Which of the following situations would produce an average velocity of zero?
A) a round-trip to school and back
B) a horse galloping in a field
C) the criss-crossing path of a flying bug
D) a trip, first to the moon, then onto Mars

Answers

Answer 1
The correct answer is A

Related Questions

The tub of a washer goes into its spin-dry cycle, starting from rest and reaching an angular speed of 2.0 rev/s in 10.0 s. At this point, the person doing the laundry opens the lid, and a safety switch turns off the washer. The tub slows to rest in 12.0 s. Through how many revolutions does the tub turn during this 22 s interval? Assume constant angular acceleration while it is starting and stopping.

Answers

Answer:

22 revolutions

Explanation:

2 rev/s = 2*(2π rad/rev) = 12.57 rad/s

The angular acceleration when it starting

[tex]\alpha_a = \frac{\Delta \omega}{\Delta t} = \frac{12.57}{10} = 1.257 rad/s^2[/tex]

The angular acceleration when it stopping:

[tex]\alpha_o = \frac{\Delta \omega}{\Delta t} = \frac{-12.57}{12} = -1.05 rad/s^2[/tex]

The angular distance it covers when starting from rest:

[tex]\omega^2 - 0^2 = 2\alpha_a\theta_a[/tex]

[tex]\theta_a = \frac{\omega^2}{2\alpha_a} = \frac{12.57^2}{2*1.257} = 62.8 rad[/tex]

The angular distance it covers when coming to complete stop:

[tex]0 - \omega^2 = 2\alpha_o\theta_o[/tex]

[tex]\theta_o = \frac{-\omega^2}{2\alpha_o} = \frac{-12.57^2}{2*(-1.05)} = 75.4 rad[/tex]

So the total angular distance it covers within 22 s is 62.8 + 75.4 = 138.23 rad or 138.23 / (2π) = 22 revolutions

Dolphin echolocation is similar to ultrasound. Reflected sound waves
allow a dolphin to form an image of the object that reflected the waves.
Dolphins can produce sound waves with frequencies ranging from
0.25 kHz to 220 kHz, but only those at the upper end of this spectrum
are used in echolocation. Explain why high-frequency waves work better
than low-frequency waves.

Answers

Answer:

Waves with high frequencies have shorter wavelengths that work better  than low frequency waves for successful echolocation.

Explanation:

To understand why high-frequency waves work better  than low frequency waves for successful echolocation, first we have to understand the relation between frequency and wavelength.

The relation between frequency and wavelength is given by

λ = c/f

Where λ is wavelength, c is the speed of light and f is the frequency.

Since the speed of light is constant, the wavelength and frequency are inversely related.

So that means high frequency waves have shorter wavelengths, which is the very reason for the successful echolocation because waves having shorter wavelength are more likely to reach and hit the target and then reflect back to the dolphin to form an image of the object.

Thus, waves with high frequencies have shorter wavelengths that work better  than low frequency waves for successful echolocation.

A cylindrical insulated wire of diameter 5.0 mm is tightly wound 200 times around a cylindrical core to form a solenoid with adjacent coils touching each other. When a 0.10 A current is sent through the wire, what is the magnitude of the magnetic field on the axis of the solenoid near its center

Answers

Final answer:

To find the magnetic field inside a solenoid, use the formula B = μ₀ * n * I, where B is the magnetic field, n is the number of turns per unit length, and I is the current through the solenoid.

Explanation:

To find the magnetic field inside the solenoid, we can use the formula B = μ0* n * I, where B is the magnetic field, μ0 is the permeability of free space, n is the number of turns per unit length, and I is the current through the solenoid.

Given that the solenoid has a diameter of 5.0 mm, we can calculate the radius by dividing the diameter by 2, which is 2.5 mm or 0.0025 m. Using the radius, we can find the number of turns per unit length by dividing the total number of turns (200) by the length of the solenoid (unknown in the given information).

Once we know the number of turns per unit length and the current (0.10 A), we can calculate the magnitude of the magnetic field using the formula mentioned earlier.

Final answer:

To calculate the magnitude of the magnetic field on the axis of the solenoid near its center, we can use the formula B = μ0 * n * I.

Explanation:

To calculate the magnitude of the magnetic field on the axis of the solenoid near its center, we can use the formula:

B = μ0 * n * I

Where B is the magnetic field, μ0 is the permeability of free space, n is the number of turns per unit length, and I is the current.

