The only prime number that is a factor of 16 is 2, since 16 is a power of 2 (2⁴).
Explanation:The student has asked to identify the only prime number that is a factor of 16. To find the factors of 16, we can break it down into its prime factors. The prime factorization of 16 is 2×4×4, which reduces further to 2×2×2×2 or 24. Since the prime factors of 16 are all 2s, the only prime number that is a factor of 16 is 2. It's important to note that a prime number is defined as a number that has exactly two distinct positive divisors: 1 and the number itself. In the case of 16, 2 is the only prime number that fits this definition and is a factor.
What is the simple interest for a principal of $650 invested at a rate of 9% for 5 years?
Answer: 292.50 dollars
Work Shown:
P = 650 is the the principal.
r = 0.09 is the interest rate in decimal form.
t = 5 is the number of years.
i = P*r*t
i = 650*0.09*5
i = 292.50 is the simple interest.
Given values:
Principle,
P = $650Rate,
r = 9% or 0.09Time,
t = 5 yearsAs we know,
→ [tex]i = R\times r\times t[/tex]
By substituting the values, we get
[tex]= 650\times 0.09\times 5[/tex]
[tex]= 292.50[/tex]
Thus the response above is right.
Learn more about simple interest here:
https://brainly.com/question/19329467
What is y=-7x+9 in standard form
Answer:
7 x + y = 9
Step-by-step explanation:
what does the y-intercept represnt
Answer: The y-intercept represents what is the value of y when x=0.
The equation of a number and 15 is no greater than 450.what are the possible values for the number
Answer:
x ≤ 435
Step-by-step explanation:
Given is the following condition.
The sum of a number and 15 is less than and equal to 450.
So, if the number is x, then we have
x + 15 ≤ 450
⇒ x + 15 - 15 ≤ 450 - 15
⇒ x ≤ 435
Therefore, the solutions of the number are either 435 or less than 435 up to negative infinity. ( Answer )
In a auditorium, there are 9 rows of seats with 18 seats in each row. There are also 6 rows of seats with 24 in each row. How many seats are there in the auditorium? Estimate first. Then check for reasonableness
Answer:
there are 306 in total
Step-by-step explanation:
What are three rational numbers between 2 and -2
Answer: -1, 0, and 1
Step-by-step explanation: -1 is an integer and all integers are rational numbers so -1 is rational.
0 is also an integer and all integers are rational numbers. Therefore, 0 is considered a rational number.
1 is a natural number and all natural numbers are rational numbers. Therefore, 1 would be a rational number.
Evaluate the expression when b=5 and x=-3
Answer:
-33
Step-by-step explanation:
x-6b when b=5 and x=-3
-3-6(5)=-3-30=-33
There are 11 members on a board of directors. If they must form a subcommittee of 3 members, how many different subcommittees are possible
There are 165 different subcommittees possible.
Explanation:To calculate the number of different subcommittees possible, we can use the combination formula. The number of different subcommittees is equal to the number of ways to choose 3 members out of 11. This can be calculated using the formula C(n, r) = n! / (r! (n - r)!), where n is the total number of members and r is the number of members in the subcommittee.
Plugging in the values, we have C(11, 3) = 11! / (3! (11 - 3)!) = 165. Therefore, there are 165 different subcommittees possible.
Learn more about Combinations here:
https://brainly.com/question/30646507
#SPJ11
During a Grand Prix car race, the tyres on a car are reduced in mass by 3%. If their mass is 388 kg at the end of the race, what was their mass at the start?
Answer:
Their mass at the start was 400 kg.
Step-by-step explanation:
Given:
The tyres on a car during a grand prix race are reduced in mass by 3%. Their mass is 388 kg at the end of the race.
Now, to find the mass at the start.
Let the mass at the start be [tex]x[/tex].
According to question:
[tex]x - 3 \%ofx= 388[/tex]
⇒[tex]x-\frac{3}{100}\times x = 388[/tex]
⇒[tex]x-0.03x =388[/tex]
⇒[tex]0.97x=388[/tex]
Dividing both sides by 0.97 we get:
⇒[tex]x=400[/tex]
Therefore, their mass at the start was 400 kg.
