Use mathematical induction to prove that for each integer n ≥ 4, 5^n ≥ 2^2n+1 + 100. (it is 5 to power of n and 2 to the power of 2n+1)

Answers

Answer 1

Step-by-step explanation:

The statement to be proved using mathematical induction is:

"For every [tex]n\geq 4[/tex], [tex]5^n\geq 2^{2n+1}+100[/tex]

We will begin the proof showing that the base case is satisfied (n=4).

[tex]5^4=625\geq 612=2^{2*4+1}+100[/tex].

Then, 1 is true for n=4.

Now we will assume that the statement holds for some arbitrary natural number [tex]n\geq 4[/tex] and prove that then, the statement holds for n+1. Observe that

[tex]2^{2(n+1)+1}+100=2^{2n+1+2}+100=4*2^{2n+1}+100\leq 4(2^{2n+1}+100)\leq 4*5^n<5^{n+1}[/tex]

With this the inductive step has been proven and then, our statement is true,

For every [tex]n\geq 4[/tex], [tex]5^n\geq 2^{2n+1}+100[/tex]


Related Questions

Prove that (from i=1 to n) sum([1/((2i-1)(2i+1))] = n/(2n+1). If true use induction, else give smallest value of n that it is false for.

Answers

Answer:

The statement is true

Step-by-step explanation:

We will prove by mathematical induction that, for every natural n,

[tex]\sum^{n}_{i=1}\frac{1}{(2i-1)(2i+1)} =\frac{n}{2n+1}[/tex]

We will prove our base case, when n=1, to be true.

base case:

[tex]\sum^{1}_{i=1}\frac{1}{(2-1)(2+1)} =\frac{1}{3}=\frac{n}{2n+1}[/tex]

Inductive hypothesis:

[tex]\sum^{n}_{i=1}\frac{1}{(2i-1)(2i+1)} =\frac{n}{2n+1}[/tex]

Now, we will assume the induction hypothesis and then uses this assumption, involving n, to prove the statement for n + 1.

Inductive step:

[tex]\sum^{n+1}_{i=1}\frac{1}{(2i-1)(2i+1)} =\sum^{n}_{i=1}\frac{1}{(2i-1)(2i+1)}+\frac{1}{(2(n+1)-1)(2(n+1)+1)}=\frac{n}{2n+1}+\frac{1}{(2n+1)(2n+3)}=\frac{n(2n+3)+1}{(2n+1)(2n+3)}=\frac{2n^2+3n+1}{(2n+1)(2n+3)}=\frac{(2n+1)(n+1)}{(2n+1)(2n+3)}=\frac{n+1}{2n+3}=\frac{n+1}{2(n+1)+1}[/tex]

With this we have proved our statement to be true for n+1.

In conlusion, for every natural [tex]n[/tex].

[tex]\sum^{n}_{i=1}\frac{1}{(2i-1)(2i+1)} =\frac{n}{2n+1}[/tex]

For the function, f(x) = 8x + 5x, find the following. (a) f(5) D NUD K (b) f(-2) orea (c) f(4.2) muca (d) f(-4.2)

Answers

Answer:

(a) 65

(b) -26

(c) 54.6

(d) -54.6

Step-by-step explanation:

(a) [tex]f(5)=8(5)+5(5)=40+25=65[/tex]

(b) [tex]f(-2)=8(-2)+5(-2)=-16-10=-26[/tex]

(c) [tex]f(4.2)=8(4.2)+5(4.2)=33.6+21=54.6[/tex]

(d) [tex]f(-4.2)=8(-4.2)+5(-4.2)=-33.6-21=-54.6[/tex]

In a certain region of the country it is known from past experience that the probability of selecting an adult over 40 years of age with cancer is 0.05. If the probability of a doctor correctly diagnosing a person with cancer as having the disease is 0.78 and the probability of incorrectly diagnosing a person without cancer as having the disease is 0.06, what is the probability that an adult over 40 years of age is diagnosed as having cancer?

Answers

Answer: Our required probability is 0.406.

Step-by-step explanation:

Since we have given that

Probability of selecting an adult over 40 years of age with cancer = 0.05

Probability of a doctor correctly diagnosing a person with cancer as having the disease = 0.78

Probability of incorrectly diagnosing a person without cancer as having the disease = 0.06

Let A be the given event i.e. adult over 40 years of age with cancer. P(A) = 0.05.

So, P(A')=1-0.05 = 0.95

Let C be the event that having cancer.

P(C|A)=0.78

P(C|A')=0.06

So, using the Bayes theorem, we get that

[tex]P(A|C)=\dfrac{P(A).P(C|A)}{P(A).P(C|A)+P(A')P(C|A')}\\\\P(A|C)=\dfrac{0.78\times 0.05}{0.78\times 0.05+0.06\times 0.95}\\\\P(A|C)=0.406[/tex]

Hence, our required probability is 0.406.

Calculating conditional probabilities - random permutations. About The letters (a, b, c, d, e, f, g) are put in a random order. Each permutation is equally likely. Define the following events: A: The letter b falls in the middle (with three before it and three after it) B: The letter c appears to the right of b, although c is not necessarily immediately to the right of b. For example, "agbdcef" would be an outcome in this event. C: The letters "def occur together in that order (e.g. "gdefbca") Calculate the probability of each individual event. That is, calculate p(A), P(B), and p(c). What is p(AIC)? (c) What is p(BIC)? What is p(AIB)? (e) Which pairs of events among A, B, and C are independent? Feedback?

Answers

Answer:

P(A)=1/7

P(B)=1/2

P(C)=1/42

P(A|C)=1/10

P(B|C)=1/10

P(A|B)=1/7

A and B are independent

A and C aren't independent

B and C aren't independent

Step-by-step explanation:

A="b falls in the middle"

- b can fall in seven possible places, but only one is the middle. So, P(A)=1/7

B="c falls to the right of b"

X=i means "b falls in the i-th position"

Y=j means "c falls in the j-th position"

if b falls in the first place, c can fall in the 2nd, 3rd, 4th, 5th, 6th or 7th place.

if b falls in the 2nd place, c can fall in the 3rd, 4th, 5th, 6th or 7th place

 ...