In this case, the solenoid has a diameter of 5.0 mm, so the radius is 2.5 mm. The circumference of the solenoid is 2 π * r, and the length is 200 * this circumference. The number of turns per unit length (n) can be calculated by dividing the number of turns by the length of the solenoid. Finally, plug in the values into the formula to calculate the magnetic field.

When an object is approached electrostatically charged to a neutral body it is possible to charge it by induction, however, if it is touched for a moment the object will be charged by contact, explain this phenomenon, why this happens

Answers

Answer:

When the charge body touches the other body, charge pass from it to the other body until get the charge is distributed over the largest possible surface, when separating the two bodies they are charged, but with half the initial charge, this phenomenon is called contact charge

Explanation:

When a charged body approaches another body, it attracts or repels the electrons of the other body, until the net charge is zero, that effect disappears when the body moves away.

When the charge body touches the other body, charge pass from it to the other body until get the charge is distributed over the largest possible surface, when separating the two bodies they are charged, but with half the initial charge, this phenomenon is called contact charge

Scientists have found that the most destructive and deadly tornadoes occur from rotating thunderstorms called

Answers

Answer:

Supercells

Explanation:

supercells are rotating thunderstorms that has a well-defined radar circulation called a mesocyclone. They can sometimes produce destructive hail, severe winds, frequent lightning, and flash floods.

How do the three opsin molecules respond to different wavelengths of light when their retinal molecular structures are identical?

Answers

Answer:

The three opsin molecules respond to different wavelengths of light because of the different structure of the protein bound to the opsin molecules.

Explanation:

Opsin is a protein that is released by the action of light and forms part of the visual pigment rhodopsin. There are two groups of protein termed opsins,  type I opsins, which are employed by prokaryotes and by some algae  and fungi, and type II opsins which are used by animals.

Though the retinal molecular structures of the opsin molecules are identical, they respond to different wavelengths of light because of the different structure of the protein bound to the opsin molecules.

A 2.9 kg ball strikes a wall with a velocity of 8.6 m/s to the left. The ball bounces off with a velocity of 7.3 m/s to the right. If the ball is in contact with the wall for 0.33 s, what is the constant force exerted on the ball by the wall? Answer in units of N.

Answers

Answer:

The constant force exerted by the wall is F=11.4N

Explanation:

The problem bothers on the impulse of a force

Which is given as

Ft=mv-mu

Ft=m(v-u)

Given data

mass of ball m =2.9kg

Final speed v=8.6m/s

Initial speed u=7.3m/s

Time t= 0.33s

Substituting to find F

F*0.33=2.9(8.6-7.3)

F*0.33=2.9*1.3

F=3.77/0.33

F=11.4N

5. Suppose a cup of cocoa cooled from 90° C to 60° C after 10 minutes in a room whose temperature was 20° C . Use Newton’s law of cooling [T − Ts = (T0 − Ts )⋅ e−k⋅t ] to answer the following questions: a) How much longer would it take the cocoa to cool to 35° C ? b) Instead of being left to stand in a room, the cup with initial temperature 90° C is placed in a freezer whose temperature is −15° C . How long will it take the cocoa to cool from 90° C to 35° C ?

Answers

Answer:

a) t = 1051.6 sec = 17.5 min

b) t = 795.5 sec = 13.25 min

Explanation:

First of all we use the initial data to find out constant 'K'.

T - Ts = (T₀ - Ts) e^(-kt)

Here, we have:

T = Final Temperature = 60° C

Ts = Surrounding Temperature = 20° C

T₀ = Initial Temperature = 90° C

t = time = 10 min = 600 sec

k = constant = ?

Therefore,

60° C - 20° C = (90° C - 20° C).e^(-k600)

40° C/70° C = e^(-k600)

ln (0.57142) = -600k

k = 9.327 x 10⁻⁴ sec⁻¹

a)

Now, for this case we have:

T = Final Temperature = 35° C

Ts = Surrounding Temperature = 20° C

T₀ = Initial Temperature = 60° C

t = time = ?

k = constant = 9.327 x 10⁻⁴ sec⁻¹

Therefore,

35° C - 20° C = (60° C - 20° C).e^(-9.327 x 10⁻⁴ sec⁻¹ x t)

15° C/40° C = e^(-9.327 x 10⁻⁴ sec⁻¹ x t)

ln (15/40) = - 9.327 x 10⁻⁴ sec⁻¹ x t

t = 1051.6 sec = 17.5 min

b)

Now, for this case we have:

