi5[/tex]

Now plugging t=5.3s

[tex](\omega t+\phi)=5\pi \times 5.3+\frac\pi5[/tex]

             =26.7 [tex]\pi[/tex]

The phase motion is 26.7 [tex]\pi[/tex].

The angular frequency [tex]\omega = 5\pi[/tex]

(e)

The relation between angular frequency and frequency is

[tex]\omega =2\pi f[/tex]

[tex]\therefore f=\frac{\omega}{2\pi}[/tex]

     [tex]=\frac{5\pi}{2\pi}[/tex]

    [tex]=\frac52[/tex]

   = 2.5 Hz

Frequency =2.5 Hz.

(f)

The relation between frequency and time period is

[tex]T=\frac1 f[/tex]

   [tex]=\frac1{2.5}[/tex]

  =0.4 s

Time period =0.4 s

Calculate the electrical energy expended in a device across which the circuit voltage drops by 20.0 volts in moving a charge of 4 coulombs.
A)5 J
B)80 J
C)0.2 J

Answers

Answer:

The answer is 80 Joules

Explanation:

Electrical energy = Q x V

Energy = 2 x 40

= 80

I just took the test and it was right :D

The correct answer is B.

I hope this helped! :D

When different resistors are connected in parallel across an ideal battery, we can be certain that...

Answers

Answer:

Explained Below.

Explanation:

Whenever the different resistors are fixed parallel along with an ideal battery , we can be certain that it carries the same potential difference across each of them.

And potential difference is nothing but the energy that charge moves with. It can also be denoted as (p.d.) and potential difference is been calculated as volts that is been denoted as (V).

Consider a coin which is tossed straight up into the air. After it is released it moves upward, reaches its highest point and falls back down again. Air resistance can be neglected. What force acts on the coin while it moves upward after it is released

Answers

Answer:

GRAVITATIONAL FORCE

Explanation:

We may have noticed that a body thrown upward in air falls back down again after attaining a particular height. The object was able to fall down back due to the effect of gravity acting on it. If there are no force of gravity acting on the body, the body will not fall back but rather disappears into the thin air.

A coin tossed upward in the air which falls back down when released is therefore under the influence of gravity i.e GRAVITATIONAL FORCE while it moves upward after it is released

Susan's 12.0 kg baby brother Paul sits on a mat. Susan pulls the man across the floor using a rope that is angled 30 degree above the floor. The tension is a constant 29.0 N and the coefficient of friction is 0.210. Use work and energy to find Paul's speed after being pulled 2.90 m.

Answers

Answer:      

Paul speed after being pulled 2.9 m is 2.68m/s.

Explanation:

The work energy theorem, change in kinetic energy of the object  from initial position to the final position is equal to the work done on the object ie when the force is applied on  the object the object changes its position and work is done on the object.

According to the law of conservation of energy ,

ΔE = W,  eqn 1

where ΔE  is the change in object energy

          W is the all the work done on the object.

Work done is written as W =F dcosθ

Where F is the force,

           d is the distance,

            θ is the angle between the force and displacement vector.

From the figure given below,

The work of friction is given by W₁  = F₁ d cos180°

The work of  pulling force is given by W₂ =F₂ dcos 30°

Change in object energy  ΔE = mv²/2.

Applying Newton first law along Y axis,

Fsin30° + N =mg

Normal force N =mg - Fsin30°

Frictional Force F₁ =μN =μ(mg - Fsin30°)

Substituting in eqn 1

mv²/2 = F₂ dcos 30°+ μ(mg - Fsin30°)d cos180°

          =[tex]\frac{\sqrt{3} }{2}[/tex] F₂ d -  μ(mg - [tex]\frac{F}{2}[/tex])d

v² = [tex]\sqrt{3}[/tex] [tex]\frac{F}{m}[/tex]d - 2μgd +

here m  = 12 kg,

        d = 2.9 m.

