When traveling from oxygen to sulfur to selenium, through this group in the periodic table, what is changing?
A) The density of the elements decreases.
B) The number of energy levels increases.
C) The number of valence electrons of the elements decreases.
D) The state of the element changes from gas to liquid to solid.

Answers

Answer 1
Hi!

The answer should be B) The number of energy levels increases. 

Hope this helps!

-Payshence xoxo
Answer 2

Answer: Option (B) is the correct answer.

Explanation:

It is known that oxygen, sulfur and selenium are all group 16 elements.

The electronic configuration of oxygen is as follows.

     [tex]1s^{2}2s^{2}2p^{4}[/tex]

The electronic configuration of sulfur is as follows.

     [tex]1s^{2}2s^{2}2p^{6}3s^{2}3p^{4}[/tex]

The electronic configuration of selenium is as follows.

     [tex]1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4p^{4}[/tex]

Hence, we can see that on moving down the group there is increase in energy levels of the atoms from 2p to 4p.

Therefore, we can conclude that when traveling from oxygen to sulfur to selenium, through this group in the periodic table, change is that the number of energy levels increases.


Related Questions

Does someone have this??

Answers


Let's now answer number 1:

Momentum is mass x velocity

p = mv

Block 1 is 10.00kg and is moving at a speed of 4.50m/s. Just put in what you know to get the answer:


p= 10.00kg x 4.50 m/s = 45 kg.m/s

The momentum of block 1 is 45 kg.m/s.

2. In a collision if one object bumps into another object and they both travel the same direction, the scenario would be considered as a PERFECT inelastic collision. 

We can solve for unknowns using this formula:

[tex]m_{1}v_{1i}+m_{2}v_{2i} = (m_{1}+m_{2})v_{f}[/tex]
Where:
m1 = mass of object 1
m2 = mass of object 2
v1i = velocity of object 1 before collision
v2i = velocity of object 2 before collision

So before we solve for what you need, let's list down what you know based on the problem. 
m1 = 10.00kg (Block1)
m2 = 25.0kg   (Block2)
v1i = 4.50 m /s (Block1)
v2i = 0 m/s       (Block2)

You may be wondering why the velocity of object 2 is 0m/s. Well, the problem says that Block 2 was initially at rest, then that means it is not moving, so it's speed would be 0 m/s.

Now use the formula and put in what you know and derive what you do not know. 

[tex]m_{1}v_{1i}+m_{2}v_{2i} = (m_{1}+m_{2})v_{f}[/tex]
[tex](10.00kg)(4.50m/s)+(25.0kg)(0m/s) = (10.00kg + 25.00kg)v_{f}[/tex]
[tex](45kg.m/s)+(0) = (35kg)v_{f}[/tex]
[tex](45kg.m/s)= (35kg)v_{f}[/tex]
[tex] \frac{45kg.m/s}{35kg} = v_{f} [/tex]
[tex]1.29m/s = v_{f}[/tex]

Final velocity or vf of both blocks after collision is 1.29m/s.

3. To get the momentum after collision,just keep in mind that momentum is conserved even after collision. So your answer would be 45kg.m/s. If it is necessary for you to solve for it, just solve for it using the equation on the right side, which is (m1+m2)vf.

(m1+m2)vf
=(10.00kg+25.0kg)(1.29m/s)
=(35kg)(1.29m/s)
=45.15kg.m/s or 45 kg.m/s

As for the next problem, a cannon being fired is also considered a collision and this type of collision is called explosion, where the momentum before and after collision is zero. Why? Because before firing, the ball is not moving and neither is the cannon. 

So now that we know this, using the formula of explosion we can solve for what we need.

[tex]m_{1}v_{1}+m_{2}v_{2}=0[/tex]

Where:
m1 = mass of object 1
m2 = mass of object 2
v1= velocity of object 1
v2 = velocity of object 2

[tex]m_{1}v_{1}+m_{2}v_{2}=0[/tex]
[tex](450kg)(v1) + (2.75kg)(23.2m/s)=0[/tex]
[tex](450kg)(v1) + (63.8kg.m/s)=0[/tex]
[tex](450kg)(v1) =0 - 63.8kg.m/s[/tex]
[tex](450kg)(v1) =- 63.8kg.m/s[/tex]
[tex]v1 = \frac{-63.8k.m/s}{450kg} [/tex]
[tex]v1 = -0.14 m/s[/tex]

The cannon travelled -0.14m/s. 
Notice that the value is negative, this means that it went the opposite direction it initially traveled or it traveled backwards. 

If electrons of energy 12.8 ev are incident on a gas of hydrogen atoms in their ground state, what are the energies of the photons that are emitted by the excited gas?

Answers

Final answer:

When 12.8 eV energy electrons excite hydrogen atoms, the atoms are elevated to an energy level just below ionization. To determine the specific energy state, the energy formula for hydrogen atoms is used, then the energies of emitted photons are found by calculating the energy difference between the excited and final states.