T = Final Temperature = 35° C

Ts = Surrounding Temperature = -15° C

T₀ = Initial Temperature = 90° C

t = time = ?

k = constant = 9.327 x 10⁻⁴ sec⁻¹

Therefore,

35° C + 15° C = (90° C + 15° C).e^(-9.327 x 10⁻⁴ sec⁻¹ x t)

50° C/105° C = e^(-9.327 x 10⁻⁴ sec⁻¹ x t)

ln (50/105) = - 9.327 x 10⁻⁴ sec⁻¹ x t

t = 795.5 sec = 13.25 min

A spacecraft is separated into two parts by detonating the explosive bolts that hold them together. The masses of the parts are 1200 kg and 1800kg; the magnitude of the impulse on each par from the bolts is 300 N s. With what relative speed do the twe twe parts separate because of the detonation?

Answers

Answer:

Explanation:

Given that,

A space ship is separated into two part

Mass of first part

M1 = 1200kg

Mass of second part

M2 = 1800kg

Magnitude of impulse on each part is

I = 300Ns

We want to find the relative velocity at which the two parts separate

Now,

Impulse is give as

I = ft = mv - mu

Since the body is considered to be at rest before detonation

Then, I = mv

So for first part

I = M1•V1

V1 = I / M1

V1 = 300 / 1200

V1 = 0.25m/s

Also, for second part

V2 = —I / M2

V2 = —300 / 1800

V2 = —0.167 m/s

NOTE: the negative sign is due to the fact that the two bodies are moving away from each other.

The relative speed of the two masses because of detonation is

V = V1 — V2

V = 0.25 — (—0.167)

V = 0.25 + 0.167

V = 0.417 m/s

The relative speed of the two masses because of detonation is 0.417 m/s

Answer:

(1) [tex]\frac{5}{12} m/s[/tex]

(2)  [tex]-\frac{5}{12} m/s[/tex]

Explanation:

Lets say two parts went left and right, one with 1200Kg, call it A ,went right and one with mass 1800Kg went left. Let's establish right as positive and left as negative for our speed convention.

Both have initial acceleration of 300N, assuming for one second, by newton's second law F=ma, 'A' will have acceleration of 1/4m/s^ which will induce velocity of 0.25m/s as well.

So A has velocity of [tex]\frac{1}{4} m/s[/tex] towards right direction.

and B has velocity of - [tex]\frac{1}{6} m/s[/tex] towards left direction.

Relative Velocities.

and 'B' will have acceleration of [tex]\frac{1}{6} m/s^2[/tex] which will also produce velocity of [tex]\frac{1}{6} m/s[/tex].

[tex]V_{AB} = V_{A} -V_{B}[/tex] = [tex]$\frac{1}{4} --\frac{1}{6}= \frac{5}{12}m/s[/tex] (Read as Velocity A with respect to B) (1)

[tex]V_{BA} =V_{B} -V_{A} = -\frac{1}{6}-\frac{1}{4} =-\frac{5}{12} m/s[/tex] (Read as Velocity B with respect to B). (2).

An insoluble solid material that is produced in double replacement reactions is called

Answers

Answer:

Precipitate

Explanation:

When a double displacement reaction occurs, the cations and anions switch partners, resulting in the formation of two new ionic compounds AD and CB, one of products is in the solid state and forms an insoluble ionic compound called a precipitate.

A newly proposed device for generating electricity from the sun is a heat engine in which the hot reservoir is created by focusing sunlight on a small spot on one side of the engine. The cold reservoir is ambient air at 20°C. The designer claims that the efficiency will be 50%.
What minimum hot-reservoir temperature, in degrees C, would be required to produce this efficiency?

Answers

Answer:  

The minimum temperature of hot reservoir is 586K or 313°C

Explanation:

The Carnot cycle is defined as ideal reversible process thermodynamic process which has four successive step. During the expansion and compression of  the substance it can done upto desired point and then reversed up.

Here the energy is used from the hot reservoir to do work and deposited into the cold reservoir. As is it reversible the efficiency of the carnot cycle is the theoretical maximum of the heat engine.

The efficiency of carnot cycle is

η = 1 - [tex]\frac{Tc}{Th}[/tex]    eq 1

Where Tc is the temperature of cold reservoir = 20° = 20°+273K = 293K

           Th is the temperature of hot reservoir.