        μ = 0.21

        F = 29 N

Sub all values,              

v² =  7.2

v = 2.68m/s

Paul speed after being pulled 2.9 m is 2.68m/s.

How many steps in glycolysis have atp as a substrate or product?

Answers

Answer:

4

Explanation:

1. Phosphorylation of Glucose

2. Production of Fructose-6 Phosphate

3. Production of Fructose 1, 6-Diphosphate

4. Splitting of Fructose 1, 6-Diphosphate

5. Interconversion of the Two Sugars

6. Formation of NADH and 1,3-Diphoshoglyceric acid

7. Production of ATP and 3-Phosphoglyceric Acid

8. Relocation of Phosphorus Atom

9. Removal of Water

10. Creation of Pyruvic Acid and ATP

The process of breaking down glucose into pyruvate while oxygen is present is known as glycolysis.

Thus, It is a multi-step process that the cytoplasm's many enzymes catalyze. It is recognized as the initial stage of the cellular respiration process that all living things go through.

Glucose is converted to glyceraldehyde-3-phosphate during the preliminary phase, and glyceraldehyde-3-phosphate is converted to pyruvate during the pay-off phase.

The glycolysis process produces the chemicals NADH and ATP. The ten steps of glycolysis include the partial oxidation of glucose to pyruvic acid.

Thus, The process of breaking down glucose into pyruvate while oxygen is present is known as glycolysis.

Learn more about Glycolysis, refer to the link:

https://brainly.com/question/2699075

#SPJ2

What are the similarities and differences between novae and supernovae?

Answers

Answer:

Explanation:

A novae in astronomy means an explosion in the white dwarf star which had tapped enough gas from a companion star,hence it releases an incredible amount of energy which is Over a million times brighter than it normal stars.

A super novae on the other hand is a cosmic explosion that can be a billion times brighter than the normal.

From this one can see that a perculiar similarity between a novae and super novae is that both generate huge explosion and bright Ness, and a major difference is super novae release huge amount of brightness and energy more than the novae

A helium balloon containing 5m³ of gas at a pressure of 30kPa is released into the air. Assuming that the temperature is constant calculate the volume the balloon would have when the pressure inside the balloon has fallen to 5kPa. Answer in m³.

Answers

Answer:

30 m³

Explanation:

Parameters given:

Initial volume of helium, V1 = 5 m³

Initial pressure in balloon, P1 = 30 kPa

Final pressure, P2 = 5 kPa

To find the volume of the balloon at that volume, we apply Boyle's law.

It states that at constant temperature, the pressure of a gas is inversely proportional to the volume of the gas.

Mathematically:

P = k / V

Where k = constant of proportionality

This implies that:

P * V = k

This means that if the pressure or volume of the gas changes at the same temperature, the product of the pressure and volume would be the same:

Hence:

P1 * V1 = P2 * V2

Hence, to find the final volume:

30 * 5 = 5 * V2

=> V2 = (30 * 5) / 5

V2 = 30 m³

The volume of the gas when the pressure is 5 kPa is 30 m³.

A mass of 1.0 kg is initially held in place on a ramp of angle 45o at height of 20. meters above the ground. The mass is released and slides to the bottom of the ramp (h=0). There is friction between the mass and the ramp. At the bottom of the ramp, the object has a speed of 10. m/s. The thermal energy was generated by the friction as the mass slides down the ramp is closest to which value?

Answers

Answer:

The thermal energy generated by the friction as the mass slides down the ramp is [tex]\bf{146~J}[/tex].

Explanation:

Given:

The mass of the object is, [tex]m = 1.0~kg[/tex]

The angle of the ramp is, [tex]\theta = 45^{0}[/tex]

The initial height of the object on the ramp is, [tex]h = 20~m[/tex]

The final velocity of the object is, [tex]v = 10~m/s[/tex]

When the object is at rest on the ramp, its total energy is potential energy. When it moves down the ramp its kinetic energy is increased and potential energy is decreased and a part of its energy is lost to overcome the force of friction. Finally, when it is at the bottom of the ramp, its total energy becomes only kinetic energy.