If b falls in the 6th place, c can fall in the 7th place

then:

[tex][tex]P(B)=\displaystyle\sum_{i=1}^{6}( P(X=i)\displaystyle\sum_{j=i+1}^{7} P(Y=j))=\displaystyle\sum_{i=1}^{6}( \frac{1}{7}\displaystyle\sum_{j=i+1}^{7} \frac{1}{6})=\frac{1}{42}\displaystyle\sum_{i=1}^{6}(\displaystyle\sum_{j=i+1}^{7}1)=\frac{6+5+4+3+2+1}{42}=\frac{1}{2}[/tex][/tex]

- if d falls in the 1st place, e falls in the 2nd and f in the 3rd place

- if d falls in the 2nd place, e falls in the 3rd and f in the 4th place

- if d falls in the 3rd place, e falls in the 4th and f in the 5th place

- if d falls in the 4th place, e falls in the 5th and f in the 6th place

- if d falls in the 5th place, e falls in the 6th and f in the 7th place

X=i means "d falls in the i-th position"

Y=j means "e falls in the j-th position"

Z=k means "f falls in the k-th position"

[tex]P(C)=\displaystyle\sum_{i=1}^{5}( P(X=i)P(Y=i+1)P(Z=i+2))=\displaystyle\sum_{i=1}^{5}(\frac{1}{7}\times\frac{1}{6}\times\frac{1}{5})=\frac{1}{210}\displaystyle\sum_{i=1}^{5}(1)=\frac{1}{42}[/tex]

P(A|C)=P(A∩C)/P(C)=?

A∩C:

- d falls in the 1st place, e in the 2nd, f in the 3rd and b in the 4th place

- b falls in the 4th place, d in the 5th place, e in the 6th, f in the 7th place

P(A∩C)=2*(1/7*1/6*1/5*1/4)=1/420

P(A|C)=(1/420)/(1/42)=1/10

P(B|C)=P(B∩C)/P(C)=?

X=i means "d falls in the i-th position"

Y=j means "e falls in the j-th position"

Z=k means "f falls in the k-th position"

V=k means "b falls in the k-th position"

W=k means "c falls in the k-th position"

[tex]P(B\cap C)=\displaystyle\sum_{i=1}^{3} P(X=i)P(Y=i+1)P(Z=i+2)\displaystyle\sum_{j=i+3}^{6}P(V=j)P(W=j+1)[/tex]

[tex]P(B\cap C)=\displaystyle\sum_{i=1}^{3} \frac{1}{7}\times\frac{1}{6}\times\frac{1}{5}(\displaystyle\sum_{j=i+3}^{6}\frac{1}{4}\times\frac{1}{3})=\frac{1}{2520}\displaystyle\sum_{i=1}^{3} \displaystyle\sum_{j=i+3}^{6}1=\frac{1}{420}[/tex]

P(B|C)=(1/420)/(1/42)=1/10

P(A|B)=P(B∩A)/P(B)=?

B∩A:

- b falls in the 4th place and c in the 5th

- b falls in the 4th place and c in the 6th

- b falls in the 4th place and c in the 7th

P(B∩A)=3*(1/7*1/6)=1/14

P(A|B)=(1/14)(1/2)=1/7

If one event is independent of another, P(X∩Y)=P(X)P(Y)

So:

P(A∩B)=1/14=(1/7)*(1/2)=P(A)P(B), A and B are independent

P(A∩C)=1/420≠(1/7)*(1/42)=1/294=P(A)P(C), A and C aren't independent

P(B∩C)=1/420≠(1/2)*(1/42)=1/84=P(A)P(C), B and C aren't independent

In a sample of 408 new websites registered on the Internet, 37 were anonymous (i.e., they shielded their name and contact information). (a) Construct a 95 percent confidence interval for the proportion of all new websites that were anonymous. (Round your answers to 4 decimal places.)

Answers

Answer: [tex](0.0628,\ 0.1186)[/tex]

Step-by-step explanation:

Given : Significance level : [tex]\alpha:1-0.95=0.05[/tex]

Critical value : [tex]z_{\alpha/2}=\pm1.96[/tex]

Sample size : n= 408

Proportion of new websites registered on the Internet were anonymous :

[tex]\hat{p}=\dfrac{37}{408}\approx0.0907[/tex]

The formula to find the confidence interval for population proportion is given by :-

[tex]\hat{p}\pm z_{\alpha/2}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]

i.e. [tex]0.0907\pm (1.96)\sqrt{\dfrac{0.0907(1-0.0907)}{408}}[/tex]

[tex]=0.0907\pm0.0278665515649\\\\\approx 0.0907\pm0.0279\\\\=(0.0907-0.0279,\ 0.0907+0.0279)\\\\=(0.0628,\ 0.1186)[/tex]

Hence,  the 95 percent confidence interval for the proportion of all new websites that were anonymous = [tex](0.0628,\ 0.1186)[/tex]

Why does changing a subrtraction problem to an addition with the complement of 9 work

Answers

Step-by-step explanation:

When we need to subtract a number from another number, in that case, we can take the complement of the first number to add it to the second number, the result will be the same. It is because when we take the complement of 9 of that number, it will represent the negative of that number. Hence, by adding the negative of a number we will get the same result as we get after subtraction.

For example:

Subtract 213 from 843

843 - 213 = 630

complement of 9 of 213= 999-213

                                       =786

Now, add 786 and 843

786+843=1629

We got the result in 4 digits so by adding the left-most digit to the right-sided three-digit number of the result, we will get

629+1 = 630

fraction subtract 4/5-1/6​

Answers

Answer:

19/30

Explanation:

1. Exchange them to a common factor which happens to be 30 for both of them

2. Multiply by that factor on both the top and bottom to get the number equivalent to a fraction of that category

3. Subtract

4. Simplify, however in this case simplification isn't doable.

If sin phi sin theta = 0.2 and sin phi cos theta = -0.3 and sin phi > 0 what is theta ? Repeat for sin phi < 0.

Answers

Answer:

θ = -33.69°

Step-by-step explanation:

For Φ>0 and Φ<0  (in general Φ≠nπ  where n is an integer), sin(Φ) ≠ 0

Dividing both equations:

[tex]\frac{sin(\phi) sin(\theta)}{sin(\phi)cos(\theta)} = tan(\theta) = 0.2/(-0.3)=-2/3\\[/tex]

Therefore:

arctan(θ) = -2/3

  θ = -33.69°

The answer does not depend on the sign of Φ, in fact we just need that the sine does not become zero, which occurs when Φ is equal to an integer times π (radians) or 180 (degrees)

Have a nice day!

Final answer:

To find theta (θ) given that sin phi (φ) sin theta (θ) = 0.2 and sin phi (φ) cos theta (θ) = -0.3 with sin phi (φ) being positive or negative, one must first eliminate sin phi (φ) by manipulating the given equations, then solve for theta (θ) using trigonometric identities and inverse functions based on the signs of sin and cos.

