________What is the main role of dispersed phase in ceramic matrix composites? a)- to increases yield strength b)-to increase ultimate tensile strength c)-to increase plain strain fracture toughness d)-to reduce hardness

Answers

Answer 1

Answer: b) to increase the ultimate tensile strength

Explanation: Ceramic matrix composites(CMC) are the materials which consist of ceramic material as well as composites .There are two pats present in it - matrix part which is present for holding the material together and reinforcement part which provides the toughness to the material. When the ceramic matrix composites have the dispersed phase,it is basically due to the increasing of the toughness of the material and hence increasing the tensile strength .


Related Questions

We can recycle glass as many time as we want. a)-True b)-False

Answers

Answer: True

Explanation: Yes , we can recycle glass endlessly, as many times as we want  without the degradation of quality and purity factor because they are made from the widely available domestic components for example:- sand , limestone etc. These material are responsible for the successful recycling process of glass which does not produce any loss.

As temperature decreases a ductile material can become brittle - ductile-to-brittle transition

Answers

Answer:

Yes ,at low temperature ductile material behaves like brittle.

Explanation:

Yes,as temperature decreases a ductile material can become brittle.

In metals ductile to brittle transition temperature is around 0.1 to 0.2 Tm(melting point temperature) and in ceramics  ductile to brittle transition temperature is around 0.5 to 0.7 Tm(melting point temperature) .

We can easily see that from graph between fracture toughness and  temperature.In the graph when temperature is low then the ductile material is behaving like brittle material.But when temperature is above a particular value then material behaves like ductile.

 

Thin film deposition is a process where: a)-elemental, alloy, or compound thin films are deposited onto a bulk substrate! b)-Phosphatization is also applied c)-Zinc plating is also applied d)-None of the above

Answers

Answer:

(A) elemental, alloy, or compound thin films are deposited on to a bulk substrate

Explanation:

In film deposition there is process of depositing of material in form of thin films whose size varies between the nano meters to micrometers onto a surface. The material can be a single element a alloy or a compound.

This technology is very useful in semiconductor industries, in solar panels in CD drives etc

so from above discussion it is clear that option (a) will be the correct answer

Water, in a 150 in^3 rigid tank, initially has a temperature of 70°F and an enthalpy of 723.5 Btu/lbm. Heat is added until the water becomes a saturated vapor. Calculate: a) The initial quality of the water b) The total mass of the water c) The temperature of the water at the final state.

Answers

Answer:

a)initial quality of water 0.724.

b)mass of water =2.45 kg

c)T=70°F

Explanation:

h=732.5 Btu/lbm

 h=763.33 KJ/kg      (1 Btu=1.05 kj)

T=70°F⇒T=21.1°C

[tex]V=150 in^3=0.002458m^3[/tex]

(a)From steam table

Properties of saturated steam at 21.1°C  

 [tex]h_f= 88.56\frac{KJ}{Kg} ,h_g= 2539.49\frac{KJ}{Kg}[/tex]

To find dryness fraction

[tex]h=h_f+x(h_g-h_f)\frac{KJ}{Kg}[/tex]

[tex]763.33=88.56+x(2539.49-88.56)\frac{KJ}{Kg}[/tex]

x=0.27

So initial quality of water 0.724.

(b)

[tex]v=v_f+x(v_g-v_f)\frac{m^3}{Kg}[/tex]

where v is specific volume

From steam table at 21.1°C  

[tex]v_f= 0.001\frac{m^3}{Kg} ,v_g= 54.13\frac{m^3}{Kg}[/tex]

V=[tex]m_f\times v_f[/tex]

0.002458=[tex]m_f\times 0.001[/tex]

So mass of water =2.45 kg

(c)

Actually water will take latent heat ,it means that heating of will take place at constant temperature and constant pressure.So we can say that final temperature of water will remain same (T=70°F).

Two one-kilogram bars of gold are initially at 50°C and 300°C. The bars are brought in contact with each other. What is their final temperature, the entropy change of each block, and the total entropy generation in the process.

Answers

Given:

[tex]T_{1}[/tex] = 50°C = 273+50 =323 K

[tex]T_{2}[/tex] = 300°C = 273+300 =573 K

Solution:

We know that:

specific heat for gold, c = 0.129 J/g°C

Also, change in entropy, ΔS is given by:

[tex]\Delta S = cln\frac{T_{f}}{T_{i}}[/tex]

After the bars brought in contact with each other,

final temperature, [tex]T_{f}[/tex] = [tex]\frac{T_{1}+T_{2}}{2}[/tex]

final temperature, [tex]T_{f}[/tex] = [tex]\frac{323+573}{2}[/tex] = 448K

Now, entropy for first gold bar, using eqn-1

[tex]\Delta S = cln\frac{T_{f}}{T_{1}}[/tex]