The total energy of the object at a height [tex]20~m[/tex] on the ramp is given by

[tex]E_{1} &=& mgh\\~~~~&=& (1.0~kg)(9.8~m/s^{2})(20~m)\\~~~~&=& 196~J[/tex]

When the object is at the bottom of the ramp, its total energy is given by

[tex]E_{2} &=& \dfrac{1}{2}mv^{2}\\~~~~&=& \dfrac{1}{2}(1.0~kg)(10~m/s)^{2}\\~~~~&=& 50~J[/tex]

So, the energy that is lost as thermal energy is given by

[tex]E &=& E_{1} - E_{2}\\~~~~&=& 196~J - 50~J\\~~~~&=& 146~J[/tex]

Recently, astronomers have observed stars and other objects that orbit the center of the Milky Way Galaxy farther out than our Sun, but move around faster than we do. How do astronomers think such an observation can be explained?

Answers

Answer:

That scenario can be explained by the idea of the contribution of dark matter on that point.

Explanation:

It can be explained through the idea of dark matter, this one was born to explain why stars (or any object) that were farther for the supermassive black hole in the center of the Milky Way galaxy didn't decrease it rotational velocity as it was expected according to equation 1.

[tex]v = \sqrt{\frac{G M}{r}}[/tex]  (1)

Where v is the rotational velocity, G is the gravitational constant, M is the mass of the supermassive black hole, and r is the orbital radius.

Notice, that If the distance increases the orbital speed decreases (inversely proportional).

Final answer:

Astronomers explain the high velocities of stars orbiting the Milky Way's center outside our Sun's orbit by the gravitational influence of dark matter. This halo of invisible matter adds mass to the galaxy, affecting the orbital speeds in accordance with Kepler's third law.

Explanation:

Astronomers have observed that stars and other objects orbiting the center of the Milky Way Galaxy farther out than our Sun move around faster than we do, which is an unexpected observation according to Kepler's third law. Typically, as per Kepler's third law, we would expect objects that are farther from the center of mass to orbit more slowly. However, the presence of invisible matter, which we now understand as dark matter, affects the gravitational pull and thus the orbital velocities of these outer objects, leading them to move at unexpectedly high speeds.

The Milky Way is surrounded by a halo of this invisible matter, which does not emit or reflect light, making it undetectable through traditional means. Instead, its presence is inferred from its gravitational effects on the motions of stars and gas in the galaxy. The observations mentioned, where objects beyond the luminous part of the Milky Way are moving faster than expected, provide evidence for the existence of dark matter, as this additional mass can account for the higher orbital velocities.

he graph shows all of the stable isotopes of elements according to the numbers of protons and neutrons in their nuclei.


A graph titled zone of nuclear stability with number of protons from 0 to 80 on the x-axis with number of neutrons on the y-axis from 0 to 140. There are two lines, one with a slope of 1 from (0, 0). The other line has points of (20, 24), (40, 52) and (60, 120) labeled stability zone.


Which statements are supported by the graph? Check all that apply.


A. For large atoms, more neutrons than protons are needed to be stable.

B. Nuclei that have 90 or greater protons are always radioactive.

C. Atoms must have equal numbers of protons and neutrons to be stable.

D. Atoms that have less than 10 protons do not need neutrons to be stable.

Answers

Answer:

A and B i think

Explanation:

(A) For large atoms, more neutrons than protons are needed to be stable.

(B) Nuclei that have 90 or greater protons are always radioactive.

Stability of nucleus of an atom

A stable nucleus of an atom must have nutron-to-proton ratio of at least one. This implies that the nucleus must have more neutrons than protons.

From the graph we can conclude the following about stability of nucleus of an atom;

For large atoms, more neutrons than protons are needed to be stable.Nuclei that have 90 or greater protons are always radioactive.