Explanation:

We have two equations involving sin φ and θ (theta): sin φ sin θ = 0.2 and sin φ cos θ = -0.3. Also, it is given that sin φ > 0 or sin φ < 0. To find θ, first, we need to derive an equation involving only θ by eliminating sin φ. We can do this by squaring and adding both equations.

∑: (sin φ sin θ)^2 + (sin φ cos θ)^2 = 0.2^2 + (-0.3)^2 = 0.04 + 0.09 = 0.13

Using the Pythagorean identity sin^2 θ + cos^2 θ = 1, we can rewrite ∑ as sin^2 φ = 0.13. To solve for θ, we can take either of the initial equations, say sin φ sin θ = 0.2, and substitute sin^2 φ from ∑ giving sin θ = (0.2 / √0.13) or cos θ = (-0.3 / √0.13). Both positive and negative values of sin φ lead to the calculation for different θ values. The actual values of θ are determined by using the arc functions (arcsin, arccos) for both positive and negative scenarios of sin φ, taking into account the range of θ based on the signs of sin and cos.

Find the general solution to each of the following ODEs. Then, decide whether or not the set of solutions form a vector space. Explain your reasoning. Compare your answers to the previous problem. Recall that the general solution has the form y(t) = yh(t) + yp(t).

(A) y' - 2y = 0
(B) y' - 2y = 1
(C) y" - 4y = 0
(D) y" - 4y = e^(3t)

Answers

Answer:

(A) [tex]y=ke^{2t}[/tex] with [tex]k\in\mathbb{R}[/tex].

(B) [tex]y=ke^{2t}/2-1/2[/tex] with [tex]k\in\mathbb{R}[/tex]

(C) [tex]y=k_1e^{2t}+k_2e^{-2t}[/tex] with [tex]k_1,k_2\in\mathbb{R}[/tex]

(D) [tex]y=k_1e^{2t}+k_2e^{-2t}+e^{3t}/5[/tex] with [tex]k_1,k_2\in\mathbb{R}[/tex],

Step-by-step explanation

(A) We can see this as separation of variables or just a linear ODE of first grade, then [tex]0=y'-2y=\frac{dy}{dt}-2y\Rightarrow \frac{dy}{dt}=2y \Rightarrow  \frac{1}{2y}dy=dt \ \Rightarrow \int \frac{1}{2y}dy=\int dt \Rightarrow \ln |y|^{1/2}=t+C \Rightarrow |y|^{1/2}=e^{\ln |y|^{1/2}}=e^{t+C}=e^{C}e^t} \Rightarrow y=ke^{2t}[/tex]. With this answer we see that the set of solutions of the ODE form a vector space over, where vectors are of the form [tex]e^{2t}[/tex] with [tex]t[/tex] real.

(B) Proceeding and the previous item, we obtain [tex]1=y'-2y=\frac{dy}{dt}-2y\Rightarrow \frac{dy}{dt}=2y+1 \Rightarrow  \frac{1}{2y+1}dy=dt \ \Rightarrow \int \frac{1}{2y+1}dy=\int dt \Rightarrow 1/2\ln |2y+1|=t+C \Rightarrow |2y+1|^{1/2}=e^{\ln |2y+1|^{1/2}}=e^{t+C}=e^{C}e^t \Rightarrow y=ke^{2t}/2-1/2[/tex]. Which is not a vector space with the usual operations (this is because [tex]-1/2[/tex]), in other words, if you sum two solutions you don't obtain a solution.

(C) This is a linear ODE of second grade, then if we set [tex]y=e^{mt} \Rightarrow y''=m^2e^{mt}[/tex] and we obtain the characteristic equation [tex]0=y''-4y=m^2e^{mt}-4e^{mt}=(m^2-4)e^{mt}\Rightarrow m^{2}-4=0\Rightarrow m=\pm 2[/tex] and then the general solution is [tex]y=k_1e^{2t}+k_2e^{-2t}[/tex] with [tex]k_1,k_2\in\mathbb{R}[/tex], and as in the first items the set of solutions form a vector space.

(D) Using C, let be [tex]y=me^{3t} [/tex] we obtain that it must satisfies [tex]3^2m-4m=1\Rightarrow m=1/5[/tex] and then the general solution is [tex]y=k_1e^{2t}+k_2e^{-2t}+e^{3t}/5[/tex] with [tex]k_1,k_2\in\mathbb{R}[/tex], and as in (B) the set of solutions does not form a vector space (same reason! as in (B)).  


A manufacturer has a monthly fixed cost of $110,000 and a production cost of $14 for each unit produced. The product sells for $20 per unit.

(a) What is the cost function?

C(x) =

(b) What is the revenue function?

R(x) =

(c) What is the profit function?

P(x) =

(d) Compute the profit or loss corresponding to a production level of 12,000 and 23,000 units. (Input a negative value to indicate a loss.)

at 12,000 units $ ______

at 23,000 units $______

Answers

Answer:

Cost function C(x) == FC + VC*Q

Revenue function R(x) = Px * Q

Profit function P(x) =(Px * Q)-(FC + VC*Q)

P(12000) = -38000 Loss

P(23000) = 28000 profit

Step-by-step explanation:

Total Cost is Fixed cost plus Variable cost multiplied by the produce quantity.  

(a)Cost function

C(x) = FC + vc*Q

Where  

FC=Fixed cost

VC=Variable cost

Q=produce quantity

(b)

Revenue function

R(x) = Px * Q

Where  

Px= Sales Price

Q=produce quantity

(c) Profit function

Profit = Revenue- Total cost

P(x) =(Px * Q)-(FC + vc*Q)

(d) We have to replace in the profit function

at 12,000 units

P(12000) =($20 * 12,000)-($110,000 + $14*12,000)

P(12000) = -38000

at 23,000 units

P(x) =($20 * 23,000)-($110,000 + $14*23,000)

P(23000) = 28000

Solve the system of linear equations using the Gauss-Jordan elimination method.