Explanation:

If electrons with an energy of 12.8 eV are incident on hydrogen atoms in their ground state, we first need to determine the energy level to which the hydrogen atoms are excited. The ground state energy of hydrogen is -13.6 eV. If 12.8 eV is provided, the electron reaches an energy level just below 0 eV (ionization energy), since 12.8 eV is not sufficient to completely ionize the atom (13.6 eV needed).

To find out which energy level the electron will jump to, we use the formula for the total energy of an electron in a hydrogen atom, En = (- 13.6 eV/n²), and solve for n.

Once the electron is excited, it will eventually drop back to a lower energy state, emitting a photon in the process.

The energy of the emitted photon can be calculated using the difference in energy levels, ΔE = E1 - Ef.

Based on what you have read, explain the advantages of digital signals over analog signals.

Answers

Digital signals do not pass noise along, so the sound heard is likely very close to the signal that was sent. Digital signals also can be stored more easily than analog signals. Recorded analog signals degrade over time, while recorded digital signals do not.

Sample Response: Digital signals do not pass noise along, so the sound heard is likely very close to the signal that was sent. Digital signals also can be stored more easily than analog signals. Recorded analog signals degrade over time, while recorded digital signals do not.

Two tuning forks of frequency 480 hz and 484 hz are struck simultaneously. what is the beat frequency resulting from the two sound waves?

Answers

Ans: Beat frequency = [tex]f_b[/tex] = 4Hz

Explanation: 
The beat frequency is equal to the absolute value of the difference in frequency of the two waves. In other words, the number of beats per second is equal to the difference in frequency. It is due to the destructive and constructive interference. According to this interference, sound will be soft or loud.

Hence. the formula is:
Beat frequency = [tex]f_b = |f_2 - f_1|[/tex]

Since,
[tex]f_1 = 480Hz[/tex]
[tex]f_2 = 484Hz[/tex]

Therefore,
Beat frequency = [tex]f_b = |484 - 480|[/tex]

=> Beat frequency = [tex]f_b = 4Hz[/tex]
-i

At the moment the acceleration of the blue ball is 9.40 m/s2, what is the ratio of the magnitudes of the force of air resistance to the force of gravity acting on the blue ball? use 9.81 m/s2 for the standard value of g at the location of the experiment.

Answers

Let us see. We have that Newton's Law holds in this case, so [tex]\sum{F}=m*a[/tex] where a is the acceleration of the ball, F the forces acting on it and m its mass. There are 2 forces acting on it, the force of gravity W and air resistance R. We can easily see that these two act in opposite directions (gravity towards the ground, resistance upwards), so |ΣF|=W-R (1) . We have that W=m*g where g=9.81 m/s2. We also have that ΣF=9.40*m. From this relationship, substituting into (1) all the known values, we get that R=m(9.81*-9.40)=m*0,41. We take then the ratio R/W. This is equal to:[tex] \frac{0.41 m }{9.81m} =0.042=4.2\%[/tex]. This is our final answer.

The ratio of the magnitudes of the force of air resistance to the force of gravity acting on the ball is approximately 1:24.

The student is asking about the ratio of the force of air resistance to the force of gravity acting on a blue ball, when the ball has an acceleration of 9.40 m/s2. To calculate this ratio, we can use Newton's second law, F = ma, where F is the force, m is the mass of the ball, and a is the acceleration of the ball due to the net force acting on it. If we denote the force of air resistance as Fair and the force of gravity as Fgrav, we can write Fnet = Fgrav - Fair, since the air resistance works in the opposite direction of gravity.

Given that the acceleration due to gravity is approximately 9.81 m/s2, the force due to gravity (weight) can be expressed as Fgrav = mg. Here, the acceleration is less than g due to air resistance, thus we can write Fnet = ma = mg - Fair. Since the acceleration of the ball is given as 9.40 m/s2, we can now express Fair as mg - ma. Taking the ratio of Fair to mg (the weight), we get:

(mg - ma) / mg = (g - a) / g = (9.81 - 9.40) / 9.81.

Therefore, the ratio of the magnitudes of the force of air resistance to the force of gravity is equal to 0.0418, which simplifies to approximately 1:24.

Air is contained in a cylinder device fitted with a piston-cylinder. the piston initially rests on a set of stops, and a pressure of 200 kpa is required to move the piston. initially, the air is at 100 kpa and 238c and occupies a volume of 0.25 m3. determine the amount of heat transferred to the air, in kj, while increasing the temperature to 700 k. assume air has constant specific heats evaluated at 300 k.

Answers

A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs. 
Read more on Brainly.com - https://brainly.com/question/1581851#readmore

When populations of two species work together to obtain resources, they are

Answers

cooperation. i think that is it

Answer:

cooperating.

Explanation:

:)

describe the difference between mechanical and electromagnetic waves. Give an example of each kind of wave related to telecommunications.

