Use the drawing tool(s) to form the correct answers on the provided grid. Consider the function g. For the x-value given in the table, determine the corresponding values of g(x) and plot each point on the graph.

Use The Drawing Tool(s) To Form The Correct Answers On The Provided Grid. Consider The Function G. For

Answers

Answer 1

Answer:

(-2,-12), (-1,-6), (0,-3) and (1,-3/2)

Step-by-step explanation:

g(x) = -3(1/2)^x

Putting values of x

x     g(x)

-2    -3(1/2)^-2 = -12

-1     -3(1/2)^-1 = -6

0     -3(1/2)^0 = -3

1      -3(1/2)^1 = -3/2

Now, making the graph we will plot

(-2,-12), (-1,-6), (0,-3) and (1,-3/2)

The graph is shown in figure below.

Use The Drawing Tool(s) To Form The Correct Answers On The Provided Grid. Consider The Function G. For
Answer 2
Final answer:

To find g(x) values, substitute the x-values into the function equation. Calculate the result which gives you the y-value (g(x)) for each x-value. Plot these pairs of values on a graph to show the function's behavior.

Explanation:

To find the corresponding values of the function g(x), you need to substitute the x-values given into the function equation of g. For instance, if g(x) is a linear function given by y=3x+9, when x=1 the value of g(x) is 3*1+9=12, and this is the y-coordinate of the point plotted on the graph. Repeat this process with all the given x-values to get the corresponding y-values. Afterwards, plot all the (x, g(x)) pairs on the coordinate grid. The points are found at the intersection of the x and y (g(x)) values on the grid. After plotting, you can connect the points to give a graphical representation of the dependence of y on x.

Learn more about Plotting functions here:

https://brainly.com/question/28708660

#SPJ11


Related Questions

r=2sec(theta) converted into a cartesian equation

Answers

[tex]\bf r=2sec(\theta )\qquad \begin{cases} x=rcos(\theta )\\ \frac{x}{r}=cos(\theta ) \end{cases}\qquad \implies r=2\cdot \cfrac{1}{cos(\theta )}\implies r=\cfrac{2}{~~\frac{x}{r}~~} \\\\\\ r=\cfrac{\frac{2}{1}}{~~\frac{x}{r}~~}\implies r=\cfrac{2r}{x}\implies x=\cfrac{2~~\begin{matrix} r \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{~~\begin{matrix} r \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\implies x=2[/tex]

rectangle with a side length of 11" and a diagonal of 14" what is the perimeter

Answers

Answer:

10sqrt3+22

Step-by-step explanation:

Ok, let us imagine it as a sort of rectangle split upon its diagonal.

Using that, we can Pythag it out,

11^2+b^2=14^2

121+b^2=196

b^2=75

b=sqrt75

b=5sqrt3

Ok, using this info, we find the perimeter,

5sqrt3+5sqrt3+11+11

10sqrt3+22

The answer is 10sqrt3+22

Hello!

The answer is:

The perimeter of the rectangle is equal to 39.32".

[tex]Perimeter=39.32in[/tex]

Why?

Since we are working with a rectangle, we can use the Pythagorean theorem to find the missing side of the rectangle and calculate its perimeter. We must remember that we can divide a rectangle into two equal right triangles.

According to the Pythagorean Theorem, we have:

[tex]a^{2}=b^{2}+c^{2}[/tex]

Where:

a, represents the hypotenuse of the triangle which is equal to the diagonal of the given rectangle (14")

b and c are the other sides of the triangle.

Now, let be "a" 14" and "b" 11"

So, solving we have:

[tex]a^{2}=b^{2}+c^{2}[/tex]

[tex]14^{2}=11^{2}+c^{2}[/tex]

[tex]14^{2}-11^{2}=c^{2}[/tex]

[tex]14^{2}-11^{2}=c^{2}\\\\c=\sqrt{14^{2} -11^{2} }=\sqrt{196-121}=\sqrt{75}=8.66in[/tex]

Now, that we already know the the missing side of the rectangle, we can calculate the perimeter using the following formula:

[tex]Perimeter=2base+2length\\\\Perimeter=2*11in+2*8.66in=22in+17.32in=39.32n[/tex]

Hence, we have that the perimeter of the rectangle is equal to 39.32".