Learn more about stability of nucleus here: https://brainly.com/question/1729336

#SPJ2

"Describe how increasing the stimulus frequency affected the force developed by the isolated whole skeletal muscle in this activity. How well did the results compare with your prediction

Answers

Answer is seen below

Explanation: Stimulus frequency refers to the rate that stimulating voltage pulses are applied to an isolated whole skeletal muscle.

When a stimulus frequency is at the lowest ( let's say 50stimuli/second) the force will be at its lowest level out of all of the experiments. As the stimulus frequency was increased to 130 stimuli/second the force increased slightly but fused tetanus( tetanus refers to a sustained muscle tension due to very frequent stimuli) developed at the higher frequency. When the stimulus frequency was increased to the amounts of 146-150 stimuli/second, a maximum tetanic tension occurred, where no further increases in force occur from additional stimulus frequency.

By increasing the stimulus frequency if it resulted in increasing the muscle tension generated by each successive force and it had limit that was eventually reached. Then the results equaled to your prediction.

A 2.9 kg ball strikes a wall with a velocity of 8.6 m/s to the left. The ball bounces off with a velocity of 7.3 m/s to the right. If the ball is in contact with the wall for 0.33 s, what is the constant force exerted on the ball by the wall? Answer in units of N.

Answers

Answer:

The constant force exerted by the wall is F=11.4N

Explanation:

The problem bothers on the impulse of a force

Which is given as

Ft=mv-mu

Ft=m(v-u)

Given data

mass of ball m =2.9kg

Final speed v=8.6m/s

Initial speed u=7.3m/s

Time t= 0.33s

Substituting to find F

F*0.33=2.9(8.6-7.3)

F*0.33=2.9*1.3

F=3.77/0.33

F=11.4N

A man driving a car traveling at 30m/s slams on the brakes and accelerates in the negative direction at 4.75 m/s2, how far does the car travel before it stops?

Answers

Answer:

94.73 meters.

Explanation:

Using SUVAT.

s = ?

u = 30

v = 0

a  = -4.75

t = ?

[tex]v^{2}=u^2+2as\\0=30^2+2(-4.75)s\\\\900=9.5s\\s = 94.73[/tex]

The car will travel approximately 94.74 meters before it stops.

To answer this question, we can use the equations of motion.

When the car stops, its final velocity will be 0 m/s.

We can use the equation v^2 = u^2 + 2as,

where v is the final velocity,

u is the initial velocity,

a is the acceleration, and

s is the distance.

Plugging in the values, we have (0)^2 = (30)^2 + 2(-4.75)s.

Solving for s, we get s = 900/9.5, which is approximately 94.74 meters.

Therefore, the car will travel approximately 94.74 meters before it stops.

Learn more about Distance traveled by a car when braking here:

https://brainly.com/question/33499751

#SPJ2

A speed skater is travelling at 2 m/s and accelerates uniformly to 4 m/s in 5 seconds. What is her acceleration?

Answers

Answer:

The answer to your question is a = 0.4 m/s²

Explanation:

Data

speed 1 = 2 m/s

speed 2 = 4 m/s

time = 5 s

Acceleration measures the change of speed over a unit of time.