Answers

The main difference between mechanical and electromagnetic waves is that mechanical waves require a medium in order to propagate, while electromagnetic waves can propagate also in vacuum.

Examples of telecommunication via mechanical waves are sound waves (so, two people speaking to each other, for instance), while examples of telecommunication via electromagnetic waves are the radio waves that transmit the TV signals to the houses.

What mass of electrons would be required to just neutralize the charge of 4.8 g of protons?

Answers

Let's calculate the total charge of M=4.8 g=0.0048 kg of protons.
Each proton has a charge of [tex]q=1.6 \cdot 10^{-19} C[/tex], and a mass of [tex]m_p = 1.67 \cdot 10^{-27}kg[/tex]. So, the number of protons is
[tex]N_p = \frac{M}{m_p}= \frac{0.0048 kg}{1.67 \cdot 10^{-27}kg}=2.87 \cdot 10^{24}[/tex] And so the total charge of these protons is [tex]Q_p = qN_p = (1.6 \cdot 10^{-19}C)(2.87 \cdot 10^{24})=4.6\cdot 10^5 C[/tex]

So, the neutralize this charge, we must have [tex]N_e[/tex] electrons such that their total charge is
[tex]Q_e = -4.6 \cdot 10^5 C[/tex]
Since the charge of each electron is [tex]q_e = -1.6 \cdot 10^{-19}C[/tex], the number of electrons needed is
[tex]N_e = \frac{Q_e}{q}= \frac{-4.6 \cdot 10^5 C}{-1.6 \cdot 10^{-19}C}=2.87 \cdot 10^{24} [/tex]
which is the same as the number of protons (because proton and electron have same charge magnitude). Since the mass of a single electron is [tex]m_e=9.1 \cdot 10^{-31}kg[/tex], the total mass of electrons should be
[tex]M_e = N_e m_e = (2.87 \cdot 10^{24})(9.1 \cdot 10^{-31}kg)=2.6 \cdot 10^{-6}kg[/tex]

A man drags a 12.0 kg bag of mulch at a constant speed applying a 39.5 N force at 41°. What is the normal force acting on the bag?

Answers

The normal force is perpendicular to the surface. Its intensity is equal to the force pressing the object against the surface, but it has opposite direction.
We need to calculate the force pushing the bag down in order to calculate normal force.
The force that pushes the bag down is equal to:
[tex]F_d=mg-sin(41)\cdot F[/tex]
Where F is the force of a man dragging the bag and mg is gravity pulling the bag down.
The resulting force is:
[tex]F_d=12\cdot9.81-sin(41)\cdot 39.5=91.8N[/tex]
Normal force has the same intensity but the opposite direction of this force.


What is a property of a transparent object?

Answers

Materials like air, water, and clear glass are called transparent. Light encounters transparent materials, most of it passes directly through them. 

A particle moving in the x direction is being acted upon by a net force f(x)=cx2, for some constant
c. the particle moves from xinitial=l to xfinal=3l. what is δk, the change in kinetic energy of the particle during that time? express your answer in terms of c and l.

Answers

The work-energy theorem states that the change in kinetic energy of the particle is equal to the work done on the particle:
[tex]\Delta K = W[/tex]
The work done on the particle is the integral of the force on dx:
[tex]W= \int\limits^{3L}_L {F(x)} \, dx = \int\limits^{3L}_L {cx^2} \, dx = \frac{26}{3}cL^3 [/tex]
So, this corresponds to the change in kinetic energy of the particle.

The change in kinetic energy during that time is : [tex]\frac{26}{3} cl^{3}[/tex]

Given data :

Direction of particle = x

Net force = F(x) = cx²

Initial position = l

Final position = 3l

Determine the change in kinetic energy during this time

we will apply the work energy theorem which is : ΔK = W

To determine change in kinetic energy we have to determine the work done on the particle.

Work done on particle ( W ) =  [tex]\int\limits^3_l F({x}) \, dx[/tex] =  [tex]\int\limits^3_l c{x^{2} } \, dx =[/tex] [tex]\frac{26}{3} cl^{3}[/tex]

Hence the change in kinetic energy during that time is : [tex]\frac{26}{3} cl^{3}[/tex]

Learn more about work energy theorem : https://brainly.com/question/22236101

A force of 35 n acts on an object which has a mass of 5.4 kg. what acceleration (in m/s2) is produced by the force

Answers

∑F = ma
a = ∑F/m
a = 35 N / 5.4 kg
a = 6.5 m/s²

for a bohr model,how many protons,electrons,and neutron does Sodium has

Answers

11 protons, 11 electrons, 12 neutrons

what is air resistance?

Answers

Basically, the "push back" of the air against the object moving forward.  It acts similar to friction, except the resistance is based on the shape of the object instead of the interaction of the object and the ground

Air resistance is the pushing of air against an object that is moving. Both the air and the object rub together and this slows the down the object and making it use more energy to reach a required speed. If an object moves faster, the greater the air resistance it encounters.