Have a nice day!

3
[tex]( - x + 12) - ( - 4x + 2)[/tex]

Answers

Answer:

3x+10

Step-by-step explanation:

( - x + 12) - (  - 4x + 2)

Distribute the minus sign

( - x + 12) + 4x - 2

Combine like terms

3x +10

What is the radius of this circle if the circumference is 183 cm?

Answers

Answer:

29.1 cm

Step-by-step explanation:

Circumference of a circle is:

C = 2πr

Given that C = 183 cm:

183 = 2πr

r = 183 / (2π)

r ≈ 29.1 cm

Determine if parallel, perpendicular, or neither.

3y+4x=12
-6y=8x+1

Answers

They are parallel

You have to put the two equations into slope-intercept form to figure out if they are parallel or perpendicular.

Slope-intercept: y=mx+b

The first equation in slope intercept form is: y = -4/3x + 4
Slope of -4/3

The second equation in slope intercept form is: y = -4/3x - 6
Slope of -4/3

Since the slopes are equal and the y-intercepts are different, the two lines are parallel

~~hope this helps~~

(50 Points)

Drag each description to the correct location on the table. Each description can be used more than once.

Some systems of equations and their graphs are given in the table. For each system, place the description(s) in the box that correctly describe the type of system shown.

Please helppppp :((((​

Answers

3x+y=3 is the red line and
6x+2y=-4 is the blue line
I don’t know what descriptions you were given but these two equations are in standard form. They are also parallel to one another and have a negative slope
3x+y=3 in slope form is y=-3x+3
6x+2y=-4 in slope form is y=-3x-2
Hope this helps

Answer:3x+y=3 is the red line.

6x+y=-4 is the blue line.

Step-by-step explanation:I answer it on the test it is right..

Solve: ( Brainliest ) -- TIME LIMIT: 8:00 minutes

2/3·z=10/9

Answer in proper and improper

Answers

Answer:

z = 5/3 or 1 2/3

Step-by-step explanation:

2/3·z=10/9

Multiply each side by 3/2

3/2*2/3·z=10/9*3/2

z = 30/18

We can simplify by dividing the top and bottom by 6

z = 5/3

Changing to a mixed number

z =1 2/3

Answer:

1⅔ [OR 5⁄3]

Step-by-step explanation:

2 × ? = 10

---------------

3 × ? = 9

That would be 1⅔.

I am joyous to assist you anytime.

sin y +cos y + tan y sin y = sec y +cos y tan y. Verify the Identity. Show all Steps!

Answers

[tex]\bf sin(y)+cos(y)+tan(y)sin(y)=sec(y)+cos(y)tan(y) \\\\[-0.35em] ~\dotfill\\\\ sin(y)+cos(y)+tan(y)sin(y)\implies sin(y)+cos(y)+\cfrac{sin(y)}{cos(y)}\cdot sin(y) \\\\\\ sin(y)+cos(y)+\cfrac{sin^2(y)}{cos(y)}\implies \stackrel{\textit{using the LCD of cos(y)}}{\cfrac{sin(y)cos(y)+cos^2(y)+sin^2(y)}{cos(y)}} \\\\\\ \cfrac{sin(y)cos(y)+\stackrel{cos^2(y)+sin^2(y)}{1}}{cos(y)}\implies \cfrac{sin(y)cos(y)+1}{cos(y)} \\\\\\ \cfrac{sin(y)}{cos(y)}\cdot cos(y)+\cfrac{1}{cos(y)}\implies tan(y)cos(y)+sec(y)[/tex]

Solve for x. Write the smaller solution first, and the larger solution second. (x-10)^2-1=0

Answers

Answer:

[tex]x_1 = 9[/tex] and [tex]x_2 = 11[/tex].

Step-by-step explanation:

Start by adding 1 to both sides of this equation.

[tex](x - 10)^{2} = 1[/tex].