            η  is the efficency 50% = 0.5

The minimum temperature of the reservoir is related to the maximum efficiency,

Substituting values in eqn 1

0.05 = 1-[tex]\frac{293}{Th}[/tex]

Th = [tex]\frac{293}{1 - 0.5}[/tex] =586 K

The minimum temperature of hot reservoir is 586K.

ie 586K-273 = 313°C

Final answer:

The minimum hot-reservoir temperature required for a heat engine to have 50% efficiency with a cold reservoir at 20°C is 313.15°C.

Explanation:

To determine the minimum hot-reservoir temperature for a heat engine with 50% efficiency where the cold reservoir is at 20°C, we can use the efficiency formula for a Carnot engine: efficiency (e) = 1 - (Tc/Th), where Tc is the cold reservoir temperature and Th is the hot reservoir temperature, both in kelvins. Rearranging the formula to solve for Th gives: Th = Tc / (1 - e).

First, convert the cold reservoir temperature from Celsius to Kelvin: Tc = 20°C + 273.15 = 293.15 K. Now, plug in the efficiency value: Th = 293.15 K / (1 - 0.50) = 293.15 K / 0.50 = 586.3 K. Convert this back to Celsius to get the minimum hot-reservoir temperature required: Th - 273.15 = 586.3 K - 273.15 = 313.15°C.

Therefore, the minimum hot-reservoir temperature required for the proposed heat engine to reach 50% efficiency is 313.15°C.

why is it painful to lift a heavy load with a thin piece of string?

Answers

Explanation:

A thin piece of string has lower force than of a heavy load.

When the load is being lifted, the force exerted by the load is much more greater than the string, which eventually hits our hands.

For example, a heavy bag. You tie a thin string to it and try to lift it. The force exerted by the bag will hit the string harder, reaching for your plams. As the thin string has less force, its reaction force is not enough to hit back the greater force. Also, the less the surface area, the more difficult the grip gets. But, if you attach a thick rope or belt, the force exerted my the bag is automatically minimized as the reaction force of the thick rope is near about the action force. Hence, greater the surface area, better the grip.

*action force: force exerted by the bag

*reaction force: the force hit back by the rope

It is painful to lift a heavy load with a thin piece of string because the string has a small cross-sectional area and cannot withstand a large amount of tension without breaking.

What is tensile strength?

Tensile strength is the maximum amount of tensile stress that a material can withstand before it breaks or undergoes permanent deformation. It is a measure of the material's ability to resist external forces that try to pull it apart or elongate it.

Tensile strength is an important mechanical property of materials, and it is commonly used in engineering and design to select materials for specific applications. The tensile strength of a material is typically determined through a tensile test, where a sample of the material is subjected to a gradually increasing tensile force until it breaks.

The tensile strength of a material depends on its composition, microstructure, and processing conditions. For example, materials that have a high degree of crystallinity and are free from defects or impurities generally have a higher tensile strength than materials with a less ordered microstructure or defects. In addition, the processing conditions, such as temperature and strain rate, can also affect the tensile strength of a material.

The tensile strength is typically reported in units of force per unit area, such as megapascals (MPa) or pounds per square inch (psi). The higher the tensile strength of a material, the greater its ability to withstand tensile stress without breaking or undergoing permanent deformation.

Here in the Question,

It is painful to lift a heavy load with a thin piece of string because the string has a small cross-sectional area and cannot withstand a large amount of tension without breaking. When a heavy load is attached to the string and lifted, the weight of the load creates a tension force in the string that is equal to the weight of the load. If the tension force in the string exceeds its maximum tensile strength, it will break.

The maximum tensile strength of a string depends on its material properties and cross-sectional area. When a thin piece of string is used to lift a heavy load, the tension force in the string can easily exceed its maximum tensile strength, causing it to break. This sudden release of tension can also cause the load to drop suddenly, which can lead to injury.

This can be explained using the concept of stress and strain. Stress is the force applied to an object per unit area, while strain is the deformation of the object due to the applied stress. When a heavy load is attached to a thin piece of string, the weight of the load creates a large stress in the string, which can cause it to undergo plastic deformation and break. This is because the string has a small cross-sectional area, which means that the stress is concentrated over a small area, leading to a high level of strain.

Therefore, a thicker piece of string or rope has a larger cross-sectional area, which means that the stress is spread out over a larger area. This allows it to withstand a greater amount of tension before breaking. Therefore, it is important to use a string or rope with a sufficient cross-sectional area when lifting heavy loads to prevent injury and damage.