(x,y,z)=__________________

2x + 2y − 3z = 16
2x − 3y + 2z = −4
4x − y + 3z =
−4

Answers

Answer:

(x,y,z)=(2,0,-4)

Step-by-step explanation:

First we create the extended matrix from the equations

[tex]\left[\begin{array}{ccc|c}2&2&-3&16\\2&-3&2&-4\\4&-1&3&-4\end{array}\right][/tex]

Using the elementary operations

Substract to the 2nd line the first one, and the 3rd one twice the first:

[tex]\left[\begin{array}{ccc|c}2&2&-3&16\\0&-5&5&-20\\0&-5&9&-36\end{array}\right][/tex]

Divide the first line by 2, the 2nd one by -5 and substract to the 3rd the 2nd:

[tex]\left[\begin{array}{ccc|c}1&1&-3/2&8\\0&1&-1&4\\0&0&4&-16\\\end{array}\right][/tex]

Divide the 3rd by 4:

[tex]\left[\begin{array}{ccc|c}1&1&-3/2&8\\0&1&-1&4\\0&0&1&-4\\\end{array}\right][/tex]

Add the 3rd to the 2nd:

[tex]\left[\begin{array}{ccc|c}1&1&-3/2&8\\0&1&0&0\\0&0&1&-4\\\end{array}\right][/tex]

Substract the 2nd to the 1st

[tex]\left[\begin{array}{ccc|c}1&0&-3/2&8\\0&1&0&0\\0&0&1&-4\\\end{array}\right][/tex]

Add the 3rd multiplied by 3/2:

[tex]\left[\begin{array}{ccc|c}1&0&0&2\\0&1&0&0\\0&0&1&-4\\\end{array}\right][/tex]

The answer is determined:

x=2

y=0

z=-4

You can check they are correct, by entering in the original formulas.

Use a definition, postulate, or theorem to find the value of x In the figure described
SV is an angle bisector of ZRST. IfmZRSV = (2x +9)° and mZRST = (6x - 26)°, find x.
Select each definition, postulate, or theorem you will use.
A
Angle Addition Postulate
definition of midpoint
C
definition of angle bisector
D
Linear Palr Theorem
The solution is x =

Answers

You’re using the definition of an angle bisector. A bisector is a ray that cuts an angle in half, so to solve for x you set the two values equal to one another.
2x+9=6x-26 (subtract 2x from both sides)
9=4x-26 (add 26 to both sides)
35=4x (divide by 4)
X=8.75

In a recent year, 17.7% of household watched the finals of a popular reality series. There are 110.2 million households in the United States. How many households watched the finals?


This is Find the percent of a number.

Answers

For this case we propose a rule of three:

110.2 million -------------> 100%

x --------------------------------------> 17.7%

Where the variable "x" represents the number of households (in millions) that watched the finals of a popular reality series.

[tex]x =  \frac {17.7 * 110.2} {100}\\x = \frac {1950.54} {100}\\x = 19.5054[/tex]

Thus, a total of 19.5054 million homes watched the finals of a popular reality series.

Answer:

19.5054 million homes watched the finals of a popular reality series.

the amount of carbon 14 still present is a sample after t years
is given by the function C(t)=
Coe-.00012t
where co is the initial anong . estimate the age of a sample of
wood discoverd by a arecheologist if the carbon level in the sample
is only 20% of it orginal carbon 14 level.

Answers

Answer:

The age of this sample is 13,417 years.

Step-by-step explanation:

The amount of carbon 14 present in a sample after t years is given by the following equation:

[tex]C(t) = C_{0}e^{-0.00012t}[/tex]

Estimate the age of a sample of wood discoverd by a arecheologist if the carbon level in the sampleis only 20% of it orginal carbon 14 level.

The problem asks us to find the value of t when

[tex]C(t) = 0.2C_{0}[/tex]

So:

[tex]C(t) = C_{0}e^{-0.00012t}[/tex]

[tex]0.2C_{0} = C_{0}e^{-0.00012t}[/tex]

[tex]e^{-0.00012t} = \frac{0.2C_{0}}{C_{0}}[/tex]

[tex]e^{-0.00012t} = 0.2[/tex]

[tex]ln e^{-0.00012t} = ln 0.2[/tex]

[tex]-0.00012t = -1.61[/tex]

[tex]0.00012t = 1.61[/tex]

[tex]t = \frac{1.61}{0.00012}[/tex]

[tex]t = 13,416.7[/tex]

The age of this sample is 13,417 years.

How many kW-hr are used when one 100W light bulbs is used for 2 hours?

Answers

Answer:

0.2 kW-hr

Step-by-step explanation:

First, we are going to transform 100W in kW. We can use a rule of three in which we know that 1000W is equivalent to 1 kW, then how many kW are equivalent to 100W. This is:

1000W ------------- 1 kW

100W -------------- X

Where X is the the number of kW that are equivalent to 100W. Solving for X, we get:

[tex]X=\frac{100W * 1kW}{1000W} =0.1kW[/tex]

Then, for calculate the number of kW-hr we need to multiplicate the number of kW with the number of hours, This is:

0.1 kW * 2 hours = 0.2 kW-hr

Finally, when one 100W light bulbs is used for 2 hours, it used 0.2 kW-hr


You wish to ship six crude oil samples from your drill site to your laboratory. Each sample has a density of 0.8240 kg/L and fills a 1.090e-4 m3container. How much mass, X g , of crude oil will you be shipping?

(HINT: |X| is near an order of magnitude of 102 g ).

Answers

Answer:

total mass of 6 samples = 538.896 g

in terms of X = 5.283 g

Step-by-step explanation:

Given:

Number of crude oil samples = 6

Density of each sample = 0.8240 kg/L

Volume filled by each sample = 1.09 × 10⁻⁴ m³

now,

1 m³ = 1000 L

thus,

1.09 × 10⁻⁴ m³ = 1.09 × 10⁻⁴ m³ × 1000 = 0.109 L

also,

Mass = Density × Volume

or

Mass of each sample = 0.8240 × 0.109 = 0.089816 kg

Thus,

total mass of 6 samples = Mass of each sample × 6

or

total mass of 6 samples = 0.089816 kg × 6 = 0.538896 kg

or

total mass of 6 samples = 538.896 g

or

in X = [tex]\frac{\textup{total mass of 6 samples}}{\textup{102}}[/tex]

= 5.283 g

For the statement "if Fury is the director of SHIELD then Hill and Coulson are SHIELD agents" (a) Write the contrapositive (b) Write the converse (c) Write the inverse (d) Write the negation

Answers

Step-by-step explanation:

Consider the provided information.

If Fury is the director of SHIELD then Hill and Coulson are SHIELD agents"

For the condition statement [tex]p \rightarrow q[/tex] or equivalent "If p then q"

The rule for Converse is: Interchange the two statements. [tex]q \rightarrow p[/tex]The rule for Inverse is: Negative both statements. [tex]\sim p \rightarrow \sim q[/tex]The rule for Contrapositive is: Negative both statements and interchange them. [tex]\sim q \rightarrow \sim p[/tex]The rule for Negation is: If p then q" the negation will be: p and not q. [tex]p \rightarrow q=\sim p\vee q=p\vee \sim q[/tex]

Part (A) Write the contrapositive.

Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

Contrapositive: If Hill and Coulson are not SHIELD agents, then Fury is not the director of SHIELD.

Part (b) Write the converse.

Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

Converse: If Hill and Coulson are SHIELD agents, then Fury is the director of SHIELD.

Part (c) Write the inverse.

Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

Inverse: If Fury is not the director of SHIELD then Hill and Coulson are not SHIELD agents

Part (D) Write the negation.

Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

Negation: Fury is the director of SHIELD and Hill and Coulson are not SHIELD agents"

Step-by-step explanation:

Consider the provided information.

If Fury is the director of SHIELD then Hill and Coulson are SHIELD agents." For the condition statement  or equivalent "If p then q"

The rule for Converse is: Interchange the two statements.

The rule for Inverse is: Negative both statements.

The rule for Contrapositive is: Negative both statements and interchange them.

The rule for Negation is: If p then q" the negation will be: p and not q.

- Part (A) Write the contrapositive.

.Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

Contrapositive: If Hill and Coulson are not SHIELD agents, then Fury is not the director of SHIELD.

- Part (b) Write the converse.

 .Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

 .Converse: If Hill and Coulson are SHIELD agents, then Fury is the director of SHIELD.

- Part (c) Write the inverse.

 .Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

 .Inverse: If Fury is not the director of SHIELD then Hill and Coulson are not SHIELD agents

- Part (D) Write the negation.

 .Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

 .Negation: Fury is the director of SHIELD and Hill and Coulson are not SHIELD agents"

While completing a race, Edward spent 54 minutes walking. If his ratio of time walking to jogging was 6:5, how many minutes did he spend completing the race?

Answers

Answer:   99 minutes

Step-by-step explanation:

Given: While completing a race, Edward spent 54 minutes walking.

The ratio of time walking to jogging was 6:5 i.e. [tex]\dfrac{6}{5}[/tex]     (1)

Let x be the time taken ( in minutes ) by him for jogging.

then, the ratio of time walking to jogging will be [tex]\dfrac{54}{x}[/tex]  (2)

From (1) and (2), we have

[tex]\dfrac{6}{5}=\dfrac{54}{x}\\\\\Rightarrow\ 6x=54\times5\\\\\Rightarrow\ x=\dfrac{54\times5}{6}=45[/tex]  

So, the number of minutes he took for jogging = 45 minutes

Now, the total time he spent on completing the race= 54+45=99 minutes

The accompanying observations are on stabilized viscosity (cP) for specimens of a certain grade of asphalt with 18% rubber added: 2767 2924 3042 2844 2895 (a) What are the values of the sample mean x and sample median x tilde?

Answers

Answer:

Step-by-step explanation:

Given are the observations are on stabilized viscosity (cP) for specimens of a certain grade of asphalt with 18% rubber added:

2767 2924 3042 2844 2895

No of items = 5

If written in ascending order the order would be

2767   2844   2895   2924   3042

Hence median is the middle value in the ordered row = 2895

Mean = sum/5

=[tex]\frac{14472}{5} =2894.4[/tex]

On rainy days, Izzy goes from his house to the school by running 1.2 miles on West St, then makes a 90º turn and runs 0.5 miles on North Ave.

a. If Izzy runs 7.5 miles per hour, approximately how much time will it take her to run to school on rainy days?

b. On dry days, Izzy runs on the dashed path through the woods. How far is she traveling?

c. If Izzy runs 7.5 miles per hour, how much time will she save by cutting through the woods?

Answers

Final answer:

To calculate the time Izzy takes to run to school on rainy days, we use the distance and speed to find that she runs 1.7 miles in approximately 13.6 minutes. We are unable to calculate the distance through the woods or the time saved without further information.

Explanation:

Calculation of Time and Distance

To calculate the time Izzy takes to run to school on rainy days, we use the following formula:

Time (in hours) = Distance (in miles) / Speed (in miles per hour)

Izzy runs a total distance of 1.2 miles on West St and then 0.5 miles on North Ave, summing up to 1.7 miles. Given Izzy's speed is 7.5 miles per hour, the time taken to run to school on rainy days can be calculated as:

Time = (1.2 + 0.5) miles / 7.5 mph = 1.7 / 7.5

To find the time in minutes, multiply the time in hours by 60:

Time in minutes = (1.7 / 7.5)  imes 60
= 13.6 minutes (approximately)

As the dashed path through the woods on dry days is not described in the question, we cannot calculate the exact distance Izzy is traveling through the woods. Without this information, we also cannot calculate the time saved by cutting through the woods.

How many sets of two or more consecutive positive integers can be added to obtain a sum of 1800?

Answers

Answer:

n = 60

Step-by-step explanation:

GIVEN DATA:

Total sum of consecutive number is 1800

sum of n number is given as

[tex] sum = \frac{ n(n+1)}{2}[/tex]

where n is positive number and belong to natural number i.e 1,2,3,4,...

from the data given we have[tex]1800 = \frac{n(n+1)}{2}[/tex]

solving for n we get

[/tex]n^2 + n -3600 = 0[/tex]

n = 59.5, -60.5

therefore n = 60

Prove using the principle of mathematical induction: (i) The number of diagonals of a convex polygon with n vertices is n(n − 3)/2, for n ≥ 4, (ii) 2n < n! for for all n > k > 0, discover the value of k before doing induction.

Answers

Step-by-step explanation:

Proof for i)

We will prove by mathematical induction that, for every natural [tex]n\geq 4[/tex], the number of diagonals of a convex polygon with n vertices is [tex]\frac{n(n-3)}{2}[/tex].

In this proof we will use the expression d(n) to denote the number of diagonals of a convex polygon with n vertices

Base case:

First, observe that:, for n=4, the number of diagonals is

[tex]2=\frac{n(n-3)}{2}[/tex]

Inductive hypothesis:  

Given a natural [tex]n \geq 4[/tex],

[tex]d(n)=\frac{n(n-3)}{2}[/tex]

Now, we will assume the induction hypothesis and then use this assumption, involving n, to prove the statement for n + 1.

Inductive step:

Observe that, given a convex polygon with n vertices, wich we will denote by P(n), if we add a new vertix (transforming P(n) into a convex polygon with n+1 vertices, wich we will denote by P(n+1)) we have that:

Every diagonal in P(n) will still be a diagonal in P(n+1). One (and only one) side of P(n) will be a diagonal in P(n+1).There would be an extra n-2 diagonals (those that connect with the new added vertix).

Because of these observation we know that, for every [tex]n\geq 4[/tex],

[tex]d(n+1)=d(n)+1+(n-2)=d(n)+n-1[/tex]

Therefore:

[tex]d(n+1)=d(n)+n-1=\frac{n(n-3)}{2}+n-1=\frac{n^2-3n+2n-2}{2}=\frac{n^2-n-2}{2}=\frac{(n+1)(n-2)}{2}[/tex]

With this we have proved our statement to be true for n+1.    

In conlusion, for every natural [tex]n \geq 4[/tex],

[tex]d(n)=\frac{n(n-3)}{2}[/tex]

Proof for ii)

Observe that:

For n=1 [tex]2n=2>1=n![/tex]For n=2 [tex]2n=4>2=n![/tex]For n=3 [tex]2n=6=n![/tex]

Then, the statement is not true for n=1,2,3.

We will prove by mathematical induction that, for every natural [tex]n \geq 4[/tex],

[tex]2n<n![/tex].

Base case:

For n=4, [tex]2n=8<24=n![/tex]

Inductive hypothesis:  

Given a natural [tex]n \geq 4[/tex], [tex]2n<n![/tex]

Now, we will assume the induction hypothesis and then use this assumption, involving n, to prove the statement for n + 1.

Inductive step:

Observe that,

[tex]n!+2\leq (n+1)! \iff n!+2\leq n!(n+1) \iff 1+\frac{2}{n!}\leq n+1 \iff 2\leq n*n![/tex]

wich is true as we are assuming [tex]n\geq 4[/tex]. Therefore:

[tex]2(n+1)=2n+2<n!+2\leq (n+1)![/tex]

With this we have proved our statement to be true for n+1.    

In conlusion, for every natural [tex]n \geq 4[/tex],

[tex]2n<n![/tex]

A medical device is sterilized by gamma radiation at 2.5 megarads (Mrad). Express the equivalent quantity in rads.

Answers

Answer:

2 500 000 rad.

Step-by-step explanation:

Mega is the metric prefix for [tex]10^{6}[/tex], therefore you just need to multiply by 1 000 000 to find the value in rads.


convert 1 cal/(m^2 * sec * °C) into BTU/(ft^2 * hr * °F)

Its easy enough to convert the energy, time, and area units, but how am I suppose to convert the temp units?

Answers

Answer:

[tex]1\ \frac{\text{cal}}{m^2\times sec\times ^\circ C}=0.03926\frac{\text{BTU}}{ft^2\times hr\times ^\circ F}[/tex]

Step-by-step explanation:

To find : Convert [tex]1\ \frac{\text{cal}}{m^2\times sec\times ^\circ C}[/tex] into [tex]\frac{\text{BTU}}{ft^2\times hr\times ^\circ F}[/tex]

Solution :

We convert units one by one,

[tex]1\text{ m}^2=10.7639\text{ ft}^2[/tex]

[tex]1\text{ sec}=\frac{1}{3600}\text{ hour}[/tex]

[tex]1\text{ cal}=0.003968\text{ BTU}[/tex]

Converting temperature unit,

[tex]^\circ C\times \frac{9}{5}+32=^\circ F[/tex]

[tex]1^\circ C\times \frac{9}{5}+32=33.8^\circ F[/tex]

So, [tex]1^\circ C=33.8^\circ F[/tex]

Substitute all the values in the unit conversion,

[tex]1\ \frac{\text{cal}}{m^2\times sec\times ^\circ C}=\frac{0.003968}{10.7639\times \frac{1}{3600}\times 33.8}\frac{\text{BTU}}{ft^2\times hr\times ^\circ F}[/tex]

[tex]1\ \frac{\text{cal}}{m^2\times sec\times ^\circ C}=\frac{0.003968}{0.101061}\frac{\text{BTU}}{ft^2\times hr\times ^\circ F}[/tex]

[tex]1\ \frac{\text{cal}}{m^2\times sec\times ^\circ C}=0.03926\frac{\text{BTU}}{ft^2\times hr\times ^\circ F}[/tex]

Therefore, The conversion of unit is [tex]1\ \frac{\text{cal}}{m^2\times sec\times ^\circ C}=0.03926\frac{\text{BTU}}{ft^2\times hr\times ^\circ F}[/tex]

the earth rotates about its axis once every 23 hours, 56 minutes and 4 seconds. Approximate the number of radians the earth rotates in one second.

Answers

Answer:

[tex]\frac{\pi}{43082}\text{ radians per second}[/tex]

Step-by-step explanation:

Given,

Time taken in one rotation of earth = 23 hours, 56 minutes and 4 seconds.

Since, 1 minute = 60 seconds and 1 hour = 3600 seconds,

⇒ Time taken in one rotation of earth = (23 × 3600 + 56 × 60 + 4) seconds

= 86164  seconds,

Now,  the number of radians in one rotation = 2π,

That is, 86164 seconds = 2π radians

[tex]\implies 1\text{ second }=\frac{2\pi}{86164}=\frac{\pi}{43082}\text{ radians}[/tex]

Hence, the number of radians in one second is [tex]\frac{\pi}{43082}[/tex]

Final answer:

The Earth completes a 2π radian rotation about its axis in 23 hours, 56 minutes, and 4 seconds. After converting this time to 86,164 seconds, the number of radians the Earth rotates in one second can be calculated by dividing 2π by 86,164, giving a result of approximately 0.00007292115 radians.

Explanation:

The Earth completes one full rotation about its axis in 23 hours, 56 minutes and 4 seconds. This rotation can be converted into radians, using the principle that one complete rotation is equivalent to 2π radians. So first, convert the rotation time into seconds: (23 x 60 x 60) + (56 x 60) + 4 = 86,164 seconds. Therefore, the Earth rotates through 2π radians in this time.

Now, we want to find out how many radians the Earth rotates in one second. To calculate this, divide 2π (which represent a full rotation in radians), by the total number of seconds in one rotation: 2π/86,164. This will give you approximately 0.00007292115 radians, which is the angular velocity or the number of radians the Earth rotates in one second.

Learn more about Angular Velocity of Earth here:

https://brainly.com/question/32821466

#SPJ3

You deposit the same $10,000 into a bank account at 4% annual interest. How long will it take for the $10,000 to compound to $30,000?