The square of what number or numbers will lead to the number "1"? It turns out that not only [tex]1^{2} = 1[/tex], but [tex](-1)^{2}= 1[/tex] as well. In other words, the value [tex](x - 10)[/tex] can be either 1 or -1. Either way, the equation is still going to hold. That's the reason why there are two solutions to this equation.

Consider the case when [tex]x - 10 = 1[/tex]. Add 10 to both sides of the equation. [tex]x = 11[/tex].

Now, consider the case when [tex]x - 10 = -1[/tex]. Again, add 10 to both sides of the equation, [tex]x = 9[/tex].

Order the two solutions in an increasing order:

[tex]x_1 = 9[/tex],[tex]x_2 = 11[/tex].

Simplify the expression.
-81 = (-9)

Answers

Answer:

it must be 9

Step-by-step explanation:

it is a simple division.

Match the terms to their definition. 1. dispersion a data value that is far from the others 2. inter-quartile range how data is distributed 3. lower quartile the difference between the largest and smallest of the middle 50% of the data set 4. outlier the median of the lower half of the data set; a value which 25% of the data set falls below 5. percentile the median of the upper half of the data set; a value which 75% of the data set falls below 6. range a value below which a certain percentage of the data set falls; the median is the 50th percentile 7. upper quartile the difference between the largest and smallest of the numbers in a set

Answers

Answer:

1. Dispersion: how data is distributed

2. Inter quartile range:the difference between the largest and smallest of the middle 50% of the data set

3. Lower Quartile:the median of the lower half of the data set; a value which 25% of the data set falls below

4. Outlier:a data value that is far from the others

5. Percentile: a value below which a certain percentage of the data set falls; the median is the 50th percentile.

6. Range:the difference between the largest and smallest of the numbers in a set

7. Upper Quartile:the median of the upper half of the data set; a value which 75% of the data set falls below

Final answer:

In statistics, 'dispersion' refers to the distribution of data, the 'inter-quartile range' is the spread of the middle 50% of data, 'lower quartile' (Q1) is the value below which 25% of data falls, an 'outlier' is a data point far from the others, 'percentile' is a value below a certain percentage of data, 'range' is the difference between the largest and smallest data values, and 'upper quartile' (Q3) is the value below which 75% of the data falls.

Explanation:

To correctly match the terms to their definitions from the provided options:

Dispersion is matched to 'how data is distributed.'

Inter-quartile range (IQR) is 'the difference between the largest and smallest of the middle 50% of the data set.'

Lower quartile (also known as the first quartile or Q1) is 'the median of the lower half of the data set; a value which 25% of the data set falls below.'

Outlier is 'a data value that is far from the others.'

Percentile is 'a value below which a certain percentage of the data set falls; the median is the 50th percentile.'

Range is 'the difference between the largest and smallest of the numbers in a set.'

Upper quartile (also known as the third quartile or Q3) is 'the median of the upper half of the data set; a value which 75% of the data set falls below.'

Find the equation of the line that
is perpendicular to y =1/6 x + 3
and contains the point (-3,23).​

Answers

Answer:

y = - 6x + 5

Step-by-step explanation:

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

y = [tex]\frac{1}{6}[/tex] x + 3 ← is in slope- intercept form

with slope m = [tex]\frac{1}{6}[/tex]

Given a line with slope m then the slope of a line perpendicular to it is

[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{\frac{1}{6} }[/tex] = - 6, hence

y = - 6x + c ← is the partial equation of the perpendicular line.

To find c substitute (- 3, 23) into the partial equation

23 = 18 + c ⇒ c = 23 - 18 = 5

y = - 6x + 5 ← equation of perpendicular line

Find the final amount for a $750 investment at 5.25% interest compound semiannually for 25 years

Answers

Answer:

=$2739.81

Step-by-step explanation:

To find the total amount if the interest is compounded, we use the compound interest formula.

A=P(1+R/100)ⁿ

A is the amount, P- principal, is the invested amount R is the % interest rate, n is the number if periods.