To learn more about Plastic deformation click:

https://brainly.com/question/13111132

#SPJ2

Any measurement that includes both magnitude and direction is called

Answers

A measurement that includes both magnitude and direction is called a vector, which is essential for analyzing motion and forces in physics.

Any measurement that includes both magnitude and direction is called a vector. Vectors are physical quantities that have both an amount, known as magnitude, and a specified direction in space. For example, velocity is a vector because it describes not only how fast an object is moving, but also the direction of movement.

This contrasts with a scalar, which is a quantity that has only magnitude and no direction, such as mass or time. In physics, understanding vectors is crucial for analyzing motion, forces, and other concepts that depend on both the amount and the direction of a quantity.

Physics - Wave Diagrams Assignment
Wave
Wave
B
CAN SOMEONE HELP ME LOL

Answers

Answer:At the top of the page is a transvers wave

C= crest

B= wavelingth

D= trough

A= amplatud

The next wave is a longitudinal wave

what does a electric field of two positive charges look like

Answers

Hope this helped you

:)

Have a great day!

In this section we considered a circular parallel-plate capacitor with a changing electric field. Describe the induced magnetic field lines?

Answers

Answer:

The study of Maxwell's equations and Ampere's law are used for analysis

Explanation:

Though There's a magnetic field associated with a changing electric field in TEM propagation of an EM wave through space (which is how it propogates, the changing E field begets the M field, the changeing M field begets the E field, leapfrogging each other).

But between capacitor plates, according to Maxwell and Ampere law, the displacement current in Ampere law was exactly to solve cases like that of a capacitor. A magnetic field cannot have discontinuities, unlike the electric field because there are electric charges, but there are no magnetic monopoles, at least as far as we know in the Universe in its current state. We can therefore conclude that there cannot be a magnetic field outside the capacitor and nothing inside

Conventional current is the rate at which positive charge flows in a circuit. In atoms, only the electrons are free to move. What can you conclude from these statements?

A) Electrons must be positively charged.
B) The definition of current must be changed.
C) Electrons do not flow in electric circuits.
D) Charges actually flow opposite the conventional current.

Answers

Answer:

In a metal circuit, the charges which are free electrons flow opposite to the flow of conventional current(which is assumed as the flow of positive charges)

Explanation:

Conventional current is defined as the direction that positive charge would flow, which is opposite to the actual flow of electrons in a circuit.

From the statements given, we can conclude that charges actually flow opposite the conventional current. This is because conventional current assumes that positive charge is moving in the direction of the electric field, whereas in actuality, in metal wires, it is the electrons— which have a negative charge—that are moving.

Electrons flow in a direction opposite to the defined conventional current. The designation of the direction of conventional current dates back to Benjamin Franklin's time, and despite later discovery that electrons are the primary charge carriers in circuits, the convention has remained the same.

Dan is gliding on his skateboard at 3.00 m/s. He suddenly jumps backward off the skateboard, kicking the skateboard forward at 8.00 m/s. Dan's mass is 70.0 kg and the skateboard's mass is 6.00 kg. How fast is Dan going as his feet hit the ground?

Answers

Answer:

The velocity of Dan is 2.57m/s as his feet hit the ground

Explanation:

The impact experience by Dan and the skate board is an elastic collision

Collision is elastic when the kinetic energy is not conserved and if there is rebound after collision

Given that

U= initial velocity of Dan and the skate board 3m/s

M1 =mass of Dan 70kg

M2= mass of Skate board 6kg

V1= final velocity of Dan?

V2= Final velocity of skate board 8m/s

The expression for Dan and the skate board collision can be expressed as

Momentum before impact momentum after impact

(M1+M2)U=M1V1+M2V2

Substituting our data we have

(70+6)3=(70*V1)+(6*8)

228=70V1+48

Solving for V1

228-48=70V1

V1=180/70

V1=2.57m/s

Water behind a dam has a certain amount of stored energy that can be released as the water falls over the top of the dam. It may be enough energy to turn a mill wheel or an electricity-generating turbine. Choose the term that best describes the type of energy stored in the water at the top of the dam.
potential energy
kinetic energy
mechanical energy

Answers

Answer:

The answer is potential energy

Explanation:

The potential energy is the energy possessed by a body by virtue of it position

For example the water at the top of the dam is being held at a height h above the bottom of the dam

Then the potential energy

PE= weight of the water* the height

PE= m*g*h

An object is situated to the left of a lens. A ray of light from the object is close to and parallel to the principal axis of the lens. The ray passes through the lens. Which one of the following statements is true?