To find the original mass of the tyres before the 3% decrease, we make a simple percentage calculation. By setting up the equation 97/100 * x = 388, we find that the original mass of the tyres was 400 kg.
Explanation:The question posted is a mathematics problem related to understanding percentages and its application to real-life situations such as a Grand Prix race.
Given that the tyres at the end of the race have a mass of 388 kg, which is 97% of their original mass (since they lost 3%), we can find their original mass by setting up a simple percentage equation. We denote the original mass as 'x' and set up the equation: 97/100 * x = 388. To solve for 'x', we divide both sides of the equation by 97/100, which is equivalent to multiplying by its reciprocal, 100/97.
The solution to the problem is then calculated as following: x = 388 * (100/97) = 400 kg.
Hence, the original mass of the tyres was 400 kg.
Learn more about Percentage Calculations here:https://brainly.com/question/32197511
#SPJ3
assume that the height of men are normally distributed with a mean of 70.9 inches and a standard deviation of 2.1 inches if 36 men are randomly selected find the probability that they have the mean height greater than 71.9 inches
Answer:
Your answer would be 33.7619047619
Step-by-step explanation:
8 solid iron sphare with radius 'a cm' each are melted to form a sphare with radius 'b cm'. find the ratio of a:b
8 solid iron sphere with radius 'a cm' each are melted to form a sphere with radius 'b cm' then the ratio of a:b is 1 : 2
Solution:
Given that 8 solid iron sphere with radius 'a cm' each are melted to form a sphere with radius 'b cm'
Need to find the ratio of a:b
As 8 solid iron sphere with radius 'a cm' each are melted to form a sphere with radius 'b cm'.
For sake of simplicity, let volume of 1 sphere of radius a cm is represented by [tex]V_a[/tex] and volume of 1 sphere of radius b cm is represented by [tex]V_b[/tex]
So volume of 8 solid iron sphere with radius 'a cm' = volume of 1 solid iron sphere with radius 'b cm'
[tex]=>8 \times} \mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{b}}[/tex]
[tex]\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{V}_{\mathrm{b}}}=\frac{1}{8}[/tex] ---- eqn 1
[tex]\text {Let's calculate } {V}_{a} \text { and } V_{b}[/tex]
Formula for volume of sphere is as follows:
[tex]V=\frac{4}{3} \pi r^{3}[/tex]
Where r is radius of the sphere
Substituting r = a cm in the formula of volume of sphere we get
[tex]V_{a}=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi a^{3}[/tex]
Substituting r = b cm in the formula of volume of sphere we get
[tex]V_{b}=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi b^{3}[/tex]
[tex]\text { Substituting value of } V_{a} \text { and } V_{b} \text { in equation }(1) \text { we get }[/tex]
[tex]\frac{\frac{4}{3} \pi a^{3}}{\frac{4}{3} \pi b^{3}}=\frac{1}{8}[/tex]
[tex]\begin{array}{l}{=>\frac{\frac{4}{3} \pi a^{3}}{\frac{4}{3} \pi b^{3}}=\frac{1}{8}} \\\\ {=>\left(\frac{a}{b}\right)^{3}=\left(\frac{1}{2}\right)^{3}} \\\\ {=>\frac{a}{b}=\frac{1}{2}}\end{array}[/tex]
a : b = 1 : 2
Hence the ratio of a:b is 1 : 2
Final answer:
The ratio of the radius 'a' of the original smaller spheres to the radius 'b' of the new larger sphere formed by melting the 8 smaller spheres together is 1:2, obtained by equating the volumes and simplifying.
Explanation:
The question pertains to using the concept of volumes of spheres in Mathematics to find the ratio of radii of the original smaller spheres to the new larger sphere formed by melting them together. Given that there are 8 solid iron spheres each with radius 'a cm', and they are melted to form one single sphere with radius 'b cm', we preserve the volume during the melting process.