If compounded semi-annually, it means we have two periods in 1 year

The rate is also divided by 2

Thus 25 years have (25×2) = 50 periods.

A= 750(1+5.25/200)⁵⁰

=750(1.02625)⁵⁰

=$2739.81

a line passes through (3,-2) and (6,2). write an equation in point-slope form. rewrite the equation in standard form ​

Answers

again, bearing in mind that standard form for a linear equation means

• all coefficients must be integers, no fractions

• only the constant on the right-hand-side

• all variables on the left-hand-side, sorted

• "x" must not have a negative coefficient

[tex]\bf (\stackrel{x_1}{3}~,~\stackrel{y_1}{-2})\qquad (\stackrel{x_2}{6}~,~\stackrel{y_2}{2}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{2-(-2)}{6-3}\implies \cfrac{2+2}{6-3}\implies \cfrac{4}{3} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-(-2)=\cfrac{4}{3}(x-3)\implies y+2=\cfrac{4}{3}x-4 \\\\[-0.35em] ~\dotfill[/tex]

[tex]\bf y=\cfrac{4}{3}x-6\implies \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{3}}{3(y)=3\left( \cfrac{4}{3}x-6 \right)}\implies 3y=4x-18 \\\\\\ -4x+3y=-18\implies \stackrel{\textit{standard form}}{4x-3y=18}[/tex]

Which numbers are irrational? Check all that apply

Answers

Final answer:

Irrational numbers cannot be expressed as a fraction or ratio of two integers and have decimal representations that go on forever without repeating.

Explanation:

Irrational numbers are numbers that cannot be expressed as a fraction or ratio of two integers. They are decimal numbers that go on forever without repeating. Examples of irrational numbers include π, √2, and √3. These numbers cannot be expressed as a simple fraction or as a terminating or repeating decimal.

What does h(40)=1820 mean in terms of the problem ? Help please

Answers

Final answer:

The notation h(40)=1820 means that the function h produces an output of 1820 when the input is 40, although additional context is needed to determine what h represents specifically in this scenario.

Explanation:

The expression h(40)=1820 typically means that a function h is being evaluated at the input value of 40, and the output is 1820. This could represent a variety of contexts, such as the height of a rocket in meters at 40 seconds after launch, the amount of money saved after 40 weeks, or any other situation described by a function where the variable h depends on the number 40. Without additional context, it's impossible to say precisely what 1820 refers to, but it is the result of the function h when the input is 40.

What type of number can be written as a fraction a over b, where a and b are integers and b is not equal to zero?

Answers

It could be any fraction really. Some examples are 5/6, 7/9 or 12/24. It doesn’t really matter what the fraction ks

Answer:

This is the definition of rational number.

These include: Integers, Terminating Decimals, Repeating Decimals, or Proper, Improper, and Mixed Fractions where each part is an integer.  

Step-by-step explanation:

This is the definition of rational number.

Here are some examples of rational number:

-3  (negative integers are included because they can be rewritten; here -3=-3/1)

5 (positive integers are included because they can be rewritten; here 5=5/1)

0 (neutral integers are included also because 0/4 or 0/1 are still 0)

5/3 (impropert fractions where top and bottom are integers; this is already written in the form required)

1   2/3  (mixed fractions because they can rewritten as improper fractions with top and bottom as integers; example here this 5/3)

2/5  (proper fractions where top and bottom are integers; this is already written in the form required)

.55555555555...=[tex]. \overline{5}[/tex] (repeating decimals; example this one can be written as 5/9)

.23 (terminating decimals; example this can be written as 23/100 )

classify XYZ.

A. Scalene triangle
B. Right triangle
C. Isosceles triangle
D. Equilateral triangle ​

Answers

Answer:

Scalene Triangle

Step-by-step explanation:

By definition, scalene triangles have 3 sides of unequal length.

FYI,

Right Triangle : triangle with one of the angles = 90°

Isosceles Triangles: Triangle with 2 sides of the same length.

Equilateral triangle: Triangle with 3 sides of the same length.

Identify the restrictions on the domain of f(x) = quantity x plus 5 over quantity x minus 2.