N= I/Y= PV= PMT= FV= P/Y=

Answers

Answer:

time = 28 years

Step-by-step explanation:

Given,

principal amount = $10,000

rate = 4%

total amount = $30,000

According to compound interest formula

[tex]A\ =\ P(1+r)^t[/tex]

where, A = total amount

            P = principal amount

            r = rate

            t = time in years

so, from the question we can write,

[tex]30000\ =\ 10000(1+0.04)^t[/tex]

[tex]=>\ \dfrac{30000}{10000}\ =\ (1+0.04)^t[/tex]

[tex]=>\ 3\ =\ (1.04)^t[/tex]

by taking log on both sides, we will get

=> log3 = t.log(1.04)

[tex]=>\ t\ =\ \dfrac{log3}{log1.04}[/tex]

=> t = 28.01

So, the time taken to get the amount from 10000 to 30000 is 28 years.

In an arithmetic​ sequence, the nth term an is given by the formula An=a1+(n−1)d​, where a1is the first term and d is the common difference.​ Similarly, in a geometric​ sequence, the nth term is given by an=a1•rn−1.

Use these formulas to determine the indicated term in the given sequence.

The 19th term of 19​,42​,65​,88​,...

Answers

Answer: 433

Step-by-step explanation:

The given sequence : 19​,42​,65​,88​,...

Here we can see that the difference in each of the two consecutive terms is 23.  [88-65=23, 65-42=23, 42-19=23]

i.e. it has a common difference of 23.

Therefore, it is an arithmetic sequence .

In an arithmetic​ sequence, the nth term an is given by the formula[tex]A_n=a_1+(n-1)d[/tex] , where [tex]a_1[/tex] is the first term and d is the common difference.​

For the given sequence , [tex]a_1=19[/tex]  and [tex]d=23[/tex]

Then,  to find the 19th term of  the sequence, we put n= 19 in the above formula:-

[tex]A_{19}=19+(19-1)(23)=19+(18)(23)=19+414+433[/tex]

Hence, the 19th term of  the sequence = 433

Final answer:

To find the 19th term of the arithmetic sequence 19, 42, 65, 88, ..., the common difference (23) is determined from the sequence and applied in the arithmetic sequence formula. Substituting the values into the formula, the 19th term is calculated to be 433.

Explanation:

To find the 19th term, we must first determine the common difference, d, of the sequence. Observing the given sequence, we see that the difference between consecutive terms is 42 - 19 = 23. Therefore, the common difference is 23.

Next, we apply the formula for the nth term of an arithmetic sequence which is An = a1 + (n-1)d. Here, a1 is the first term, n is the term number, and d is the common difference.

Substituting the values for the 19th term, we have: A19 = 19 + (19-1) × 23 = 19 + 18 × 23 = 19 + 414 = 433. Therefore, the 19th term of the sequence is 433.

Calculate: (Round two decimals places for the final answer):

1880 milliliter (mL)=_____ pints (pts) ?

Answers

Answer:

1880 milliliter (mL) = 3.97 pints (pts)

Step-by-step explanation:

This problem can be solved as a rule of three problem.

In a rule of three problem, the first step is identifying the measures and how they are related, if their relationship is direct of inverse.

When the relationship between the measures is direct, as the value of one measure increases, the value of the other measure is going to increase too.

When the relationship between the measures is inverse, as the value of one measure increases, the value of the other measure will decrease.

Unit conversion problems, like this one, is an example of a direct relationship between measures.

1 milliliter (mL) is equal to 0.002 pints. How many pints are 1880 milliliter (mL)? We have the following rule of three

1 mL - 0.002 pints

1880 mL - x pints

x = 1880*0.002

x = 3.97 pints

There are 3.97 pints in 1880 milliliters.

Among users of automated teller machines​ (ATMs), 94​% use ATMs to withdraw cash and 28​% use them to check their account balance. Suppose that 95​% use ATMs to either withdraw cash or check their account balance​ (or both). Given a woman who uses an ATM to check her account​ balance, what the probability that she also uses an ATM to get​ cash?

Answers

Answer:

96%

Step-by-step explanation:

Conditional probability is defined as:  

P(A|B) = P(A∩B) / P(B)  

Or, in English:  

Probability that A occurs, given that B has occurred = Probability that both A and B occur / Probability that B occurs

We want to find the probability that a woman uses an ATM to get cash, given that she uses an ATM to check her balance.

P(withdraws cash | checks account)

Using the definition of condition probability, this equals:

P = P(withdraws cash AND checks account) / P(checks account)

We know that P(checks account) = 0.28.

But we don't know what P(withdraws cash AND checks account) is.  To find that, we need to use the definition of P(A∪B):

P(A∪B) = P(A) + P(B) − P(A∩B)

This says that the probability of A or B occurring (or both) is the probability of A occurring plus the probability of B occurring minus the probability of both A and B occurring.

P(withdraws cash OR checks account) = P(withdraws cash) + P(checks account) − P(withdraws cash AND checks account)

0.95 = 0.94 + 0.28 − P(withdraws cash AND checks account)

P(withdraws cash AND checks account) = 0.27

Therefore:

P = 0.27 / 0.28

P ≈ 0.96

Final answer:

The probability that a woman who checks her account balance at an ATM also withdraws cash is approximately 96.43%.

Explanation:

To solve the problem, we can apply the probability rule for conditional probability. We are provided with the following probabilities:

The probability that ATM users withdraw cash (P(Cash)) is 94%, or 0.94.The probability that ATM users check their account balance (P(Balance)) is 28%, or 0.28.The probability that ATM users either withdraw cash or check their account balance (or both) (P(Cash ∪ Balance)) is 95%, or 0.95.

Using this information, we're interested in finding the probability that a user who checks their account balance also withdraws cash, represented as P(Cash|Balance).

The formula for conditional probability is:

P(A|B) = P(A ∩ B) / P(B)

Where A and B are two events, and P(A|B) is the conditional probability of A given B.

Using the inclusion-exclusion principle, we can express P(Cash ∩ Balance) as:

P(Cash ∩ Balance) = P(Cash) + P(Balance) - P(Cash ∪ Balance)

Substitute the given probabilities:

P(Cash ∩ Balance) = 0.94 + 0.28 - 0.95 = 0.27

The probability that a woman who checks her balance also gets cash (P(Cash|Balance)) is:

P(Cash|Balance) = P(Cash ∩ Balance) / P(Balance)

P(Cash|Balance) = 0.27 / 0.28 ≈ 0.9643

Therefore, the probability is approximately 96.43%.

Way back in the olden days, Blockbuster tallied all their US movie rental data and found that on average, individuals rent 10 movies a year with a standard deviation of 3. Treat these as population statistics. They wanted to see if movie rental rates in Yuma, Arizona, were different from those of the country as a whole (why Yuma? Who knows ). A random sample of 25 blockbuster members in Yuma yielded a mean rental rate of 11.3 movies per year. Use alpha = .05

Answers

Answer with explanation:

By considering the given information we have ,

[tex]H_0: \mu = 10\\\\ H_a: \mu\neq10[/tex]

Since, the alternative hypothesis is two tailed so the test is a two-tailed test.