[tex]\Delta S_{1} = 0.129ln\frac{448}{323}[/tex] =0.042 J/K

[tex]\Delta S_{2}[/tex] = 0.129ln [tex]\frac{448}{573}[/tex] = - 0.032 J/K    

Total entropy generation,

[tex]\Delta S_{1}[/tex] = [tex]\Delta S_{1}[/tex] + [tex]\Delta S_{2}[/tex]

[tex]\Delta S[/tex] = 0.042 + (- 0.032) = 0.010 J/K

A_____ transducer is a device that can convert an electronic controller output signal into a standard pneumatic output. A. pneumatic-to-current (P/I) B. voltage-to-pneumatic (V/P) C. current-to-pneumatic (I/P) D. pneumatic-to-voltage (P/V)

Answers

Answer:

The correct answer is

option C. current to pneumatic (V/P)

Explanation:

A current to pneumatic controller is  basically used to receive an electronic signal from a controller and converts it further into a standard pneumatic output signal which is further used to operate a positioner or control valve. These devices are reliable, robust and accurate.

Though Voltage and current to pressure transducers are collectively called as electro pneumatic tranducers and the only electronic feature to control output pressure in them is the coil.

An aircraft increases its speed by 2% in straight and level flight. If the total lift remains constant determine the revised CL as a percentage of its original value to three significant figure

Answers

Answer:

96.1%

Explanation:

We know that lift force

[tex]F_L=\dfrac{1}{2}C_L\rho AV^2[/tex]

                                                                    ------------(1)

Where [tex]C_L[/tex] is the lift force coefficient .

          ρ is the density of fluid.

         A is the area.

        V is the velocity.

Now when speed is increased by 2 % and all other parameter remains constant except [tex]C_L[/tex] .

Let;s take new value of lift force coefficient is [tex]C_L'[/tex] .

[tex]F_L=\dfrac{1}{2}C_L'\rho A(1.02V)^2[/tex]

                                                                         -----------(2)

Now from equation 1 and 2

[tex]C_L\times V^2=C_L'\times1.0404 V^2[/tex]

⇒[tex]C_L'=0.961C_L[/tex]

So we can say that revised value of  lift force coefficient is 96.1% of original value.

List the main activities of exploration??

Answers

Answer:  Exploration includes plethora of activities and depend upon the kind  of exploration a person is doing. But most include some of the basic activities like research , investigation, planning and execution.

Suppose we want to explore new petroleum sites then we would have to start with studying the geography of that area, then according to our research we will analyse the hot spots or the sector where probability of finding of oil field is highest, post that appropriate man power is skilled professionals, tools and machinery will be brought at the site so that execution can take place.

Which of the following describes the action of a capacitor? (a) creates a de resistance (b) converts ac into de (c) opposes changes in the flow of current (d) stores electrical energy

Answers

Answer:

From the multiple choices provided for the action of capacitor, option

(d) stores electrical energy

is correct

Explanation:

A capacitor is basically a two terminal device that stores electrical energy in the electric field in its vicinity. It is apassive element.

The property of a capacitor to store electrical energy or the effect of a capacitor is known as its capacitance. The capacitance of a capacitor is given by:

Q = CV or C = [tex]\frac{Q}{V}[/tex]

It is originally known as condensor and it can be said that a capacitor adds capacitance to the circuit.

What is Differential Analysis in fluid mechanics?

Answers

Answer:

Differential analysis is used when it is needed to determine the detail information of the flow i.e. pressure or stress variation along any point.

Explanation:

In fluid mechanics, sometime situation arise in which we need to determine in detail about flow characteristics like stress and pressure variation.

To find  these flow characteristics some relationship need to imply either at a point or at very small volume and analysis of flow at very small point is known as differential analysis.  

Example: pressure and shear stress variation in a line of the wing of a plane.

Why is it important (in the context of systems engineering management) to become familiar with analytical methods? Provides some specific examples.

Answers

Final answer:

Understanding analytical methods is essential in systems engineering for problem-solving and system comprehension, with real-world applications in areas like environmental monitoring.

Explanation:

The importance of analytical methods in systems engineering management is crucial for problem-solving and comprehending the physics of the situation. Analytical methods help in selecting the right system and developing solutions efficiently. For instance, in the field of environmental monitoring programs, the use of analytical methods aids in assessing system health and trends accurately.

Reliability is defined as the_______that a component or system will perform its intended function for a specific period of time.

Answers

Answer:

Probaility

Explanation:

The reliability of a component, system or unit can be defined as the probability that that component can operate for a certain period of time (mission time) without losing its function.

A properly installed window quilt can provide an additional insulation of R-4 to windows. For a window with a U-factor of 0.33, determine the percentage of heat lost for a quilt-covered win- dow compared to a bare window.

Answers

Answer:

Heat loss 67%.

Explanation:

We know that heat transfer

    Q=AUΔT

Where U is the overall heat transfer coefficient ,A is the area and ΔT is the temperature difference.