We know that the volume of a sphere is calculated using the formula [tex]V=\frac{4}{3}\pi r^{3}[/tex]. When combining the volumes of the 8 smaller spheres into one large sphere, the volumes on both sides must be equal since no material is lost during melting. The equation to find the volume of the large sphere is [tex]V=8(\frac{4}{3}\pi a^{3}) = \frac{4}{3}\pi b^{3}[/tex].
Simplifying this equation, we obtain the cubic ratio of radii a³/b³ = 1/8. Taking the cube root of both sides, the simple ratio of the radii is a/b = ∛[1/8], which simplifies to a/b = 1/2. Therefore, the ratio of the radius of the smaller sphere to the radius of the larger sphere, a:b, is 1:2,
Stephanie is packing her bags for her vacation. She has 7 unique books, but only
3 fit in her bag. How many different groups of
3 books can she take?
Answer:
35
Step-by-step explanation:
Please answer this correctly is the answer
7:49am
3:31pm
6:31pm
9:49am
Answer:
3:31 PM
Step-by-step explanation:
When the planes arrives in San Francisco, the time is 4:91 or 5:31 PM(central time/yellow). From Central time period to pacific time period, the time decreases by 2 hours. 5:31 - 2 hours is 3:31. The time is still PM. Answer is 3:31 PM.
Answer:
3:31pm
Step-by-step explanation:
Because each 60mins=1hr
51+40=91 which equals an hour and thirty 1 minutes plus an hour and 40 minutes which equals 3:31
Hope I'm right good luck!!1
Students were surveyed about their wither break plans.Of the people that stated they were going skiing, 25% did not actually go.How many students actually went skiing?
Answer:
The number of students who actually went for the skiing is 0.75 times the total number of students .
Step-by-step explanation:
Given as :
Students were surveyed about their wither break plans
The percentage of students who did not go for skiing = 25 %
So, The percentage of students who did not go for skiing =100 % - 25 % = 75%
Let The total number of students = x
So, The number of students actually went for the skiing = 75% of the total number of students
I.e The number of students actually went for the skiing = [tex]\frac{75}{100}[/tex]× x
Or, The number of students actually went for the skiing = 0.75× x
∴ The number of students actually went for the skiing = 0.75 x
Hence The number of students who actually went for the skiing is 0.75 times the total number of students . Answer
Find out
[tex] {5}^{10} + {8}^{3} [/tex]
Answer:
[tex]5^{10}+8^3[/tex]
[tex]5^{10}=9765625[/tex]
[tex]8^3=512[/tex]
[tex]=9765625+512[/tex]
[tex]=9766137[/tex]
OAmalOHopeO
Which term best describes the relationship between time and number of labels printed?
A. double
B. decreasing
C. proportional
Answer:
C proportional
Step-by-step explanation:
The answer is c because
proportional means equal
and as u can see in the photo you have represented a proportional relationship because ther line is going in and equal line across the axis and it is increasing at a proportional rate!
and there you go!
47. A medication is supplied in a 400-mg scored tablet. A physician prescribes 200 mg every 6 hours for
14 days. How many tablets will be dispensed for the entire course of therapy?
A. 7
B. 14
C. 28
D. 56
28 tablets will be required for course of therapy.
One tablet is of 400-mg and prescription is for 200 mg for every 6 hours for 14 days. total number of tablets to be find out.
Arithmetic operation are Addition, subtraction, division, and multiply in order to achieve mathematical solution of the statement.
Here, tablet for a day = 200-mg/400-mg x 24 hr/6 hr
= 1/2 x 4
= 2 Tablets a day
Now, for number of tablets for 14 days course,
= 14 x 2
= 28 Tables in 14 days
Thus, 28 tablets will be required for course of therapy.
Learn more about arithmetic operations here:
https://brainly.com/question/10971149
#SPJ2
There are 10 marbles. What is the probability of drawing two yellow marbles if the first one is not placed back into the bag before the second draw?