Answers

The restriction on the domain of the function [tex]f(x) = {x + 5}/{x - 2}.[/tex] is that x cannot be equal to 2, since it would make the denominator zero, which is undefined in real numbers.

The student is asking to identify the restrictions on the domain of the function [tex]f(x) = {x + 5}/{x - 2}.[/tex] The domain of a function includes all the values that x can take for which the function is defined. In the case of a rational function, any values that make the denominator zero must be excluded from the domain since division by zero is undefined.

In this function, the denominator is x - 2. Therefore, the value that makes the denominator zero is x = 2. To identify the restrictions on the domain of [tex]f(x) = {x + 5}/{x - 2}.[/tex] we set the denominator equal to zero and solve for x:

x - 2 = 0x = 2

Hence, the only restriction on the domain of this function is that x cannot be 2. So the domain of f(x) is all real numbers except x = 2.

Sin2x=______


A.2sinxcosx

B.1/2(cos(a-b)-cos(a+b))

C.1-2sin^2x

D.2sinx+2cosx

Answers

Answer:

A.2sinxcosx

Step-by-step explanation:

We know the trig identity

Sin (2a) = 2 sin a cos a

sin (2x) = 2 sin x cos x

Answer:

2sinxcosx

Step-by-step explanation:

A P E X

All rhombuses are. Parallelograms square rectangules quadrilaterals

Answers

Step-by-step explanation:

Look at the picture.

All rhombuses are

parallelograms

quadrilaterals

a^3b^-2c^-1d if a=2 b=4 c=10 d=15 express as a reduced fraction

Answers

[tex]\bf a^3b^{-2}c^{-1}d\implies \cfrac{a^3d}{b^2c}\qquad \begin{cases} a=2\\ b=4\\ c=10\\ d=15 \end{cases}\implies \cfrac{2^3\cdot 15}{4^2\cdot 10}\implies \cfrac{120}{160}\implies \cfrac{3}{4}[/tex]

What is the volume of the triangular prism shown below? PLEASE HELP 10 points

Answers

Answer:

270

Step-by-step explanation:

base area=18

18*15=270

The volume of the triangular prism is equal to [tex]270[/tex] cu. units.

What is volume?

" Volume is defined as the total space occupied by a three-dimensional object."

Formula used

Volume of a triangular prism = Area of the base × height

Area of the base [tex]= \frac{1}{2} \times base \times height[/tex]

According to the question,

Given dimensions,

Base of triangle [tex]= 9 units[/tex]

Height of the triangle [tex]=4 units[/tex]

Height of the triangular prism [tex]= 15 units[/tex]

Substitute the value in the formula to get the area of the base we have,

Area of the base [tex]= \frac{1}{2}\times 9\times 4[/tex]

                             [tex]= 18 square units[/tex]

Volume of a triangular prism [tex]= 18 \times 15[/tex]

                                                  [tex]= 270 cu.units[/tex]

Hence, the volume of the triangular prism is equal to [tex]270[/tex] cu. units.

Learn more about volume here

https://brainly.com/question/1578538

#SPJ2

What is the inverse of the function f(x) = 2x + 17

Answers

To find the inverse of a function switch the place of y (aka f(x) ) with x. Then solve for y.

Original equation:

y = 2x + 17

Switched:

x = 2y + 17

Solve for y by isolating it:

x - 17 = 2y + 17 - 17

x - 17 = 2y

(x - 17)/2 = 2y/2

[tex]\frac{1}{2}x-\frac{17}{2}= y[/tex]

Hope this helped!

~Just a girl in love with Shawn Mendes

the area of this rectangle is 4x^2.what does the coefficient 4 mean in terms of the problem?

Answers

Answer:

If the width of the rectangle is x than the length is 4x because 4x*x is 4x^2

Step-by-step explanation:

What is the solution to the system of equations graphed below?