Now heat transfer in terms of U-factor

[tex] Q_1=AU_1ΔT[/tex]

[tex] Q_2=AU_2ΔT[/tex]

Given that temperature difference is same in both condition so

[tex]\dfrac{Q_1}{U_1}=\dfrac{Q_2}{U_2}[/tex]

[tex]\dfrac{Q_1}{Q_2}=\dfrac{U_1}{U_2}[/tex]

[tex] heat\ loss=\dfrac{Q_2-Q_1}{Q_1}[/tex]

[tex] heat\ loss=\dfrac{U_2-U_1}{U_1}[/tex]

Given that[tex]U_2=0.33U_1[/tex]

[tex] heat\ loss=\dfrac{0.33U_1-U_1}{U_1}[/tex]

Heat loss 67%.

What is an example of a linear actuator?

Answers

Answer and Explanation :

LINEAR ACTUATOR-In simple terms a linear actuator is a mechanical device that creates  motion in a straight line. Linear actuators are used in machine tools and industrial machinery, in computers peripherals such as drives and printers in valve and dampers and it is used where linear motion is required.

EXAMPLE OF LINEAR ACTUATOR: There are many types of motors that are used in a linear system these include DC MOTOR (with brush or brushless) STEPPER MOTOR a linear actuator can be used to operate a large valve in refinery. Hydraulic pump is an also a good example of linear actuator.

A solid cylinder is concentric with a straight pipe. The cylinder is 0.5 m long and has an outside diameter of 8 cm. The pipe has an inside diameter of 8.5 cm. The annulus between the cylinder ad the pipe contains stationary oil. The oil has a specific gravity of 0.92 and a kinematic viscosity of 5.57 x 10-4 m2/s. Most nearly, what is the force needed to move the cylinder along the pipe at a constant velocity of 1 m/s?

Answers

Answer :  

The force needed to move the cylinder is 25.6 N

Further explanation  

Given that,  

Length of the cylinder, l = 0.5 m  

Outer diameter of the cylinder, d = 8 cm = 0.08 m  

Outer radius of the cylinder, [tex]r=0.04\ m[/tex]  

Inside diameter of the pipe, d = 8.5 cm = 0.085 m  

Inside radius of the pipe, [tex]r=0.0425\ m[/tex]  

Specific gravity of the oil, [tex]\rho=0.92[/tex]  

Density of oil, [tex]d=\rho\times \rho_w[/tex]

Kinematic viscosity of the oil, [tex]v=5.57\times 10^{-4}\ m^2/s[/tex]  

Velocity of the cylinder, u = 1 m/s  

We need to find the force needed to move the cylinder. Let the force is F.  

Specific gravity is defined as the ratio of the density of the substance to the density of water.  

Kinematic viscosity is the acquired resistance of a fluid when there is no external force is acting except gravity. It is denoted by v.

Absolute viscosity is given by :

[tex]v=\dfrac{\mu}{d}[/tex]

Where, [tex]d[/tex] = density of oil

And [tex]d=\rho\times \rho_w[/tex] (density of oil = specific gravity × density of water )

[tex]d=0.92\times 10^3\ kg/m^3[/tex]

So,  

[tex]\mu=v\times d[/tex]..............(1)

[tex]\mu=5.57\times 10^{-4}\ m^2/s\times 0.92\times 10^3\ kg/m^3[/tex]

[tex]\mu=0.512\ Pa-s[/tex]

The separation between the cylinder and pipe is given by :

[tex]dy=\dfrac{d_p-d_c}{2}=\dfrac{8.5-8}{2}=0.25\ cm=0.0025\ m[/tex]

[tex]d_p\ and\ d_c[/tex] are diameter of pipe and cylinder respectively.  

The mathematical expression for the Newton's law of viscosity can be written as:  

[tex]\tau\propto\dfrac{du}{dy}[/tex]  

[tex]\tau=\mu\times \dfrac{du}{dy}[/tex]..........(2)  

Where  

[tex]\tau[/tex] = Shear stress, [tex]\tau=\dfrac{F}{A}[/tex]............(3)  

[tex]\mu[/tex] = viscosity  

[tex]\dfrac{du}{dy}[/tex] = rate of shear deformation

On rearranging equation (1), (2) and (3) we get :  

[tex]\dfrac{F}{A}=v\times \rho\times \dfrac{du}{dy}[/tex]...............(4)  

A is the area of the cylinder, [tex]A=2\pi rl[/tex]  

Equation (4) becomes :  

[tex]F=v\times \rho\times \dfrac{du}{dy}\times 2\pi rl[/tex]..............(5)

[tex]A=\pi d\times l[/tex]

[tex]A=\pi \times 0.08\ m\times 0.5\ m[/tex]

[tex]A=0.125\ m^2[/tex]

Now, equation (5) becomes :

[tex]F=(v\times \rho)\times \dfrac{du}{dy}\times 2\pi rl[/tex]

[tex]F=(0.512\ Pa-s)\times (\dfrac{1}{0.0025\ m})\times \times 0.125\ m^2[/tex]

F = 25.6 N

Learn more  

Kinematic viscosity : https://brainly.com/question/12947932

Keyword :  

Specific gravity, Kinematic viscosity, Area of cylinder, fluid mass density.  