What potential difference is needed to accelerate a he+ ion (charge +e, mass 4u) from rest to a speed of 1.0×106 m/s ? express your answer using two significant figures?

Answers

For the law of conservation of energy, the loss in potential energy of the He+ ion should be equal to the gain in kinetic energy:
[tex]-\Delta U=\Delta K[/tex]
which can be rewritten as
[tex]-q \Delta V = \frac{1}{2}mv^2 [/tex]
where
[tex]q=+e = 1.6 \cdot 10^{-19}C[/tex] is the charge of the ion,
[tex]m=4u=4\cdot 1.67 \cdot 10^{-27}kg[/tex] is the mass of the ion,
[tex]v=1.0 \cdot 10^6 m/s[/tex] is the speed of the ion.
By using these values, we find the potential difference needed:
[tex]\Delta V = \frac{1}{2} \frac{mv^2}{-q}= \frac{1}{2} \frac{(4\cdot 1.67 \cdot 10^{-27}kg)(1.0 \cdot 10^6 m/s)^2}{-1.6 \cdot 10^{-19}C}= -20875 V=-21 kV [/tex]
and the negative sign means the final point is at lower voltage than the initial point, and this is correct, because the ion has positive charge and a positive charge travels naturally from higher voltages to lower voltages.

The potential difference required to accelerate the helium ion to a speed of   [tex]1.0 \times {10^6}\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}[/tex] is [tex]\boxed{21\,{\text{kV}}}[/tex] or [tex]\boxed{20875\,{\text{V}}}[/tex].

Further Explanation:

The potential difference, through which the helium ion passes, provides the potential energy and this potential energy provided by the potential difference to the Helium ion leads to the increase in the kinetic energy of the ion.

The charge on the [tex]H{e^ + }[/tex] ion is equal to the charge of one electron and the mass of the helium atom is equal to the mass of [tex]4\,{\text{amu}}[/tex].

The expression for the conservation of the energy of the Helium ion in the potential difference is:

[tex]\Delta PE = \Delta KE[/tex]  

Substitute [tex]q\Delta V[/tex] for [tex]\Delta PE[/tex] and [tex]\dfrac{1}{2}m{v^2}[/tex] for [tex]\Delta KE[/tex] in above expression.

[tex]\begin{aligned}q\Delta V &= \frac{1}{2}m{v^2} \hfill \\\Delta V &= \frac{{m{v^2}}}{{2q}} \hfill \\\end{aligned}[/tex]  

Here, [tex]\Delta V[/tex] is the potential difference, [tex]m[/tex] is the mass of the ion, [tex]q[/tex] is the charge over the ion.

Substitute [tex]1.6 \times {10^{ - 19}}\,{\text{C}}[/tex] for [tex]q[/tex], [tex]\left( {4 \times 1.67 \times {{10}^{ - 27}}\,{\text{kg}}} \right)[/tex] for [tex]m[/tex] and [tex]1.0 \times {10^6}\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}[/tex] for [tex]v[/tex] in above expression.

[tex]\begin{aligned}\Delta V &= \frac{{\left( {4 \times 1.67 \times {{10}^{ - 27}}\,{\text{kg}}} \right){{\left( {1.0 \times {{10}^6}\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}} \right)}^2}}}{{2\left( {1.6 \times {{10}^{ - 19}}\,{\text{C}}} \right)}} \\&= \frac{{6.68 \times {{10}^{ - 15}}}}{{3.2 \times {{10}^{ - 19}}}}\,{\text{V}} \\&= 2{\text{0875}}\,{\text{V}} \\&\approx {\text{21}}\,{\text{kV}}\\\end{aligned}[/tex]  

Thus, the potential difference required to accelerate the helium ion to a speed of [tex]1.0 \times {10^6}\,{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}[/tex] is [tex]\boxed{21\,{\text{kV}}}[/tex] or [tex]\boxed{20875\,{\text{V}}}[/tex].

Learn More:

What type of mirror do dentist use https://brainly.com/question/997618 What is the threshold frequency ν0 of cesium? Note that 1 ev https://brainly.com/question/6953278 The amount of kinetic energy an object has depends on its https://brainly.com/question/137098  

Answer Details:

Grade: College

Chapter: Electrostatics

Subject: Physics

Keywords:  Potential energy, potential difference, accelerate, kinetic energy, speed, helium ion, charge, significant figures, rest to a speed.

A ball is thrown at an angle of 45° to the ground. if the ball lands 87 m away, what was the initial speed of the ball? (round your answer to the nearest whole number. use g â 9.8 m/s2.)

Answers

just try your best best friend everyone

A water bed weighs 1025 N, and is 1.5 m wide by 2.5 m long. How much pressure does the water bed exert if the entire lower surface of the bed makes contact with the floor?

a.

3.6 x 10^2 Pa

b.