Formula

Acceleration = (speed 2 - speed 1) / time

Substitution

Acceleration = (4 - 2) / 5

Simplification

Acceleration = 2/5

Result

Acceleration = 0.4 m/s²

Answer: her acceleration is 0.4 m/s^2

Other Questions
A perfectly competitive industry exists under which of the following conditions? I. The product sold is similar across firms. II. There are many sellers, each small relative to the total market. III. There are many sellers, each with total assets less than $2 million. IV. The threat of competition exists from potential sellers that have not yet entered the market. In MNO NM = 3 cm, NO = 4 cm and MO = 5 cm. List the angles in order from smallest to largest. que relacin hay entre la cancin corazn delator de soda stereo y el cuento corazn delator? People use water to cook, clean, and drink every day. An estimate of 26.5% of the water used each day is for cleaning. If a family uses 68.9 gallons of water a day for cleaning, how many gallons do they use every day? In each of the following situations, identify whether the setting is primarily financial accounting or management accounting. a. Volkswagen has experienced a declined in U.S. sales, which dropped 18% in 2005 and 24% in 2002 and 2004. Then chief executive, Bern Pischetsrieder, believed the biggest problem at Volkswagen was the cost incurred to produce a car, which was not competitive with other automakers, The company tried to get German workers to agree to pay cuts to reduce the cost. b. In reporting a 2.1% drop in quarterly income from the previous year's second quarter, Oracle Corp. noted that a weaker dollar affected revenue in its database segment. A weaker dollar makes Oracle's products more expensive overseas and lowers the company's revenue after currency conversation. c. Cerner is a developer of information technology for the health care industry. As the company incurs expenses to develop a software package, it capitalizes those costs as an asset. Beginning in the year after the software is released, it then amortizes those costs over a five-year period. Normal practice in the software industry is to amortize these costs over a three-year period. d. BNSF Railway was experiencing an increase in demand for information technology resources even though, overall, the company's business wasn't growing. In an effort to understand the technology group's operations, Chief Information Officer Jeff Campbell developed a balance scorecard for the IT group. Among the measures he tracked were monthly performance against operating budget, percentage of projects delivered on time, employee absenteeism, and internal rate of return on IT projects. Now everyone in the company understands how much it costs to provide the technology support for a particular business application. according to the presentation which sector of agribusiness involves Packers and advertisements A grocery store clerk put only packages of purple grapes and packages of green grapes on a shelf. The ratio of the number of packages of green grapes to the total number of packages on the shelf was 9 to 14. Which number could be the number of packages of purple grapes the clerk put on the shelf? Identify two formal methods for adding amendments to the Constitution. Describe two informal methods that have been used to change the meaning of the Constitution. Provide one specific example for each informal method you described. Explain why informal methods are used more often than the formal amendment process. 15 points helpunder Presidential Reconstruction, in order to regain the right to vote, Southern citizens had to __________.a.pass a citizensip testb.take an oath of allegiance to the United Statesc.destroy all Confederate flagsd.provide housing for Union soldiers sent to restore order Which are valid inferences? Check all that apply. The second sample shows the same amount of each type of fish in the pond. About twice as many trout were in the pond at the time the second sample was taken. About the same number of bass were found in the two samples. Fewer bass were in the pond at the time the second sample was taken. About the same number of catfish were found in both samples. I am taken from a mine, and shut up in a wooden case, from which I am never released, and yet I am used by almost everybody. What am I? Rose is conducting a study where she intends to follow a random selection of teenagers over a five year period. Each year she will randomly sample 500 individuals from a total of 50 high schools. What form of research is she performing?a. Cohort studyb. Panel studyc. Trend studyd. Quasi-experimental studye. Cross-sectional study When people are unsure of what to say, they tend to decrease their communication effectiveness by speaking softly. This example best illustrates _____ in nonverbal communication. a. proxemics b. kinesics c. paralanguage d. metalanguage The results of a medical test show that of 39 people selected at random who were given the test, 33 tested negative and 6 tested positive. Determine the odds against a person selected at random from these 39 people testing negative on the test. The admission fee at an amusement park is $1.50 for children and $4.00 for adults. On a certain day, 2,000 people entered the park, and the admission fees that were collected totaled $4,750. How many children and how many adults were admitted 6x A = 24 show your work How is the Roman Republic compared with the Roman Empire? Is the world flat, or not? A note organizer is not important if you know how to take good notes.Please select the best answer from the choices providedOTOF The population of a small town is given by the function p=35t+1450,where t is the number of years since 2015. What would the town's population be in 2020