Given : Population mean : [tex]\mu=10[/tex]

Standard deviation: [tex]\sigma= 3[/tex]

Sample size : n=25 , whihc is less than 30 so the sample is small and we use t-test.

Sample mean : [tex]\overline{x}=11.3[/tex]

Significance level : [tex]\alpha= 0.5[/tex]

Formula to find t-test statistic is given by :-

[tex]t=\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

i.e. [tex]t=\dfrac{11.3-10}{\dfrac{3}{\sqrt{25}}}\approx2.17[/tex]

By using the standard normal distribution table,

The p-value corresponds 2.17 (two-tailed)=0.0300068

Since , the p-value is less than the significance level, so we reject the null hypothesis.

Hence, we conclude that there are enough evidence to to support the claim that movie rental rates in Yuma, Arizona, were different from those of the country as a whole .

Final answer:

A hypothesis test is conducted to see if the average movie rental rate in Yuma, Arizona, is statistically different from the national average. This problem is resolved in several steps including stating hypotheses, formulating an analysis plan, analyzing sample data, and interpreting the results. The rental rate is then compared to a critical value determined by the significance level (α = .05).

Explanation:

The subject here is a hypothesis testing problem related to the mean rental rate of DVDs in Yuma, Arizona. Blockbuster found that the average nation-wide movie rental rate was 10 movies per year with a standard deviation of 3. In Yuma, a sample of 25 people resulted in a mean rental rate of 11.3 movies per year. The company wanted to check whether this difference was significant or not. So, they used an alpha level of .05 to conduct this hypothesis test.

Here are the steps of the hypothesis test:

State the hypotheses. The null hypothesis H0 would be that the mean rental rate in Yuma is the same as the average across the US (μ = 10). The alternative hypothesis Ha would be that the mean rental rate in Yuma is not equal to the average across the US (μ ≠ 10).Formulate an analysis plan. For this analysis, the significance level is defined as alpha (α) = .05. As per the conditions, the population standard deviation (σ) is known and equals 3.Analyze sample data. Using the sample data and the information provided, we can calculate the test statistic (z).Interpret the results. If the test statistic is beyond the critical value, we reject the null hypothesis. Otherwise, we do not have enough evidence to reject it.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ11

Other Questions
A stamping machine begins turning out components that are out of tolerance. The manager removes the machine from service to ensure that more defective components are not produced and notifies maintenance to repair the machine. This is an example of ________.A.immediate corrective actionB.basic corrective actionC.corporate governanceD.disciplinary actionE.benchmarking What is the digestive system?a. the body's blood-transporting systemb. the body's system for gas exhangec. the body's food-processing systemd. the body's system of nerves Within six months of effectively using methicillin to treat S. aureus infections in a community, all new S. aureus infections were caused by MRSA. How can this best be explained?a. A patient must have become infected with MRSA from another community.b. In response to the drug, S. aureus began making drug-resistant versions of the protein targeted by the drug.c. Some drug-resistant bacteria were present at the start of treatment, and natural selection increased their frequency.d. S. aureus evolved to resist vaccines. Calculate the volume of a 0.200 M KCl solution containing 5.00 10-2 mol of solute. Enter your answer in the provided box. IL how is the use of magnetic fields to plasma related to trying to generate energy using nuclear fusion? You are designing a delivery ramp for crates containing exercise equipment. The 1890 N crates will move at 1.8 m/s at the top of a ramp that slopes downward at 22.0. The ramp exerts a 515 N kinetic friction force on each crate, and the maximum static friction force also has this value. Each crate will compress a spring at the bottom of the ramp and will come to rest after traveling a total distance of 5.0 m along the ramp. Once stopped, a crate must not rebound back up the ramp. Calculate the largest force constant of the spring that will be needed to meet the design criteria. 4. Which of the following would change if the Earth had no tilt relative to the ecliptic?A. Each season would last longerB. The year would be longerC. There would be no seasonsD. There would be more days per year Given that the function of egg yolk is to nourish and support the developing chick, explain why egg yolks are so high in fat, protein, and cholesterol. find the value of x and y. y=2x and 1.85x+3.7y=12.95 The writer of the story of an hour creates suspense byA: telling the reader in the first paragraph that Mrs Mallard dislikes her husbandB: withholding the fact that Mr Mallard has died until the end of the story.C: slowly allowing Mrs, Mallards mixed feelings toward her husband and her marriage take shape D: making the relationship between Mrs Mallard and Louise unclear Native American slavery _______________ a. was a longstanding practice in New Mexico. b. was considered wrong by American military. c. was never confused with adoption. d. was supported by President Lincoln. The price elasticity of demand for tickets to local baseball games is estimated to be equal to 0.89. In order to boost ticket revenues, an economist would advise:a. increasing the price of game tickets because demand is inelastic.b. not changing the price of game tickets because demand is unit elastic.c. increasing the price of game tickets because demand is elastic.d. decreasing the price of game tickets because demand is elastic. Consumer behavior is the way that forces shape people's _____.A.activities related to buyingB.place and time utilityC.culture and societyD.goods and services Which of the following is true of oceanic crust? a) It makes up 71% of the earth's crust. b) It makes up 29% of the earth's crust. c) It averages 2,000 feet above sea level. d) It is the type of crust between Alaska and Siberia. Which accurately describes the Roman Empires system of government prior to Julius Caesar? Write a program in c++ that asks the user for a sequence of nintegers, where the user provides the number of elements n then each of the elements. After storing the n values in the array, ask the user for a value to search within those elements and return the index of the first instance (starting with 0 as the first element). Each integer should be stored in an array in the order they were read from the user. Follow the prompts and output format listed below. The user is expected to enter no more than 256 elements, the array should be able to hold no less and no more than 256. Halcyon, an e-publisher has recently decided to use an information system that administers the way its customers access its online publications. The system assigns each customer with a unique ID, maintains records of the books purchased by them, encrypts electronic documents for transmission, and includes options to order hard copies of the electronic documents they read online. Which of the following refers to the set of technologies used in this case?A. online identity management B. digital rights management C. internet resource management D. inventory management Please answer this correctly A few years ago. Sarah acquired a parcel of land valued at $16,500. Today, that same parcel of land has a value of $17.820. Find the percent increase in the property'svalue. Round your answer to the nearest hundredth, if necessary. Round the following numbers to 1 decimal place.a)27.564b)978.299c)42.935d)8.99