Answer: 1/10
Step-by-step explanation:
There is 1 yellow marble out of the 10 marbles
Answer:
Step-by-step explanation:
1/9
If the average football player weighs 250 pound, how much would the starting defense weigh? (There are 11 players on each team on the field)
Answer:
2750
Step-by-step explanation:
As there are 11 players on the field, each averaging 250 pounds, this means that we can add 250 11 times, 1 for each player. Another way to say this would be to multiply 250 and 11, as we are adding 250 11 times. Our answer is then 250*11 = 2750.
What is the equation of the line that passes through the point (-4, 8) and has a slope of zero
Answer:
here you go If the slope is undefined, it means that it is a vertical line. This means that it passes through all points in the y direction. Since the x value is -4, and the line is vertical, that's the only x value on that line. So you just say the equation of the line is x=-4
Step-by-step explanation:
Answer:
y=8
Step-by-step explanation:
y-y1=m(x-x1)
m=0
y-8=0(x-(-4))
y-8=0(x+4)
y-8=0
y=0+8
y=8
The diagonal length of a rectangular playing field is 76 feet, and its width is 48 feet. How long is the playing field?
The length of playing field is 58.9 feet
Solution:
Given that, the diagonal length of a rectangular playing field is 76 feet,
And its width is 48 feet.
To find: length of playing field
Now, we know that, diagonal, width and length of a rectangle will form an right angle triangle with diagonal as hypotenuse.
So, now, in a right angled triangle we can use pythagorean theorem to find the length
Pythagorean theorem, states that the square of the length of the hypotenuse is equal to the sum of squares of the lengths of other two sides of the right-angled triangle.
By above definition, In a right angled triangle ABC we get
[tex]c^2 = a^2 + b^2[/tex]
Where "c" is the length of hypotenuse
"a" is the length of one leg of right angled triangle
"b" is the length of other leg of right angled triangle
[tex]\begin{array}{l}{\text {Then, diagonal = width }^{2}+\text { length }^{2}} \\\\ {76^{2}=48^{2}+\text {length }^{2}} \\\\ {\text {Length }^{2}=76^{2}-48^{2}} \\\\ {\text {Length }^{2}=5776-2304}\end{array}[/tex]
[tex]\begin{array}{l}{\text { Length }^{2}=3472} \\\\ {\text { Length }=\sqrt{3472}} \\\\ {\text { Length }=58.92}\end{array}[/tex]
Hence, the length of the rectangular field is 58.9 feet
Answer:The answer is 3,472
Step-by-step explanation:
I GOT THIS CORRECT TRUST ME!! :)
find values of x y and z
Answer:
Well, we know x has to add up to 180 degrees since a triangle has 180 degrees in it!
63 + 36 = _99__
180 - 99 = 81
81 = x
180 - 81 = 99
99 is z
99 + 13 = 112
180 - 112 = 68
68 is y
Since 13 is an angle measurement. We add to get 180.
68 = y
99 = z
81 = x
a cat owner paid the vet a fee of$269.50 for a years worth of visits. he made 14 visits that year. what was the average per cost?
Answer:
The average per cost is $19.25.
Step-by-step explanation:
Given:
The fee paid by cat owner = $269.50. Total visits he made that year 14.
Now, to find the average per cost.
So, to get the average per cost we divide the total fee by total visits:
Average per cost = Total fee ÷ Total visits
= [tex]269.50\div 14[/tex]
= [tex]19.25[/tex]
Therefore, average per cost is $19.25.
Answer:
The Average cost of per visit to the vet = $ 19.25
Step-by-step explanation:
Here, the total visits to the vet in a year = 14
Also, the total amount paid to the vet in a year = $269.50
Now, Let us assume the average cost per vet visit = m
So,[tex]\textrm{Average cost of per visit} = \frac{\textrm{Total amount paid in n visits}}{\textrm{ n visits}}\\ \implies m = \frac{269.50}{14} = 19.25[/tex]
or, m = $ 19.25
Hence, the Average cost of per visit to the vet = $ 19.25
is y=-x-10 linear or nonlinear
Answer:
Linear
Step-by-step explanation:
Because it has no exponents
If it has no exponents than its always linear
Answer:
Linear
Step-by-step explanation:
It is in Slope-Intercept Form [y = mx + b], and this formula is ALWAYS a linear function [NO EXPONENTS].