A steel rod 6mm in diameter is stretched with a tensile force of 400N. Calculate the tensile stress experienced by the steel rod

Answers

Answer:

Tensile stress is 14.15 N/[tex]mm^{2}[/tex]

Explanation:

When any object is subjected to an external force, the body offers a resisting force which is equal and opposite to the external load. This resisting force is called stress. Thus stress is defined as the force acting perpendicular to the given cross sectional area of the object.

Mathematically,  stress , σ = [tex]\frac{force }{area}[/tex]

Given : Tensile force, F = 400 N

            Diameter of the rod, d = 6 mm

            Area of the rod is given by, A = [tex]\frac{\pi }{4}\times d^{2}[/tex]

                                                              = [tex]\frac{\pi }{4}\times 6^{2}[/tex]

                                                              =28.27 [tex]mm^{2}[/tex]

Therefore, the tensile tress is,   σ = [tex]\frac{force }{area}[/tex]

                                                        = [tex]\frac{400 }{28.27}[/tex]

                                                       = 14.149 N/[tex]mm^{2}[/tex]

                                                       [tex]\simeq[/tex] 14.15 N/[tex]mm^{2}[/tex]

Thus, tensile stress experieced by the rod is 14.15 N/[tex]mm^{2}[/tex]

What is the theoretical density in g/cm3 for Lead [Pb]?

Answers

Answer:

11.34 g/cm3

Explanation:

At room temperature, where it is in a solid state, it is 11.34 [tex]\frac{g}{cm^{3}}[/tex]. While at melting temperature, at 327.5 ° C, it is 10.66 [tex]\frac{g}{cm^{3}}[/tex]

Describe the operational principle of a unitary type air conditioning equipment with a suitable sketch.

Answers

Answer:

Operational Principle of a Unitary Type Air Conditioning Equipment:

A unitary air conditioning system is basically a room type air conditioning system which comprises of an outdoor unit, a compressor for compressing

coolant, a heat exchanger (outdoor) for heat exchange, an expander attached to the heat exchanger for expansion of coolant and a duct.

It continuously removes heat and moisture from inside an occupied space and cools it with the help of heat exchanger and condensor in the condensing unit and discharges back into the same occupied indoor space that is supposed to be cooled.

The cyclic process to draw hot air, cool it down and recalculation of ther cooled air keeps the indoor occupied space at a lower temperature needed for cooling at home, for industrial processes and many other purposes.

refer to fig 1

What do you understand by equilibrium of a system? What is meant by thermodynamic equilibrium? Explain in detail.

Answers

Answer:

Equilibrium of a system is defined as when the concentration of reactants and products of a chemical reaction are in equilibrium and their ratio does not vary. In another words we can say that, when the forward reaction rate is similar to the reverse reaction rate.

Thermodynamics equilibrium is defined as in an isolated system when there is no change in energy and entropy. It is determined by the its intensive properties like volume and pressure.  

A gas in a piston-cylinder asscmbly undcrgocs a process for which the rclationship bctwcen pressurc and volumc is pV^2=constant The initial pressurc is 1 bar, the initial volume is 0.4 m^3, and the final pressure is 9 bar. Determine the work for the process, in kJ constant.

Answers

Given:

[tex]pV^{2}[/tex] = constant                                   (1)

⇒ [tex]p_{1}V_{1}^{2} = p_{2}V_{2}^{2}[/tex]          (2)

[tex]p_{1} = 1 bar = 1\times 10^{5}[/tex]

[tex]p_{2} = 9 bar = 9\times 10^{5}[/tex]

[tex]V_{1} = 0.4 m^{3}[/tex]

[tex]V_{2} = ? m^{3}[/tex]

Solution:

Here, from eqn (1),  the polytropic constant is '2' ( Since, here [tex]pV^{n}[/tex] = [tex]pV^{2}[/tex] )

Now, using eqn (2), we get

[tex]V_{2}^{2} =\frac{p_{2}}{p_{1}}\times V_{1}^{2}[/tex]

putting the values in above eqn, we get-

[tex]V_{2}^{2} =\frac{9}{1}\times 0.4^{2}[/tex]

[tex]V_{2} = 1.2 m^{3}[/tex]

Now, work for the process is given by:

[tex]W = \frac{p_{2}V_{2} - p_{1}V_{1}}{1 - n}[/tex]                  (3)

where,

n = potropic constant = 2

Using Eqn (3), we get:

[tex]W = \frac{9\times 10^{5}\times 1.2 - 1\times 10^{5}\times 0.4}{1 - 2}[/tex]

W = - 240 kJ  

What is BCC unit cell and what is FCC unit cell? (10%) Sketch FCC and BCC unit cells by using a small dot to represent an atom.

Answers

Answer:

BCC is Body Centered Cubic structure and FCC is Face Centered Cubic structure.