2.7 x 10^4 Pa


c.

1.2 x 10^3 Pa

d.

2.7 x 10^2 Pa

Answers

By definition we have to:
 [tex]P = F / A [/tex]
 Where,
 F: Force
 A: area
 For the area we have:
 [tex]A = (w) * (l) [/tex]
 Where,
 w: width
 l: long
 Substituting values we have:
 [tex]A = (1.5) * (2.5) A = 3.75 m ^ 2[/tex]
 Substituting the values we have:
 [tex]P = 1025 / 3.75 P = 273.3333333 N / m ^ 2[/tex]
 Rewriting we have:
 [tex]P = 2.7 * 10 ^ 2 Pa [/tex]
 Answer:
 
d.
 
2.7 x 10 ^ 2 Pa
Answer:
D) 2.7 * 10² Pa

Explanation:
To answer this question, we will use the following equation:
pressure = [tex] \frac{force}{area} [/tex]

1- getting the area:
The water bed is in the form of a rectangle. Therefore, the area can be calculated as follows:
area = length * width
We are given that:
lenth = 2.5 m
width = 1.5 m
This means that:
area = 2.5 * 1.5 = 3.75 m²

2- getting the pressure:
We noted that:
pressure = [tex] \frac{force}{area} [/tex]

We have the force = 1025 N
We calculated the area = 3.75 m²

Substitute in the above equation to get the pressure as follows:
pressure = [tex] \frac{1025}{3.75} [/tex]
pressure = 2.7 * 10² Pa

Hope this helps :)

a 13 kg sled is moving at a speed of 3.0 m/s. at which of the following speeds will the sled have tace as mucb as the kinetic

Answers

a 13-kg sled is moving at a speed of 3.0 m/s. At which of the following speed will the sled have twice as much kinetic energy?

4.2 m/s

The n = 2 to n = 6 transition in the bohr hydrogen atom corresponds to the ________ of a photon with a wavelength of ________ nm.

Answers

The energy levels of the hydrogen atom are quantized and their energy is given by the approximated formula
[tex]E=- \frac{13.6}{n^2} [eV] [/tex]
where n is the number of the level.

In the transition from n=2 to n=6, the variation of energy is
[tex]\Delta E=E(n=6)-E(n=2)=-13.6 ( \frac{1}{6^2}- \frac{1}{2^2} )[eV]=3.02 eV[/tex]
Since this variation is positive, it means that the system has gained energy, so it must have absorbed a photon.

The energy of photon absorbed is equal to this [tex]\Delta E[/tex]. Converting it into Joule,
[tex]\Delta E=3.02 eV=4.84 \cdot 10^{-19}J[/tex]
The energy of the photon is
[tex]E=hf[/tex]
where h is the Planck constant while f is its frequency. Writing [tex]\Delta E=hf[/tex], we can write the frequency f of the photon:
[tex]f= \frac{\Delta E}{h}= \frac{4.84 \cdot 10^{-19}J}{6.63 \cdot 10^{-34}m^2 kg/s}=7.29 \cdot 10^{14}Hz [/tex]

The photon travels at the speed of light, [tex]c=3 \cdot 10^8 m/s[/tex], so its wavelength is
[tex]\lambda = \frac{c}{f}= \frac{3 \cdot 10^8 m/s}{7.29 \cdot 10^{14}Hz}=4.11 \cdot 10^{-7}m=411 nm [/tex]

So, the initial sentence can be completed as:
The n = 2 to n = 6 transition in the bohr hydrogen atom corresponds to the "absorption" of a photon with a wavelength of "411" nm.
Final answer:

The transition of an electron from n = 2 to n = 6 in a hydrogen atom in the Bohr model involves the absorption of a photon. The wavelength of this photon can be calculated using the Rydberg formula, but a specific value cannot be provided without additional information.

Explanation:

The student's question relates to the Bohr model of the hydrogen atom and specifically to the transition of an electron from the n = 2 energy level to the n = 6 energy level. According to Bohr's model, when an electron in a hydrogen atom transitions between two energy levels, it either absorbs or emits a photon whose energy equals the difference in energy between the two levels.

To find the wavelength of the photon associated with the transition, you can use the Rydberg formula:


   Calculate the energy involved in the transition using the formula
   E = hc/λ where E is the energy of the photon, h is Planck's constant, c is the speed of light, and λ is the wavelength.
   Rearrange to find the wavelength: λ = hc/E.

The exact calculations require substituting the values of h, c, and E (with E determined by the specific energy levels involved in the transition - here from n = 2 to n = 6).

Because this question does not provide all the numerical values needed for the calculation, such as Planck's constant and the speed of light, and does not specify whether the transition represents absorption or emission, we cannot provide a specific value for the wavelength. However, it's important to note that transitions to higher energy levels (n > 2) correspond typically to absorption, and the wavelength would fall into a specific region of the electromagnetic spectrum depending on its energy.

Learn more about the Bohr model here:

https://brainly.com/question/3964366

#SPJ3

To determine an epicentral distance scientists consider the arrival times of what wave types

Answers

 The answer is P-waves and S-waves

A person drives to the top of a mountain. On the way up, the person’s ears fail to “pop,” or equalize the pressure of the inner ear with the outside atmosphere. The pressure of the atmosphere drops from 1.010 x 10^5 Pa at the bottom of the mountain to 0.998 x 10^5 Pa at the top. Each eardrum has a radius of 0.40 cm. What is the pressure difference between the inner and outer ear at the top of the mountain?

a.

1.2 x 10^3 Pa

b.

1.1 x 10^5 Pa


c.

1.0 x 10^2 Pa


d.

1.2 x 10^2 Pa

Answers

The pressure on the inner ear is calculated by subtracting the pressure of the atmosphere of the bottom from the top, so calculating this will give us: 1.010x10^5 - .998x10^5 = 1200Pa outward which would be letter A.
And so the net force would be now calculated as P*A = 1200Pa*π*(0.40x10^-2m)^2 = 0.0603N

The pressure difference between the inner and outer ear at the top of the mountain is given by option a. 1.2 × 10³ Pa.

The pressure difference between the inner and outer ear at the top of the mountain can be calculated by evaluating the difference between atmospheric pressure at top and bottom of the lift. Let this difference be denoted as ΔP, then:

Δ P = P₁ - P₂

P₁ = pressure at the top of the lift = 1.010 × 10⁵ Pa

P₂ = pressure at the bottom of the lift = 0.998 × 10⁵ Pa

or, Δ P = (1.010 × 10⁵ Pa - 0.998 × 10⁵ Pa)

or, Δ P = 0.012 × 10⁵ Pa

or, Δ P = 1.2 × 10³ Pa

The uniform bar of mass m and length l is balanced in the vertical position when the horizontal force p is applied to the roller at
a. determine the bar's initial angular acceleration and the acceleration of its top point
b.

Answers

Which of the following is NOT a factor in efficiency?A.metabolismB.type of movementC.muscle efficiencyD.digestion

A heat engine takes in 840 kJ per cycle from a heat reservoir. Which is not a possible value of the engine's heat output per cycle?

Answers

We have by the first law of thermodynamics tha energy is preserved, hence we cannot have over 840kJ per cycle. We have by the laws of thermodynamics (the 2nd one in specific) that the entropy of a system cannot increase. We cannot have an output of  840 kJ per cycle from a heat engine because then that would mean that the entropy would stay the same, while any heat engine increases it. Hence, any value [tex] \geq 840 kJ [/tex] is acceptable.

When Trinity pulls on the rope with her weight, Newton's Third Law of Motion tells us that the rope will _____

Answers

When Trinity pulls on the rope with her weight, Newton's Third Law of Motion tells us that the rope will "pull back".


Newton's third law of motion expresses that, at whatever point a first question applies a power on a second object, the first object encounters a power meet in extent however inverse in heading to the power that it applies.  

Newton's third law of movement reveals to us that powers dependably happen in sets, and one question can't apply a power on another without encountering a similar quality power consequently. We once in a while allude to these power matches as "action-reaction" sets, where the power applied is the activity, and the power experienced in kind is the response (despite the fact that which will be which relies upon your perspective).

A wooden block has a mass of 562 g and a volume of 72 cm3. What is the density?

15 points !!!!!!!!!!!

Answers

Answer:

Density of the wooden block is [tex]7805.5\ kg/m^3[/tex]          

Explanation:

It is given that,

Mass of the wooden block, m = 562 g = 0.562 kg

Volume of the block, [tex]V=72\ cm^3=7.2\times 10^{-5}\ m^3[/tex]

We need to find the density of the block. Mass per unit volume of an object is called its density. It is given by :

[tex]d=\dfrac{m}{V}[/tex]

[tex]d=\dfrac{0.562\ kg}{7.2\times 10^{-5}\ m^3}[/tex]

[tex]d=7805.5\ kg/m^3[/tex]

So, the density of the wooden block is [tex]7805.5\ kg/m^3[/tex]. Hence, this is the required solution.

Density of a Material

The density of a material is defined as the mass per unit volume

it formula is given as

Density = Mass/Volume

and the unit is g/cm^3

Explanation:

Given data

Mass = 562 g

Volume = 72 cm3

Hence the density is expressed as

Density =  562 /72

Density = 7.80 g/cm^3

therefore the density is 7.80 g/cm^3

for more information on density see the link below

https://brainly.com/question/17780219

A sinusoidal wave travels with speed 250 m/s . its wavelength is 3.5 m . part a what is its frequency

Answers

The relationship between the frequency f of a wave, its wavelength [tex]\lambda[/tex] and its speed v is given by
[tex]v=\lambda f[/tex]
The wave of our exercise has a speed of [tex]v=250 m/s[/tex] and a wavelength of [tex]\lambda=3.5 m[/tex], so re-arranging the previous equation we can find its frequency:
[tex]f = \frac{v}{\lambda}= \frac{250 m/s}{3.5 m}=71.4 Hz [/tex]

A grindstone, initially at rest, is given a constant angular acceleration so that it makes 20.0 rev in the first 8.00 s. what is its angular acceleration?

Answers

The angle covered by the grindstone during this time is, converting into radians,
[tex]\theta = 20 rev = 20 rev \cdot \frac{2 \pi rad}{rev} =125. 6rad[/tex]

This is a rotational motion with constant angular acceleration [tex]\alpha[/tex], and with initial angular speed [tex]\omega _0 =0[/tex]. The angle covered in a time t is given by
[tex]\theta (t)= \omega_0 t+ \frac{1}{2} \alpha t^2 = \frac{1}{2} \alpha t^2 [/tex]
because the initial angular speed is zero.
Using t=8.00 s, we can find the value of angular acceleration:
[tex]\alpha = \frac{2 \theta}{t^2}= \frac{2 \cdot 125.6 rad}{(8.0 s)^2}=3.93 rad/s^2 [/tex]

The angular acceleration of a grindstone that makes 20 revolutions in 8 seconds from rest, convert the revolutions to radians and use the rotational kinematic equation, resulting in an angular acceleration of approximately 3.93 radians/s².

The angular acceleration of a grindstone that makes 20 revolutions in 8 seconds, starting from rest.

To find the angular acceleration, we can use the kinematic equation for rotational motion:

θ = ω₀t + 1/2αt²

where:

θ is the angular displacement in radians,

ω₀ is the initial angular velocity (which is 0 because it starts from rest),

t is the time in seconds,

and α is the angular acceleration in radians per second squared.

First, we convert the revolutions to radians:

20 revolutions * 2π radians/revolution = 40π radians

We then have:

40π radians = 0 + 1/2α(8²)

Solving for α gives:

α = (40π radians) / (1/2 * 64 s²)

α = 80π / 64 radians/s²

α ≈ 3.93 radians/s²

Therefore, the angular acceleration of the grindstone is approximately 3.93 radians/s².

A rock is thrown vertically upward from ground level at time t = 0. at t = t, it passes the top of the tower and ât later (i.e., when t = t + ât) it reaches the maximum height. what is the height of the tower? leave g as g â do not substitute with numbers

Answers

...........................................................

"The height of the tower is given by the equation:

[tex]\[ h = \frac{1}{2} g (t + \hat{t})^2 - \frac{1}{2} g t^2 \][/tex]

 This equation represents the difference in height between the maximum height the rock reaches and the height it reaches at time \( t \) when it passes the top of the tower. Here, \( g \) is the acceleration due to gravity, \( t \) is the time it takes for the rock to reach the top of the tower, and \( \hat{t} \) is the additional time it takes for the rock to reach the maximum height after passing the top of the tower.

To find the height of the tower, we can simplify the equation:

[tex]\[ h = \frac{1}{2} g ((t + \hat{t})^2 - t^2) \][/tex]

[tex]\[ h = \frac{1}{2} g (t^2 + 2t\hat{t} + \hat{t}^2 - t^2) \][/tex]

[tex]\[ h = \frac{1}{2} g (2t\hat{t} + \hat{t}^2) \][/tex]

[tex]\[ h = g t\hat{t} + \frac{1}{2} g \hat{t}^2 \][/tex]

 Since [tex]\[ u = g \hat{t} \][/tex]is the time it takes for the rock to reach the maximum height from the top of the tower, and at the maximum height the velocity of the rock is zero, we can use the kinematic equation for the final velocity \( v \) at the maximum height:

[tex]\[ v = u + g t \][/tex]

Here, \( u \) is the initial velocity (which is the velocity of the rock at the top of the tower), \( g \) is the acceleration due to gravity, and \( t \) is the time taken to reach the maximum height, which is \( \hat{t} \). At the maximum height, \( v = 0 \), so:

[tex]\[ 0 = u - g \hat{t} \][/tex]

[tex]\[ u = g \hat{t} \][/tex]

 Now, we can substitute \( u \) back into the height equation:

[tex]\[ h = g t\hat{t} + \frac{1}{2} g \hat{t}^2 \][/tex]

[tex]\[ h = g t\left(\frac{u}{g}\right) + \frac{1}{2} g \left(\frac{u}{g}\right)^2 \][/tex]

[tex]\[ h = u t + \frac{1}{2} \frac{u^2}{g} \][/tex]

Since \( u t \) represents the distance the rock would have traveled in time \( t \) if it continued at a constant velocity \( u \), and \( \frac{1}{2} \frac{u^2}{g} \) represents the total height the rock would reach if it continued to move upward with initial velocity \( u \) and was only acted upon by gravity, the term \( u t \) is actually the height of the tower. Thus, the height of the tower is:

[tex]\[ h = u t \][/tex]

 This is the final answer, and it shows that the height of the tower is the product of the initial velocity of the rock at the top of the tower and the time it takes to reach the top of the tower. The term[tex]\( \frac{1}{2} \frac{u^2}{g} \)[/tex]is not needed for the height of the tower, as it represents the additional height the rock reaches after passing the top of the tower until it reaches the maximum height."

You are given a cylinder of outer radius 3.27 cm and length of 11.5 cm. along the axis of the cylinder is a hole of diameter 2.47 cm. find the volume of this cylindrical shell.

Answers

  Required Volume (V) = Area of the base * Height

Area of the base = Pi [ 3.27² - (2.47/2)² ] since 2.47 is diameter and not radius. = Pi ( 9.981675 )

Therefore Volume (V) = Pi ( 9.981675) * 15.9 = 498.5978739 cm³ = 498.6 cm³.
Other Questions
How does the plate tectonics theory help explain the existence of fossil marine life in rocks on top of compressional mountains? A trail is 7/12 mile long, which trail is shorter, than 7/123/8,5/6,3/4,2/3 What is the simplified form of (x 2)(2x +3)? Use the Distributive Property. (1 point)2x2 x 62x2 62x2 7x 62x2 + x 62. What is the simplified form of (3x + 2)(4x 3)? Use a table. (1 point)12x2 + 18x + 612x2 + x 612x2 + 18x 612x2 x 63. What is the simplified form of (4p 2)(p 4)? (1 point)4p2 + 6p 164p2 18p + 84p2 14p 64p2 6p + 164. The radius of a cylinder is 3x 2 cm. The height of the cylinder is x + 3 cm. What is the surface area of the cylinder? Use the formula A = 2r2 + 2rh., Describe the image of D first reflected across line l, then across line m. Which of the following would most likely cause geographic isolation? volcanic eruption The input force of a pulley system must move 8.0 m to lift a 3,000-n engine a distance of 2.0 m. what is the ima of the system? Cheryl volunteers to mow the lawn at a retirement home.She can mow 1/4 of the lawn in 3/4 of an hour .At what rate ,how many hours will it take Cheryl to mow the entire lawn You start to roll backward down a hill on your bike, so you use the brakes to stop your motion. In what direction did you accelerate An orange has about 1/4 cup of juice. How many oranges are needed to make 2 1/2 cups of juice? Select all equations that represent this question. Plz answer! _____ refers to the inability of services to be stored, warehoused, or inventoried. Regard triangleTRI and the following facts: Segment IR || Segment NA TA= 12 cm, RA= 3 cm, NT= 18 cm, AN= 22 (a)What theorem or postulate proves Triangle ANT similar to RIT?(b)Solve for NI by using the Side-Splitting Theorem.Show all work.(c)What is the scale factor for similar triangles ANT and RIT?(d)Calculate RI. Show your work.(e)What is the ratio of the areas of the two triangles? Show your work. Which U.S. Presidents died on Independance Day? Where do the OH- ions go as additional acid is added?1. they evaporate.2. They combine with excess H+ ions to form more water.3. They remain in solution at the same concentration.4. They remain in solution but change concentration., Richard quinney, a key proponent of the _____ perspective on deviance, argues that the u.s. legal system reflects the interests and ideologies of the ruling capitalist class. PLEASE!!! HELPExcerpt from: First Time VoterRebecca SparlingStatement from the passage (paragraph 2):Immediately after I turned eighteen, my parents encouraged me to register to vote. Revised statement from the passage:Immediately after I turned eighteen, my parents forced me to register to vote. What effect does word choice have on the revised statement?A)It is less personal.B)It is more negative.C)It is less informative.D)It is more interesting. Tracey has been unable to participate in her gymnastics class and is very uncoordinated since she was involved in an accident where she suffered a head injury. as a result of the accident, she was likely to have suffered damage to her The main theme in The Adventures of Huckleberry Finn that concerns the duke and Dauphin is A circular piece of glass has a radius of 2.1 meters. The glass sells for $1.70 per square meter. What is the total cost of the circular piece of glass?$23.54$94.16$3.57$11.21 A horizontal line goes through the point (7,10). Which statements are true about this line? Check all that apply. The slope of the line is zero. Another point on the line is (3,10). The y-intercept of the line is 7. The equation of the line is y = 10. 3. which of the following sentences from "five hours to simla" BEST illustrates the mood of frustration? ~"after the first cacophony of screeching brakes and grinding gears, there followed the comparatively static hum of engines, and drivers waited in exasperation for the next lurch forwards"~"clenching the wheel with both hands, his head was lowered on to it, and the blare of the horn seemed to issue out his fury."~"the children could not tear their eyes away from the beggar -his sores, his bandages, his crippled leg, the flies gathering..."@KyanTheDoodle @Lyssy10