А.(6, 0)
B.(1, 5)
С.(0.3)
D.(0,6)

Answers

Answer:

B

Step-by-step explanation:

The solution to a system of equations given graphically is at the point of intersection of the 2 lines, that is

Solution = (1, 5 ) → B

[tex]\huge{\boxed{\text{(1, 5)}}}[/tex]

All you need to do is find where the intersection of the lines is located.

Count how many units to the right. [tex]1[/tex] This is our [tex]x[/tex] value.

Count how many units up. [tex]5[/tex] This is our [tex]y[/tex] value.

Help!!
Which of the following options is the cheapest per month over all? Assume a month has 30 days
A. rent 11.95 a day
B Lease 149.00 a month 3180 due at signing
C. Buying 16,000.00
D Finance 389.00 /month

Answers

Answer:

The correct option is A.

Step-by-step explanation:

We need to find the cheapest per month over all.

Assume a month has 30 days.

In option A:

Rent = 11.95 a day

Monthly rent = 11.95 × 30 = 358.5

Total renting amount is 358.5.

In option B:

Lease = 149.00 a month 3180 due at signing

Total amount = 149 + 3180 = 3329

Total leasing amount is 3329.

In option C:

Buying = 16,000

In option D:

Finance = 389.00 /month

The cheapest amount for a month is 358.5 .Therefore the correct option is A.

Answer: renting a car

Step-by-step explanation:

The longer base of an isosceles trapezoid measures 18 ft. The nonparallel sides measure 8 ​ft, and the base angles measure 75 degrees.
​a) Find the length of a diagonal.
​b) Find the area.

Answers

Answer:

a) The length of the diagonal is 17.71 feet

b)  The area of the trapezoid is 123.14 feet²

Step-by-step explanation:

* Lets explain how to solve the problem

- Look to the attached figure

- ABCD is an isosceles trapezoid

∵ DC is the longer base with length 18 feet

∵ AD and BC are the two non-parallel sides with length 8 feet

∵ ∠ ADC and ∠ BCD are the bases angles with measure 75°

- AE and BF are ⊥ DC

# In Δ BFC

∵ m∠BFC = 90° ⇒ BF ⊥ CD

∵ m∠C = 75°

∵ BC = 8

∵ sin∠C = BF/BC

∴ sin(75) = BF/8 ⇒ multiply both sides by 8

BF = 8 × sin(75) = 7.73

∵ cos∠C = CF/BC

∴ cos(75) = CF/8 ⇒ multiply both sides by 8

CF = 8 × cos(75) = 2.07

# In Δ BFD

∵ m∠BFD = 90°

∵ DF = CD - CF

DF = 18 - 2.07 = 15.93

∵ BD = √[(DF)² + (BF)²] ⇒ Pythagoras Theorem

BD = √[(15.93)² + (7.73)²] = 17.71

a)

∵ BD is the diagonal of the trapezoid

* The length of the diagonal is 17.71 feet

b)

- The area of any trapezoid is A = 1/2 (b1 + b2) × h, where b1 and b2

  are the barallel bases and h is the height between the two bases

∵ b1 is CD

∴ b1 = 18

∵ b2 is AB

∵ AB = CD - (CF + DE)

∵ ABCD is an isosceles trapezoid

∴ CF = DE

AB = 18 - (2.07 + 2.07) = 13.86

- BF is the perpendicular between AB and CD

∴ BF = h

h = 7.73

∵ A = 1/2 (18 + 13.86) × 7.73 = 123.14

* The area of the trapezoid is 123.14 feet²

Which equation shows the variable terms isolated on one side and the constant terms isolated on the other side for the equation 3x-5=-2+10

Answers

Final answer:

To isolate the variable terms on one side and the constant terms on the other side of the equation 3x - 5 = -2 + 10, add 2 to both sides, simplify to 3x - 3 = 10, then add 3 to both sides to get the final simplified equation 3x = 13.

Explanation:

The equation 3x - 5 = -2 + 10 needs to be rearranged to isolate the variable terms on one side and the constant terms on the other. To do this, follow these steps:

Add 2 to both sides to move the constant term from the right to the left side: 3x - 5 + 2 = 10.Simplify both sides: 3x - 3 = 10.Add 3 to both sides to completely isolate the constant terms on one side: 3x = 10 + 3.Simplify the equation: 3x = 13.