I am joyous to assist you anytime.
Lynn,Jude,and Anne were given the function f(x)=2x+32, and they were asked to find f(3).Lynn’s answer was 14,judes answer was 4, and Anne’s answer +4. Who is correct?
Answer:
Option 1. Lynn, only
Step-by-step explanation:
The correct question is
Listen Lynn, Jude, and Anne were given the function f(x)=-2x^2+32, and they were asked to find f(3). Lynn's answer was 14, Jude's answer was 4, and Anne's answer was (+/-)4. Who is correct?
1. Lynn, only
2. Jude, only
3. Anne, only
4. Both Lynn and Jude
we have
[tex]f(x)=-2x^{2} +32[/tex]
This is a vertical parabola open downward (leading coefficient is negative)
The vertex is a maximum
we know that
f(3) means, the value of f(x) when the value of x is equal to 3
so
For x=3
substitute in the quadratic equation and solve for f(x)
[tex]f(3)=-2(3^{2}) +32[/tex]
[tex]f(3)=-18 +32[/tex]
[tex]f(3)=14[/tex]
therefore
Lynn's answer is correct
To determine the value of the function f(x) = 2x + 32 at x=3, we substitute x with 3, and solve to obtain f(3) = 38. Therefore, all students' answers were incorrect.
Explanation:In the function f(x) = 2x + 32, to find the value of f(3), you first need to substitute 'x' with 3. The equation it becomes f(3) = 2 * 3 + 32
By solving the equation, you obtain is f(3) = 6 + 32 which equals to f(3) = 38.
Thus, all the students, Lynn, Jude, and Anne, unfortunately provided incorrect answers.
Learn more about function evaluation here:https://brainly.com/question/12056604
#SPJ12
which of the following is equivalent to the expression 5^3*5^-5 there are 3 /A-5^-2, B- 1 /5^2 C- 5^2, D- 1 5^-2, E- 1 /25
Answer:
e-1/25
Step-by-step explanation:
If the variance for the data set is 104.4, what is the standard deviation?
Answer: 10.22
Step-by-step explanation:
Standard Deviation = square root of variance 104.44 = 10.22
Final answer:
To find the standard deviation from the variance of 104.4, you take the square root of the variance, resulting in a standard deviation of approximately 10.22.
Explanation:
If the variance for a data set is 104.4, to find the standard deviation, you take the square root of the variance. The formula to calculate the standard deviation (s) from the variance (σ²) is:
s = √σ²
Applying this formula, the standard deviation would be s = √104.4. Using a calculator, you would get:
s ≈ 10.22
Thus, the standard deviation for the data set with a variance of 104.4 is approximately 10.22.
What is the third quartile of this data set? 14, 18, 20, 21, 25, 32, 38, 42, 48
Answer: the answer is 40
A rug is shaped like a parallelogram with a base of 41⁄2 ft. and a height of 2 1⁄4 ft. What is the area of the rug? Draw and label the dimensions of the shape then find the area.
Answer:
46.125 square feet or [tex]46\dfrac{1}{8}[/tex] sq. feet.
Step-by-step explanation:
The rug is shaped like a parallelogram with a base of [tex]\frac{41}{2} = 20.5[/tex] feet. and a height of [tex]2\dfrac{1}{4} = 2.25[/tex] feet.
Now, the area of a parallelogram is given by the product of one side as the base and the perpendicular distance of that side from the opposite parallel side as height.
Now, the area of the given parallelogram is (20.5 × 2.25) = 46.125 square feet. (Answer)
Solve for the unknown by using the additive inverse. Type the FULL answer in the box, without using any spaces (ex., X=5).
2Y – 3 = Y – 4
Answer: