Which equation is used to help form the combined gas law?
Need help ASAP !

Which Equation Is Used To Help Form The Combined Gas Law? Need Help ASAP !

Answers

Answer 1

If pressure is constant

then PV= nRT

is equivalent to V= ( nR/P) T

V= kT ( where k is constant nR/P)

As V is directly proportional to T

So V1/T1 = V2/T2

Answer 2

Answer:

The correct answer

Step-by-step explanation:

Which Equation Is Used To Help Form The Combined Gas Law? Need Help ASAP !

Related Questions

Find the area of the shaded region if the dimensions of the unshaded region are 18ft x 22ft. Use 3.14 for π as necessary.
A. 1,419.84 ft²
B. 1,111.84 ft²
C. 709.92 ft²
D. 957.84 ft²

Answers

See the attached picture:

Answer:

Answer is option B. 1,111.84 ft²

Step-by-step explanation:

The given dimensions of the un shaded region or rectangle are 18 feet x 22 feet.

Now we have additional 7 feet at both ends to form the diameter of the semicircle, making it [tex]14+18=32[/tex] feet

Radius = [tex]\frac{32}{2}=16[/tex] feet

We have 2 semicircles, one at each end. If we combine it it forms a circle.

Area of the circle (2 semicircles) = [tex]\pi r^{2}[/tex]

= [tex]3.14\times(16)^{2}[/tex] = 803.84 square feet

Now we will find the area of the shaded rectangles above and below the non shaded one. The length is 22 feet and width is 7 feet.

So, area = [tex]22\times7=154[/tex] square feet

We have 2 similar rectangles. So, area of both = [tex]2\times154=308[/tex] square feet

So, total area of shaded region = [tex]803.84+308=1111.84[/tex] square feet.

factor completely 4x^2-8x-60​

Answers

The answer is (4)(x-5)(x+3)

Answer:

4(x - 5)(x + 3)

Step-by-step explanation:

Given

4x² - 8x - 60 ← factor out 4 from each term

= 4(x² - 2x - 15)

To factor the quadratic

Consider the factors of the constant term ( - 15) which sum to give the coefficient of the x- term ( - 2)

The factors are - 5 and + 3, since

- 5 × 3 = - 15 and - 5 + 3 = - 2, hence

x² - 2x - 15 = (x - 5)(x + 3) and

4x² - 8x - 60 = 4(x - 5)(x + 3)

Simplify (4x − 6) + (5x + 1).

Answers

Answer:

[tex]\displaystyle =9x-5[/tex]

Step-by-step explanation:

[tex]\displaystyle 4x-6+5x+1[/tex]

Group like terms.

[tex]\displaystyle 4x-6+5x+1[/tex]

Add the numbers from left to right.

[tex]4+5=9[/tex]

[tex]9x-6+1[/tex]

Add and subtract numbers from left to right to find the answer.

[tex]6-1=5[/tex]

It change to postive to negative sign.

[tex]\displaystyle=9x-5[/tex], which is our answer.

Answer:

The simplified form is 9x - 5

Step-by-step explanation:

It is given an expression in variable x

(4x − 6) + (5x + 1).

To find the simplified form

(4x − 6) + (5x + 1). =  4x − 6 + 5x + 1

 = 4x + 5x - 6 + 1

 = 9x -5

Therefore simplified form of given expression  (4x − 6) + (5x + 1) is,

9x - 5

What is the equation of the new function???

Answers

Answer:

The correct answer option is C. [tex] g ( x ) = | x - 4 | + 6 [/tex].

Step-by-step explanation:

We know that the transformation which shifts a function along the horizontal x axis is given by [tex]f(x+a)[/tex], while its [tex]f(x-a)[/tex] which shifts the function to the right side.

Here we are to shift the function 4 units to the right and 6 units up.

Therefore, the function will be:

[tex] g ( x ) = | x - 4 | + 6 [/tex]

Answer: Option C

[tex]g (x) = | x-4 | +6[/tex]

Step-by-step explanation:

If we have a main function and perform a transformation of the form

[tex]g (x) = f (x + h)[/tex]

So:

If [tex]h> 0[/tex] the graph of the function g(x) will be equal to the graph of f(x) displaced h units to the left

If [tex]h <0[/tex] the graph of the function g(x) will be equal to the graph of f(x) displaced h units to the right

Also if the transformation is done

[tex]g (x) = f(x) + k[/tex]

So

If [tex]k> 0[/tex] the graph of the function g(x) will be equal to the graph of f(x) displaced k units up

If [tex]k <0[/tex] the graph of the function g(x) will be equal to the graph of f(x) displaced k units downwards.

In this case the main function is [tex]f(x) = | x |[/tex] and moves 4 units to the right and 6 units to the top, then the transformation is:

[tex]g (x) = f (x-4) +6[/tex]

[tex]g (x) = | x-4 | +6[/tex]

Multiply. Express your answer in simplest form.

1 7/8 × 2 1/3

Answers

Answer:

4  3/8

Step-by-step explanation:

1 7/8 × 2 1/3

Change the numbers to improper fractions

1 7/8 = (8*1 +7) /8 = 15/8

2 1/3 = (3*2 +1)/3 = 7/3

15/8 * 7/3

Rearranging

15/3 * 7/8

5/1 * 7/8

35/8

Now we need to change this back to a mixed number

8 goes into 35   4 times with 3 left over

4 3/8

Answer:

35/8 or 4 3/8

Step-by-step explanation:

Change each fraction to improper

15/8 * 7/3

multiply

105/24

reduce

35/8

make it mixed if the answer wants it to be

4 3/8

.
Solve the triangle.
B = 72°, b = 12, c = 8 (1 point)

Answers

Answer:

a=11.8,b=12,c=8,A=68.7°, B=72°, C= 39.3°

Step-by-step explanation:

Given data:

b = 12

c= 8

a= ?

∠B= 72°

∠C= ?

∠A=?

To find the missing angle we will use law of sine:

a/sinA=b/sinB=c/sinC

Find m∠C.

b/sinB = c/sinC

Substitute the values:

12/sin72°=8/sinC

Apply cross multiplication.

12*sinC=sin72° * 8

sinC=0.951*8/12

sinC=7.608/12

sinC= 0.634

C= 39.3°

Now we know that the sum of angles = 180°

So,

m∠A+m∠B+m∠C=180°

m∠A+72°+39.3°=180°

m∠A=180°-72°-39.3°

m∠A= 68.7°

Now find the side a:

a/sinA=b/sinB

a/sin68.7°=12/sin72°

Apply cross multiplication:

a*sin72°=12*sin68.7°

a*0.951=12*0.931

a=0.931*12/0.951

a=11.172/0.951

a=11.75

a=11.8 ....

Help me on this math question please

Answers

Answer:

its simplest form is 4/5

Steps for solving 6x - 18 = 54 are shown.
Explain how Step 1 helps solve the equation.

Answers

Answer:

x = 12

Step 1 helps solve the equation, for it helps isolate the x, which is what you are solving for.

Step-by-step explanation:

Isolate the variable x. Note the equal sign, what you do to one side, you do to the other. Do the opposite of PEMDAS:

Step 1: Add 18 to both sides.

6x - 18 (+18) = 54 (+18)

6x = 54 + 18

6x = 72

Step 2: Divide 6 from both sides:

(6x)/6 = (72)/6

x = 72/6

x = 12

x = 12 is your answer.

~

Answer:

[tex]\huge \boxed{X=12}[/tex]

Step-by-step explanation:

Add by 18 from both sides of equation.

[tex]\displaystyle 6x-18+18=54+18[/tex]

Add numbers from left to right.

[tex]\displaystyle 54+18=72[/tex]

[tex]\displaystyle 6x=72[/tex]

Divide by 6 from both sides of equation.

[tex]\displaystyle \frac{6x}{6}=\frac{72}{6}[/tex]

Simplify, to find the answer.

[tex]\displaystyle 72\div6=12[/tex]

[tex]\huge \boxed{x=12}[/tex], which is our answer.

What is the length of the altitude of the equilateral triangle below?

Answers

[tex]\bf \textit{height or altitude of an equilateral triangle}\\\\ h=\cfrac{s\sqrt{3}}{2}~~ \begin{cases} s=\stackrel{length~of}{a~side}\\ \cline{1-1} s=8\sqrt{3} \end{cases}\implies h=\cfrac{8\sqrt{3}\cdot \sqrt{3}}{2}\implies h=\cfrac{8\sqrt{3^2}}{2} \\\\\\ h=4\cdot 3\implies h=12[/tex]

what’s the trapezoids missing length?

Answers

Answer:

Step-by-step explanation:

Let CD = x

(x + 40)/2 = 31                  The midline is 1/2 the sum of the 2 bases. multiply by 2 on both sides.

x + 40 = 31 * 2

x + 40 = 62                       Subtract 40 from both sides.

x +40-40 = 62 - 40          Combine

x = 22

Check

(22 + 40)/2

62 / 2

31 = PQ

Final answer:

To find the missing length of a trapezoid with similar triangles inside, we use the ratio of the sides of the triangles, which is approximately 8.667 based on the provided lengths.

Explanation:

When determining the missing length of a trapezoid, we need to consider the properties of similar triangles or the geometric shape of a trapezoid itself. The given information suggests a scenario where similar triangles are within a trapezoid and leads to a proportional relationship between the sides of the triangles. If a trapezoid has triangles within it that share an angle, the lengths of the corresponding sides of those triangles will be proportional.

Based on the data provided, if the long sides of the triangles are in the ratio of 13.0 in to 1.5 in, which simplifies to an approximate factor of 8.667, the bottom sides of the triangles - which are the parallel sides of the trapezoid - will also be in the same ratio. By finding the length of the shorter bottom side, we can divide the length of the longer bottom side by 8.667 to get the missing length on the shorter side.

ANY HELP IF POSSIBLE THANK YOU :)

Answers

Answer:

See explanation

Step-by-step explanation:

There 2 black shapes (one circle and one square) and 2 white shapes (1 circle and 1 square).

1. The ratio of the number of white shapes to the number of black shapes is 2:2=1:1.

2. The ratio of the number of white circls to the number of black squares is 1:1.

3. The ratio of the number of black circles to the number of black squaress is 1:1.

4. There are 4 shapes and 2 are circles (1 white and 1 black), so circles are [tex]\dfrac{2}{4}=\dfrac{1}{2}[/tex] of all shapes.

15 points!!
What do you think? And why?

Answers

Angle ECF is facing outward and is not locked into the polygon ABCD being formed on the plane. Because of this, it would be an exterior angle.

20 POINTS!!!

Test the residuals of two other points to determine how well the line of best fit models the data. (the two points are orange circle and yellow square (53,52) and (55,55)

Answers

Answer:

the line will pass through yellow and red

What do I do for this question?

Answers

a chord intersected by a radius segment at a right-angle, gets bisected into two equal pieces, namely MO = NO and PZ = QZ.

[tex]\bf MO=NO\implies \stackrel{MO}{18}=NO\qquad \qquad NO=6x\implies \stackrel{NO}{18}=6x \\\\\\ \cfrac{18}{6}=x \implies 3=x \\\\[-0.35em] ~\dotfill\\\\ PZ=x+2\implies PZ=3+2\implies PZ=5=QZ \\\\[-0.35em] ~\dotfill\\\\ PQ=PZ+QZ\implies PQ=5+5\implies PQ=10[/tex]

Which of the binomials below is a factor of this trinomial?
22-5x-14

Answers

Answer:

The factors are the binomials (x - 7)(x + 2)

Step-by-step explanation:

* Lets explain how to factor a trinomial

- The trinomial  ax² ± bx ± c has two factors (x ± h)(x ± k), where

# h + k = -b/a

# h × k = c/a

- The signs of the brackets depends on the sign of c at first then

  the sign of b

# If c is positive, then the two brackets have the same sign

# If b is positive , then the signs of the brackets are (+)

# If b is negative then the sign of the brackets are (-)

# If c is negative , then the brackets have different signs

* Lets solve the problem

∵ The trinomial is x² - 5x - 14

∴ a = 1 , b = -5 and c = -14

c is negative

∴ The brackets have different signs

(x - h) (x + k) are the factors of the trinomial

∵ h + k = -5/1

h + k = -5 ⇒ (1)

∵ h × k = -14/1

h × k = -14 ⇒ (2)

- From (1) , (2) we search about two numbers their product is 14 and

 their difference is 5 , they will be 7 and 2

∵ 7 × 2 = 14

∵ 7 - 2 = 5

- The sign of b is negative then we will put the greatest number in the

 bracket of (-)

∴ h = 7 and k = 2

∴ The brackets are (x - 7)(x + 2)

* The factors are the binomials (x - 7)(x + 2)

A ball is dropped from the top of a building that is 1,000 feet high. Its height, in feet, as a function of the time, x, in seconds, after the ball was dropped, is given by the following equation, ƒ(x) = 1,000 - 16x 2. Which set of numbers is appropriate as the domain for this function?

Natural Numbers
Positive Real Numbers
Positive Integers
Positive Rational Numbers

Answers

Answer:

Positive real numbers

Step-by-step explanation:

The domain is all the possible values of x.  Here, x represents the time that the ball falls.

Natural numbers are integers greater than 0 (1, 2, 3, etc.).  However, the time doesn't have to be an integer (for example, x=1.5).

Positive integers are the same as natural numbers.

Positive rational numbers are numbers greater than 0 that can be written as a ratio of integers (1/1, 3/2, 2/1, etc.).  However, the time can also be irrational (for example, x=√2).

Positive real numbers are numbers greater than 0 and not imaginary (don't contain √-1).  This is the correct domain of the function.

The domain for the function ƒ(x) = 1,000 - 16x^2 is Positive Real Numbers.

The domain for the function ƒ(x) = 1,000 - 16x^2 is a set of Positive Real Numbers. This is because in real-world situations, such as the height of an object, negative time values do not make sense, and the function itself involves squaring x, which ensures that the result is positive. Therefore, the appropriate set of numbers as the domain for this function would be Positive Real Numbers.

Help me with quistion 1 and 2

Answers

The answer to number 1 is B

Answer:

1.B

first picture is x greater than or equal to 4

second picture is x less than or equal to 4

then x>4 is a open circle and a line to the  right

then x<4 to the left

Step-by-step explanation:

6⁄10 _______ 9⁄12 A. > B. ≤ C. = D.

Answers

6/10 is equal to 0.60
9/12 is equal to 0.75
your answer is not above for D but if D is < then that would be the correct answer :)

For this case we must indicate the sign corresponding to:

[tex]\frac {6} {10}[/tex]and [tex]\frac {9} {12}[/tex]

We have to:

[tex]\frac {6} {10} = 0.6\\\frac {9} {12} = 0.75[/tex]

It is observed that[tex]0.75> 0.6[/tex]

So we have to:

[tex]\frac {6} {10} <\frac {9} {12}[/tex]

Answer:

[tex]\frac {6} {10} <\frac {9} {12}[/tex]

A non-food crop is infected by pests on the 1st of a month. The pests infect the crop in such a way that the area infected doubles after each month. If the pests continue to infect the crop in this way, the non-food crop will be entirely infected after the sixth month.

After which month will one-eighth of the non-food crop be infected?

Answers

Answer:

After month 3.

Step-by-step explanation:

If you know that the crop will be completely infected after 6 months and the area infected doubles each month, you can work backwards. So picture the 6th month as 100%. Then, basically divide that percentage by 2 until you reach 1/8, or .125, or 12.5. So 100% (month 6) > 50% (month 5) > 25% (month 4) > 12.5% (month 3). So 12.5% is equal to 1/8 or .125, which is what you are trying to look for.

Hope this helps!

The non-food crop will be infected by one-eighth of the crop after 3 months.

What is the sum of n terms in a geometric sequence?

The sum of n terms of a geometric sequence is given by the formula,

Sn = [a(1 - r^n)]/(1 - r)

Where r - a common ratio

a - first term

n - nth term

Sn - the sum of n terms

Calculation:

Given that,

The crop is infected by pests.

The area infected doubles after each month. So, it forms a geometric progression or sequence.

The entire crop is infected after six months.

So, n = 6, r = 2(double) and consider a = x

Then the area of the infected crop after 6 months is,

S(6) = [x(1 - 2^6)]/(1 - 2)

      = x(1 - 64)/(-1)

     = -x(-63)

     = 63x

So, after six months the area of the infected crop is about 63x

So, the one-eighth of the crop = 63x/8 = 7.875x

For one month the infected area = x (< one-eighth)

For two months it will be x + 2x = 3x (< one-eighth)

For three months it will be x + 2x + 4x = 7x ( < one-eighth)

For four months it will be x + 2x + 4x + 8x = 15x (> one-eighth)

So, the one-eighth of the crop will be infected after 3 months.

Learn more about the sum of geometric sequences here:

https://brainly.com/question/24221513

#SPJ2

Solve for x. Please show work.

Answers

Answer:

First exercise: [tex]x=7[/tex]

Second exercise: [tex]x=2[/tex]

Step-by-step explanation:

Acording to the Intersecting Secants Theorem the products of the segments of two secants that intersect each other outside a circle, are equal.

Based on this, in order to solve the first exercise and the second exercise, we can write  the following expressions and solve for "x":

First exercise:

[tex](5)(5+x)=6(6+4)\\\\25+5x=60\\\\5x=60-25\\\\x=\frac{35}{5}\\\\x=7[/tex]

Second exercise:

[tex](4)(4+x)=3(3+5)\\\\16+4x=24\\\\4x=24-16\\\\x=\frac{8}{4}\\\\x=2[/tex]

The weight of a adult blue whale is 9x10^4 kilograms; the weight of an elephant is 3x10^3 kilograms. How many times heavier is the whale than the elephant?

Answers

Answer:

30 times

Step-by-step explanation:

Weight of adult blue whale = [tex]9 \times 10^{4}[/tex] kilogram

Weight of an elephant = [tex]3 \times 10^{3}[/tex] kilogram

In order to find how many times a quantity is as compared to the other quantity, we divide the two. So here we have to divide the weight of adult blue whale by the wight of elephant.

[tex]\frac{9 \times 10^{4}}{3 \times 10^{3}}\\= 30[/tex]

This means, adult blue whale is 30 times heavier than the elephant.

What are the explicit equation and domain for a geometric sequence with a first term of 2 and a second term of -8

Answers

Answer:

[tex]\large\boxed{a_n=2(-4)^{n-1}=\dfrac{(-4)^n}{2}}[/tex]

Step-by-step explanation:

The explicit equation of a geometric sequence:

[tex]a_n=a_1r^{n-1}[/tex]

The domain is the set of all Counting Numbers.

We have the first term of [tex]a_1=2[/tex] and the second term of [tex]a_2=-8[/tex].

Calculate the common ratio r:

[tex]r=\dfrac{a_{n-1}}{a_2}\to r=\dfrac{a_2}{a_1}[/tex]

Substitute:

[tex]r=\dfrac{-8}{2}=-4[/tex]

[tex]a_n=(2)(-4)^{n-1}\qquad\text{use}\ \dfrac{a^n}{a^m}=a^{n-m}\\\\a_n=(2\!\!\!\!\diagup^1)\left(\dfrac{(-4)^n}{4\!\!\!\!\diagup_2}\right)\\\\a_n=\dfrac{(-4)^n}{2}[/tex]

Answer:

Step-by-step explanation:

A geometric sequence has a common ratio. in this case the common ratio

r = -8/2 = -4.

The explicit formula is an = 2(-4)^(n-1).

LOOK AT PICTURE. VOLUME OF CAN PROBLEM

Answers

Answer:

The correct answer is third option.  994

Step-by-step explanation:

Points to remember

Volume of cylinder = πr²h

Where 'r' is the radius and 'h' is the height of cylinder

From the given question we get the cylinder height and radius

The height h = 3 times the diameter of one ball

 = 3 * 7.5 = 22.5 cm

Radius = half of the diameter of a ball

 = 7.5/2 = 3.75 cm

To find the volume of cylinder

Volume of cylinder = πr²h

 = 3.14 * 3.75² * 22.5

 = 993.515 ≈ 994

The correct answer is third option.  994

Solve exponential equations


5x − 2=625

Answers

Answer:

x = 6

Step-by-step explanation:

[tex]5^{x-2}=625\\\\5^{x-2}=5^4\qquad(5^4=5\cdot5\cdot5\cdot5=625)\\\\5^{x-2}=5^4\Rightarrow x-2=4\qquad\text{add 2 to both sides}\\\\x-2+2=4+2\\\\x=6\\\\\text{check:}\\\\5^{6-2}=5^4=625\qquad\bold{CORRECT}[/tex]

expand and simplify 4(2x+3)+4(3x+2)

Answers

8x+12+12x+8
20x+20
The final answer is 20x+20
Final answer:

To expand and simplify the expression 4(2x+3)+4(3x+2), distribute the 4 to both sets of parentheses and combine like terms to get 20x + 20.

Explanation:

To expand and simplify the expression 4(2x+3)+4(3x+2), we can use the distributive property of multiplication over addition. The distributive property states that for any numbers a, b, and c, a(b+c) = ab+ac.

First, we distribute the 4 to both terms inside the first set of parentheses: 4 * 2x + 4 * 3. This simplifies to 8x + 12. Then, we distribute the 4 to both terms inside the second set of parentheses: 4 * 3x + 4 * 2. This simplifies to 12x + 8.

Combining the like terms, the final simplified expression is: 8x + 12 + 12x + 8 = 20x + 20.

Learn more about Expanding and simplifying expressions here:

https://brainly.com/question/14191219

#SPJ3

William says that 15 yeas from now, his age will be 3 times his age 5 years ago. If x x represents William present age, complete the following sentence

A 15 years
B 18 years
C x-15=3(x-5)
D x+15=3(x-5)

Answers

Answer:

I don't know what the following sentence is:

But D is the equation to represent the situation

and A is what turns out to be his current age.

(If you want more help, on this question please post the following sentence).

Step-by-step explanation:

Let x represent the current age.

15 years from now his age is 3 times his age 5 years ago means we have the equation:

x+15=3(x-5)

(I added x to 15 because we said 15 years in the future)

Let's solve this to see if makes any sense just for fun:

Distribute:

x+15=3x-15

Add 15 on both sides:

x+30=3x

Subtract x on both sides:

   30=2x

Divide both sides by 2:

   15=x

So this means his current age is 15.

5 years ago his age would have been 10.

15 years in the future his age will be 30.

Is 30 equal to 3 times 10? Yes, it is! The equation does make sense.

Answer:

D,

Step-by-step explanation:

x is the present age of William, 15 years from now is x+15, and that is equal to  3 times 3() the age he had 5 years ago (x-5)., the equation is  x+15=3(x-5)

A man received 7 per cent interest on a loan of $800 for one year. How much interest did he receive? A.) $56 B.) $560 C.) $780 D.) $870 D.) None of these​

Answers

Answer:

A.) $56

Step-by-step explanation:

1.  Convert 7% into the numerical version by either

    A. Moving the decimal two spaces to the right, giving us .07

                                               or

    B. Making 7% into a fraction, 7/100

2. Now make an equation with the total amount of money (M) multiplied by the interest (P) inside of parenthesis. This will give us 7% of $800 in your case.

                                        (800 × .07) → 56

3.  Then, multiply by the number of years the interest has been accumulated.

                                              56 × 1

The official equation for this is: a = p(1 + r)^t

a = amount at end (initial amount + interest gained)

p = initial amount

r = rate (percent interest)

t = time in years

The correct option will be option A: Man will receive $56 interest in a year.

How to calculate simple interest?

Simple Interest amount can be calculated by the product of principal amount, rate of interest, and time.

Simple Interest= S.I. =p*t*r/100

where p is the principal amount,

r is interest rate (in %)

t is the time (in year).

Here, given,

principal amount P = $800

rate of interest= r=7%

time=t=1 year

using the above formula,

Simple Interest S.I.= p*t*r/100= (800*1*7)/100= $56

Therefore man will receive $56 interest in a year.

Learn more about Simple interest

here: https://brainly.com/question/25793394

#SPJ2

VERY EASY WILL GIVE BRAINLEST THANK YOU AND FRIEND YOU Determine whenter (18+35)x4= 18+35x4 is true or false. Explain.

Answers

Answer:

False because on the left side of the equation you are adding 18 and 35 first and on the right you are multiplying 35 and 4 first. This will give you an unequal equation when solved.

Let's solve each side

(18+35)*4=212

but 18+(35*4)=158

eric runs 3 miles in 28 minutes. at the same rate how many miles would he run in 42 minutes?

Answers

3miles/ 28 minutes times 42 minutes is equal to 4.5 miles.

Therefore, Eric run 4.5 miles in 42 minutes.

Hopefully this helps!

How would you answer this math geometric question

Answers

Answer:

* The shorter side is 270 feet

* The longer side is 540 feet

* The greatest possible area is 145800 feet²

Step-by-step explanation:

* Lets explain how to solve the problem

- There are 1080 feet of fencing to fence a rectangular garden

- One side of the garden is bounded by a river so it doesn't need

 any fencing

- Consider that the width of the rectangular garden is x and its length

 is y and one of the two lengths is bounded by the river

- The length of the fence = 2 width + length

∵ The width = x and the length = y

∴ The length of the fence = 2x + y

- The length of the fence = 1080 feet

2x + y = 1080

- Lets find y in terms of x

∵ 2x + y = 1080 ⇒ subtract 2x from both sides

y = 1080 - 2x ⇒ (1)

- The area of the garden = Length × width

The area of the garden is A = xy

- To find the greatest area we will differentiate the area of the garden

  with respect to x and equate the differentiation by zero to find the

  value of x which makes the area greatest

∵ A = xy

- Use equation (1) to substitute y by x

∵ y = 1080 -2x

∴ A = x(1080 - 2x)

A = 1080x - 2x²

# Remember

- If y = ax^n, then dy/dx = a(n) x^(n-1)

- If y = ax, then dy/dx = a (because x^0 = 1)

∵ A = 1080x - 2x²

∴ dA/dx = 1080 - 2(2)x

∴ dA/dx = 1080 - 4x

- To find x equate dA/dx by 0

∴ 1080 - 4x = 0 ⇒ add 4x to both sides

∴ 1080 = 4x ⇒ divide both sides by 4

x = 270

- Substitute the value of x in equation (1) to find the value of y

∵ y = 1080 - 2x

∴ y = 1080 - 2(270) = 1080 - 540 = 540

y = 540

* The shorter side is 270 feet

* The longer side is 540 feet

∵ The area of the garden is A = xy

∴ The greatest area is A = 270 × 540 = 145800 feet²

* The greatest possible area is 145800 feet²

Other Questions
You make a simple instrument out of two tubes which looks like a flute and extends like a trombone. One tube is placed within another tube to extend the length of the instrument. There is an insignificantly small hole on the side of the instrument to blow on. Other than this, the instrument behaves as a tube with one end closed and one end open. You lengthen the instrument just enough so it emits a 1975Hz tone when you blow on it, which is the 4th allowed wave for this configuration. The speed of sound in air at STP is 343m/s.The instrument's sound encounters warmer air which doubles its speed. What is the new amplitude of this sound, in m, if the original sound has an amplitude of 0.5m?The instrument's sound encounters warmer air which doubles its speed. What is the new wavelength of this sound in m?The instrument's sound encounters warmer air which doubles its speed. What is the new frequency of this sound in Hz?What length do you have to extend the instrument to for it to make this sound in m?What is the fundamental frequency of the instrument at this length in Hz?Your friend has a similar instrument which plays a tone of 2034.25 Hz right next to yours so they interfere. What will the frequency of the combined tone be in Hz?You play your instrument in a car travelling at 12m/s away from your friend travelling on a bicycle 4m/s away from you. What frequency does your friend hear in Hz? how much is 2 plus 3 Superposition of two wave crests produces ____ interference.ConstructiveDestructive Please help10 minutes!!Find the value of x and the value of y.A. x = 15, y = 10B. x = 20, y = 50C. x = 50, y = 10D. x = 50, y = 20 What is the surface area of the solid that can be formed by this net?plz help fast!!! 3x-2>5x+10 solve for x HELP ASAP Translate 6(4j+5+4j) in to a verbal expression w step by step. WILL MARK BRAINLIEST c) Over a period of 3 years, the company's sales of biscuits increased from 15.6 million packets to20.8 million packets.The sales increased exponentially by the same percentage each year.Calculate the percentage increase each year. A disc-shaped grindstone with mass 50 kg and diameter 0.52m rotates on frictionless bearings at 850 rev/min. An ax is pushed against the rim (to sharpen it) with a normal force of 160 N. The grindstone subsequently comes to rest in 7.5 seconds. What is the co-efficient of friction between ax and stone? A certain triangle has two 45 angles. What type of triangle is it?A. Acute TriangleB. Right triangle.C. Right isosceles D. Acute isosceles What word completes the sentence?He will have _____ his work by next week.finishfinished Quartzite is formed by metamorphosing the rock _______________. (1 word) please help with this question Write the definition of a class PlayListEntry containing: An instance variable title of type String, initialized to the empty String. An instance variable artist of type String, initialized to the empty String. An instance variable playCount of type int, initialized to 0. Solve the system of equations. x+y=4 y=x^2 - 8x + 16 a) {(-3,7).(-4, 8)} b) [(4,0)} c) {(3,1),(4,0) d) {(3,7). (4.0)} e) none do these measurements create a triangle? true or false? Can someone help me with this question? If a mile of 24-gauge copper wire has a resistance of 0.14 k and the resistivity of copper is 1.7 108 m, what is the diameter of the wire? (1 mile = 1.6 km) Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.Match each type of skeletal marking to its functionallows tendons to attach to boneallows blood vessels and nervesto travel through boneallows two bones to form a jointallows smooth gliding of jointsallows for the production ofred blood cellsforamentuberclefossa What positions can the President appoint?