Explanation:

BCC

In Body centered cubic structure, atoms exits at each corner of the cube and one atom is at the center of the cube. The total number of atoms that a BCC unit cell contains are 2 atoms and the coordination number of the BCC unit cell is 8, that is the number of neighbouring atoms. Packing factor which determines how loosely or closely a structure is packed by atoms is 0.68 for a BCC Unit cell. The packing efficiency is found to be 58%. Metals like tungsten, chromium, vanadium etc exhibit BCC structure.

          A face Centered cubic structure consists of an atom at each corner of the cube and an atom at each face center of the cube. The total number of atoms that a BCC unit cell contains are 4 atoms per unit cell and the coordination number of FCC is 12. Packing factor of a FCC unit cell is 0.74%, thus FCC structure is closely packed than a BCC structure. Metals like aluminium, nickel, cooper, cadmium, gold exhibits FCC structure.

                           

A light pressure vessel is made of 2024-T3 aluminum alloy tubing with suitable end closures. This cylinder has a 90mm OD, a 1.65mm wall thickness, and Poisson's ratio 0.334. The purchase order specifies a minimum yield strength pf 320 MPa. What is the factor of safety if the pressure-release valve is set at 3.5 MPa?

Answers

Given:

Outer Diameter, OD = 90 mm

thickness, t = 0.1656 mm

Poisson's ratio, [tex]\mu[/tex] = 0.334

Strength = 320 MPa

Pressure, P =3.5 MPa

Formula Used:

1).  [tex]Axial Stress_{max}[/tex] = [tex]P[\frac{r_{o}^{2} + r_{i}^{2}}{r_{o}^{2} - r_{i}^{2}}][/tex]

2). factor of safety, m = [tex]\frac{strength}{stress_{max}}[/tex]

Explanation:

Now, for Inner Diameter of cylinder, ID = OD - 2t

ID = 90 - 2(1.65) = 86.7 mm

Outer radius,  [tex]r_{o}[/tex] = 45mm

Inner radius,  [tex]r_{i}[/tex] = 43.35 mm

Now by using the given formula (1)

  [tex]Axial Stress_{max}[/tex] = [tex]3.5[\frac{45^{2} + 43.35^{2}}{45^{2} - 43.35^{2}}][/tex]

  [tex]Axial Stress_{max}[/tex] = [tex]3.5\times 26.78[/tex] =93.74 MPa

Now, Using formula (2)

factor of safety, m = \frac{320}{93.74} = 3.414

Air is entering a 4200-kW turbine that is operating at its steady state. The mass flow rate is 20 kg/s at 807 C, 5 bar and a velocity of 100 m/s. This air then expands adiabatically, through the turbine and exits at a velocity of 125 m/s. Afterwards the air then enters a diffuser where it decelerates isentropically to a velocity of 15 m/s and a pressure of 1 bar. Using the ideal gas model, determine, (a) pressure and temperature of the air at the turbine exit, in units of bar and Kelvin. (b) Entropy production rate in the turbine in units of kW/k, and (c) draw the process on a T-s Diagram.

Answers

Answer:

a)[tex]T_2=868.24 K[/tex] ,[tex]P_2=2.32 bar[/tex]

b) [tex]s_2-s_1=0.0206[/tex]KW/K

Explanation:

P=4200  KW ,mass flow rate=20 kg/s.

Inlet of turbine

 [tex]T_1[/tex]=807°C,[tex]P_1=5 bar,V_1=100 m/s[/tex]

Exits of turbine

 [tex]V_2=125 m/s[/tex]

Inlet of diffuser

[tex]P_3=1 bar,V_3=15 m/s[/tex]

Given that ,use air as ideal gas

R=0.287 KJ/kg-k,[tex]C_p[/tex]=1.005 KJ/kg-k

Now from first law of thermodynamics for open system at steady state

[tex]h_1+\dfrac{V_1^2}{2}+Q=h_2+\dfrac{V_2^2}{2}+w[/tex]

Here given that turbine is adiabatic so Q=0

Air treat ideal gas   PV=mRT, Δh=[tex]C_p(T_2-T_1)[/tex]

[tex]w=\dfrac{P}{mass \ flow\ rate}[/tex]

[tex]w=\dfrac{4200}{20}[/tex]

w=210 KJ/kg

Now putting the values

[tex]1.005\times (273+807)+\dfrac{100^2}{2000}=1.005T_2+\dfrac{125^2}{2000}+210[/tex]

[tex]T_2=868.24 K[/tex]

Now to find pressure

We know that for adiabatic [tex]PV^\gamma =C[/tex] and for ideal gas Pv=mRT

⇒[tex]\left (\dfrac{T_2}{T_1}\right )^\gamma=\left (\dfrac{P_2}{P_1}\right )^{\gamma -1}[/tex]

[tex]\left(\dfrac{868.24}{1080}\right )^{1.4}=\left (\dfrac{P_2}{5}\right )^{1.4-1}[/tex]

[tex]P_2=2.32 bar[/tex]

For entropy generation

[tex]s_2-s_1=1.005\ln\dfrac{868.24}{1080}-0.287\ln\dfrac{2.32}{5}[/tex]

[tex]s_2-s_1=0.00103[/tex]KJ/kg_k

[tex]s_2-s_1=0.00103\times 20[/tex]KW/K

[tex]s_2-s_1=0.0206[/tex] KW/K

A circular plate with diameter of 20 cm is placed over a fixed bottom plate with a 1 mm gap between two plates filled with Kerosene at 40 degree C, shown in the following figure. Find the torque needed to rotate the top plate at 5 rad/s. The velocity distribution in the gap is linear and the shear stress on the edge of the rotating plate can be neglected.