Now, we have successfully isolated the variable terms (3x) on one side of the equation and the constant terms (13) on the other side.

Kelly drinks 0.5 liters of coffee and 0.3 liters of yogurt drink at breakfast. How much did she drink in total in milliliters?

Answers

Answer:

800 milliliters

Step-by-step explanation:

we know that

To find out the total amount Kelly drank, add the amount of coffee and the amount of yogurt and convert the result to milliliters.

so

0.5+0.3=0.8 liters

Remember that

1 liter= 1,000 milliliters

so

0.8 liters=0.8*1,000=800 milliliters

Answer:

800 mL

Step-by-step explanation:

Because we know that

1 liter equals 1000 milliliters

So 0.5+0.3=0.8

0.8 Liters=0.8*1,000 ML

Other Questions
an object in uniform circular motion must be changing its speed in order move in a circular path Is there a difference in how Microsoft Edge reading mode and safari reader display their content? A floor refinishing company charges $1.83 per square foot to strip and refinish a tile floor for up to 1000 square feet. There is an additional charge of $350 for toxic waste disposal for any job which includes more than 150 square feet of tile.A) Express the cost, y, of refinishing a floor as a function of the number of square feet, x, to be refinished.b) Graph the function, give the domain and range. Witch inequality represents the sentence below two or more than a number is less than 14 HELPPPPPPPP During the 1980s, America attempted to prevent the spread of communism to which of the following nations?A: China and South AfricaB: El Salvador and NicaraguaC: Iran and AfghanistanD: Lebanon and Grenada Match the subtraction expressions with their answers. The functions q and r are defined as follows.q(x) = -2x +1r(x) = 2x^2 - 1Find the value of . q(r(4)) Why does magnesium oxide have a high melting point? Please give as much information as possible? Please answer this correctly What is the center of the circle shown below? If P is parentheses and M is Multiplication and S is subtraction, what is EDA In PEMDAS? Very confused! In financial analysis ,which type of degree is usually the standard requirement for employment?Bachelor'sB.master'sC.doctorate what are the full forms of RADAR and SONAR In movies that focus on war (e.g., Born on the Fourth of July, Apocalypse Now, First Blood), soldiers who have returned from the frontlines often struggle with overwhelming anxiety, hypervigilance, depression, and flashbacks. In many cases, these characters abuse alcohol, are suicidal, and have a strained or angry relationship with spouses. These characters have? Which best descnbes how the excerpt appeals to readers'emotions ?Read the excerpt from "Save the Redwoods."Another, one of the finest in the grove, more than threehundred feet high, was skinned alive to a height of onehundred and sixteen feet from the ground and the barksent to London to show how fine and big that Calaverastree was as sensible a scheme as skinning our great menwould be to prove their greatnessThe excerpt provides facts about the tree, whichimpresses readers' scientific mindsThe excerpt describes how the tree traveled to London,which excites the readers' sense of adventureThe excerpt compares the tree to a person, whichmakes readers feel sympathetic toward the treeThe excerpt explains how to skin a tree, which makesreaders feel awed at the height of the tree. In an apartment the interior air temperature is 20C and exterior air temperatures is 5C. The wall has inner and outer surface temperatures of 16C and 6C, respectively. The inner and outer convection heat transfer coefficients are 5 and 20 W/m2.K, respectively. Calculate the heat flux from the interior air to the wall, from the wall to the exterior air, and from the wall to the interior air. Is the wall under steady-state conditions? Which graph represents the function f(x) = x^2 + 5? Federal courts usually hear disputes between family members or cases involving traffic accidents.TrueFalse Who was the 6th president of the United States? The Truman doctrine called for the United States to A. Maintain a military alliance with the Soviet union after world war IIB. Contain or limit Soviet expansion to the countries of Eastern Europe that the Soviet occupied after world war IIC. Provide economic aid for the reconstruction of the nations of western Europe which had been devastated by World War IID. Limit military spending at the world war II