Answers

Answer:

T = 1.17 x [tex]10^{-3}[/tex] N-m

Explanation:

Given :

Gap between the two plates , dy = 1 mm

                                                  dy = 1 x [tex]10^{-3}[/tex] m

Angular velocity of the top plate , ω = 5 rad/s

Diameter of the plate, D = 20 cm

Radius of the plate, R = 10 cm

                                    = 0.1 m

Temperature of the kerosene = 40°C

Viscosity of kerosene at 40°C = 0.0015 Pa-s

Now let us take a small elemental ring of thickness dr at a radius r.

Therefore, area of this elemental ring of dr = 2πrdr

Now linear velocity at radius r = ω x r

                                                   5r m/s

Now applying Newtons law of viscosity we get,

Shear stress, τ = μ.[tex]\frac{du}{dy}[/tex]

   [tex]\Rightarrow \frac{F_{s}}{A}=\mu .\frac{du}{dy}[/tex]

  [tex]\Rightarrow \frac{F_{s}}{A}=\mu .\frac{5r-0}{1\times 10^{-3}}[/tex]

  [tex]\Rightarrow \frac{F_{s}}{A}=\mu \times 10^{3}\times 5r[/tex]

  [tex]F_{s}=\mu \times 10^{3}\times 5r\times 2\pi rdr[/tex]

  [tex]F_{s}=5 \times 10^{3}\times \mu \times r\times 2\pi rdr[/tex]

  [tex]F_{s}=\frac{18849}{400}\times r^{2}dr[/tex]

Now we know torque due to small strip,

 dT = [tex]F_{s}[/tex] x r

 dT = [tex]\frac{18849}{400}\times r^{3}dr[/tex]

Therefore total torque for r=0 to r=R can be calculated. So by integrating,

[tex]\int dT=\int_{0}^{R}\frac{18849}{400}\times r^{3}dr[/tex]

[tex]T = \frac{18849}{400}\times \frac{R^{4}}{4}[/tex]

[tex]T = 47.1225\times \frac{0.1^{4}}{4}[/tex]

T = 1.17 x [tex]10^{-3}[/tex] N-m

What is a cascade refrigeration system?

Answers

Answer Explanation:

CASCADE REFRIGERATION SYSTEMS :

cascade refrigeration systems are commonly used in the liquefaction of natural gas and some other gases

cascade refrigeration system is also known as freezing system. It uses two types of refrigerants having different boiling points.this system is employed to obtain temperature of -40 to -80It allows stable ultra low temperature operation

examples of cascade refrigeration system: LNG (Liquefied natural gas ) plants mostly used cascade refrigeration system

ADVANTAGES OF CASCADE REFRIGERATION SYSTEMS:

energy is saved because the system allows the use of refrigerant gasesthe running cost is inexpensive repair is easy
Final answer:

A cascade refrigeration system utilizes multiple linked refrigeration cycles to achieve ultra-low temperatures not possible with a single cycle. It features a cascade control mechanism for precise temperature management, using heat exchangers to interconnect and sequentially cool each stage.

Explanation:Understanding Cascade Refrigeration Systems

A cascade refrigeration system is a complex refrigeration strategy that employs multiple refrigeration cycles linked together to achieve cooling. Typically, these systems are utilized in environments requiring very low temperatures, which cannot be efficiently or cost-effectively achieved through a single refrigeration cycle. The essence of a cascade system lies in its deployment of two or more refrigeration units in series, each referred to as a "stage," with each successive stage operating at a lower temperature range than its predecessor.

The interconnection between these stages involves a heat exchanger, where a refrigerant from one cycle cools the condenser of the next lower temperature cycle. This process is crucial for achieving the desired low temperatures. One common application is in industrial refrigeration, where maintaining precise low temperatures is critical for process efficiency and product quality.

A key feature of cascade refrigeration systems is the use of cascade control, which enhances system responsiveness to temperature changes and maintains tight control over the process. This control mechanism consists of a master-slave relationship, where the output of one control loop (master) serves as the setpoint for the next (slave), creating a highly integrated control environment. Such setup enables rapid adjustment to changing operating conditions, ensuring the system swiftly responds to disturbances while maintaining the desired temperature levels.

Briefly describe the ionic bonding and covalent bonding. What is the key difference between these two bonding

Answers

Answer:

Explanation:

Ionic bonding are formed when two opposite ion attract each other. Ionic bond is generally between metal and non metal. Example NaCl

Covalent bonding is the bonding which is formed by the sharing of electron pair covalent bond is generally between two non metal.Example H₂O

Ionic bond is generally electrostatic in nature which lead to attraction of positive and negative ion

ionic bond does not have definite  shape where covalent has definite shape

melting point of covalent bond is low where as ionic bond have high melting point.

Product service life is determined by a. estimates b. market forces c. liability d. property tests e. failure analysis f. all of the above

Answers

Answer: d) property tests

Explanation: Product service life can be referred as the life that define the service that can be provided by the product manufactured.The service life contains the testing and calculation of the product's quality, reliability, maintenance factor etc. These factors are known as the property of the product and so is calculated by the property test. Therefore option (d) is the correct option because other option does not define the factors for defining the product service life.

What is an atom? a. it is a property of material b. it is specification of any material c. it the part of a substance d. it is a grain boundary

Answers

Answer:

Out of the multiple options provided,

option (c) it is the part of a substance

is correct

Explanation:

An atom is basically the smallest particle of matter or we can call it as building block of matter. It is as a brick to the wall or a cell to the body.

Matter is build up of a large number of these atoms. Atoms carbon(C), hydrogen(H), oxygen(O) combines to form molecules such as carbon dioxide([tex]CO_{2}[/tex]), water([tex]H_{2}O[/tex]), methane([tex]CH_{4}[/tex]), etc and then these molecules combines to form a substance.

It cannot be property, neither can it be specification of any material as these two characterizes the material and it can't be grain boundary for sure as grain boundary is the interface between two grain or crystal particles.

This shows that the smallest unit of matter is atom and it is the part of a substance

The gas expanding in the combustion space of a reciprocating engine has an initial pressure of 5 MPa and an initial temperature of 1623°C. The initial volume is 0.05 m^3 and the gas expands through a volume ratio of 20 according to the law PV^1.25 = constant. Calculate: a) Work transfer b) Heat transfer

Answers

Answer:

a). Work transfer = 527.2 kJ

b). Heat Transfer = 197.7 kJ

Explanation:

Given:

[tex]P_{1}[/tex] = 5 Mpa

[tex]T_{1}[/tex] = 1623°C

                       = 1896 K

[tex]V_{1}[/tex] = 0.05 [tex]m^{3}[/tex]

Also given [tex]\frac{V_{2}}{V_{1}} = 20[/tex]

Therefore, [tex]V_{2}[/tex] = 1  [tex]m^{3}[/tex]

R = 0.27 kJ / kg-K

[tex]C_{V}[/tex] = 0.8 kJ / kg-K

Also given : [tex]P_{1}V_{1}^{1.25}=C[/tex]

   Therefore, [tex]P_{1}V_{1}^{1.25}[/tex] = [tex]P_{2}V_{2}^{1.25}[/tex]

                     [tex]5\times 0.05^{1.25}=P_{2}\times 1^{1.25}[/tex]

                     [tex]P_{2}[/tex] = 0.1182 MPa

a). Work transfer, δW = [tex]\frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}[/tex]

                                  [tex]\left [\frac{5\times 0.05-0.1182\times 1}{1.25-1}  \right ]\times 10^{6}[/tex]

                              = 527200 J

                             = 527.200 kJ

b). From 1st law of thermodynamics,

Heat transfer, δQ = ΔU+δW

   = [tex]\frac{mR(T_{2}-T_{1})}{\gamma -1}+ \frac{P_{1}V_{1}-P_{2}V_{2}}{n-1}[/tex]

  =[tex]\left [ \frac{\gamma -n}{\gamma -1} \right ]\times \delta W[/tex]

  =[tex]\left [ \frac{1.4 -1.25}{1.4 -1} \right ]\times 527.200[/tex]

  = 197.7 kJ

The response of an inductor to current is most directly similar to the response of the capcitor (a) current (b) voltage (c) resistance (d) inductor

Answers

Answer:

(b) vpltage

Explanation:

we know the expression for voltage across the inductor V=L[tex]\frac{di}{dt}[/tex] which clearly shows voltage across the inductor is directly proportional to rate of change of current similarly current across the capacitor I=C[tex]\frac{dv}{dt}[/tex] from the expression we can see that current across the capacitor is directly proportional to rate of change of voltage. so from above discussion it is clear that response of an iductor to current is similar to response of capacitor to voltage

Other Questions
Can anyone explain this? Thanks. point) Suppose that the trace of a 2 x 2 matrix A is tr(A)= -9 and the determinant is det(A) 18. Find the eigenvalues of A. The eigenvalues of A are (Enter your answers as a comma separated list.) The recording of physical actions or movements of participants is called _____ observation. A. nonverbalB. spatialC. verbalD. extralinguisticE. nonbehavioral Americans spend up to $100 billion annually for bottled water (41 billion gallons). The only beverages with higher sales are carbonated soft drinks. Recent news stories have highlighted the fact that most bottled water comes from municipal water supplies (the same source as your tap water), although it may undergo an extra purification step called reverse osmosis. Imagine two tanks that are separated by a membrane that is permeable to water, but not to the dissolved minerals present in the water. Tank A contains tap water and tank B contains the purified water. In the reverse osmosis process, pressure is applied to the tap water tank to force the water molecules across the membrane into the pure water tank. Suppose that while the reverse osmosis system is running tank B becomes contaminated with salt water such that it ends up with a higher salt concentration than tank A. What would happen if the reverse osmosis system was turned off? The barricade at the end of a subway line has a large spring designed to compress 2.00 m when stopping a 2.15 x 10^5 kg train moving at 0.710 m/s. (a) What is the force constant of the spring? (N/m)(b) What speed would the train be going if it only compressed the spring 0.640 m?(c) What force does the spring exert when compressed 0.640 m? (Enter the magnitude only.) Write the polar coordinates (3, 3) in rectangular form,a. (0,3)c. (-3,0)b. (3,0)d. (0,-3)Please!!!!! I really need help on this one 1. Describe the differences between interval training and strength training? The equation F=C +32 gives the Fahrenheit temperature F corresponding to the Celsius temperature CFind the Fahrenheit temperature equivalent to 30CThe Fahrenheit temperature equivalent to 30C is F(Simplify your answer. Type an integer or a decimal.) The 20-g bullet is travelling at 400 m/s when it becomes embedded in the 2-kg stationary block. The coefficient of kinetic friction between the block and the plane is k = 0.24. Determine the distance the block will slide before it stops. Choose the correct forms of the verb to build in the following sentence:Back in college, I liked to take courses that ______ skills for career success. builtbuildedis buildingbuild3. Choose the correct form of the verbs to write and to expire in the following sentence:The doctor _________ me a prescription three months ago, but it _________ last week.writes expireshad wrote expiredhad written expiredwrote expired4. Which sentence accurately expresses that Saul has ridden his motorcycle to class in the past and may continue to ride his motorcycle to class?Saul has ridden his motorcycle to class every morning this year.Saul drove his motorcycle to class every morning this year.Saul would have ridden his motorcycle to class every morning this year if the weather had been warmer.Saul had driven his motorcycle to class every morning this year until the temperature dropped below freezing.5. Choose the correct forms of the verb to win in the following sentence.Last year, the basketball team won five games; so far, the basketball team ___ five games.wonhad wonhas wonhave won6. Choose the correct form of the verb to meet in the following sentence.Lindsey _________ with her supervisor every morning before she begins her work.meethad metmeetsmet7. Choose the correct form of the verb to lose and to apply in the following sentence:Veronica ________ her driver's license last week and immediately ________ for a new one.had lost appliedloses applieslose applylost applied8. Choose the correct form of the verbs to be and to have in the following sentence:Hassan ____ most productive when he _____ several hours at a time to focus on his work.is hasis haveare hasare have9. Choose the correct form of the verb to overheat in the following sentence:The engine ____________ several times this summer.is overheatinghave overheatedoverheatshas overheated10. Choose the sentence in which there are no errors in verb tense consistency.Dwight is a veterinarian who treats mostly farm animals.Dwight is a veterinarian who treated mostly farm animals.Dwight was a veterinarian who treats mostly farm animals.Dwight has been a veterinarian who treated mostly farm animals. Gina works for a delivery company. One day she found herself ahead of schedule while delivering packages and decided to use the extra time to go watch a baseball game. Sadly, on her way to the game, she hits a pedestrian with the company truck. Ginas actions are an example of: . How is using 0 / 1 or true / false in specifying digital an abstraction? The equation tan(55)= 15/b can be used to find the length of ACWhat is the length of Ac? Round to the nearest tenth. When the factors of a trinomial are (x+p) and (x-q) then the coefficient of the x-term in the trinomial is: Where did Henry Hudson have a settlement? A person pulls horizontally with a force of 64 N on a 14-kg box. There is a force of friction between the box and the floor of 36 N. Find the acceleration of the box in m/s2 Show your work Which of the following are examples of sensory input. Select all that apply.a. visionb. glandsc. hearingd. voluntary movement Whats the exact value of Cos(127.5)? Using trig identities like half angle and PLEASE EXPLAIN Write a C++ program that takes as input a list ( an array) of n integrers and finds the number of negative inetgers inthe list (array ).Side Note: The problem did not come out ofthis book but the information that I study is from this book. And Iam not getting how to write the program. What did the Quartering Act of 1765 demand of Americans after the Frenchand Indian War?OA)that they pay for the feeding and sheltering of British soldiers whoremained behind to defend the coloniesthat they pay for the wages of colonial governors appointed by theking)that they pay for the printing of pamphlets that explained the newlaws Americans were expected to followOD)that they pay for the upkeep of the homes of colonial governorsappointed by the king