The ray passes through a focal point of the lens only if the lens is a converging lens.

The ray passes through the lens without changing direction, no matter whether the lens is converging or diverging.

The ray crosses the principal axis at a distance from the lens equal to twice the focal length, no matter whether the lens is converging or diverging.

The ray passes through a focal point of the lens only if the lens is a diverging lens.

The ray passes through a focal point of the lens, no matter whether the lens is converging or diverging.

Answers

Answer:

The ray passes through a focal point of the lens only if the lens is a converging lens.

Explanation:

By the principles of geometric optics, we know that all rays parallel to the principal axis of converging lens, change its direction to a point situated in the axis of the lens. This last point is know as the focal point.

Hence, the only truth choice is:

The ray passes through a focal point of the lens only if the lens is a converging lens.

I attached an image to illustrate this situation

HOPE THIS HELPS!!

Please Help me

A record player runs at 78 RPMs (revolutions per minute). That means that it spins 78 times (cycles) in a minute. work each one out.

a. Find the frequency of the record player.

b. Find the period of the record player.

Answers

Answer:

a. the frequency of the record player

f = 1.3 rev per second = 1.3 Hz

b. the period of the record player.

T = 0.77 seconds

Explanation:

Given;

Speed of record player v = 78 rpm

a) frequency of the record player is the number of revolutions the record player makes per second.

f = 78 rev/minute = 78/60sec = 1.3 rev per second

f = 1.3 Hz

b) period of the record player is the amount of time needed by the record player to complete one revolution.

T = 1/f (or 60s/78rev = 0.77 s)

T = 1/1.3

T = 0.77 seconds

Answer:

(a) The frequency of the record player is 1.3 Hz

(b) The period of the record player is  0.77 s

Explanation:

Given number of revolution per minute = 78 RPM

Part (a) the frequency of the record player

One revolution per minute, 1 RPM = ¹/₆₀ Hz

                                             78 RPM = ?

Thus, 78 RPM = 78 ( ¹/₆₀ HZ) = 1.3 Hz

The frequency of the record player is  1.3 Hz

Part (b) the period of the record player

Period is inverse of frequency

T = 1 / f

T = 1 / 1.3 Hz

T = 0.77 s

The period of the record player is 0.77 s

"Describe how increasing the stimulus frequency affected the force developed by the isolated whole skeletal muscle in this activity. How well did the results compare with your prediction

Answers

Answer is seen below

Explanation: Stimulus frequency refers to the rate that stimulating voltage pulses are applied to an isolated whole skeletal muscle.

When a stimulus frequency is at the lowest ( let's say 50stimuli/second) the force will be at its lowest level out of all of the experiments. As the stimulus frequency was increased to 130 stimuli/second the force increased slightly but fused tetanus( tetanus refers to a sustained muscle tension due to very frequent stimuli) developed at the higher frequency. When the stimulus frequency was increased to the amounts of 146-150 stimuli/second, a maximum tetanic tension occurred, where no further increases in force occur from additional stimulus frequency.

By increasing the stimulus frequency if it resulted in increasing the muscle tension generated by each successive force and it had limit that was eventually reached. Then the results equaled to your prediction.

A speed skater is travelling at 2 m/s and accelerates uniformly to 4 m/s in 5 seconds. What is her acceleration?

Answers

Answer:

The answer to your question is a = 0.4 m/s²

Explanation:

Data

speed 1 = 2 m/s

speed 2 = 4 m/s

time = 5 s

Acceleration measures the change of speed over a unit of time.

Formula

Acceleration = (speed 2 - speed 1) / time

Substitution

Acceleration = (4 - 2) / 5

Simplification

Acceleration = 2/5

Result

Acceleration = 0.4 m/s²

Answer: her acceleration is 0.4 m/s^2

A lamp operates at 115 volts with a current of 0.25 ampere. What is the lamp's resistance?

Answers

Answer:

460 ohms

Explanation:

Resistance=Voltage/Current

=115/0.25=460

Final answer:

The resistance of the lamp can be calculated using Ohm's law, which states that resistance is equal to voltage divided by current. In this case, the resistance of the lamp is 460 ohms.

Explanation:

To find the resistance of a lamp, we can use Ohm's law, which states that resistance is equal to voltage divided by current.

R = V/I

From the given information, the voltage is 115 volts and the current is 0.25 amperes. Plugging these values into the equation, we get:

R = 115 V / 0.25 A = 460 ohms

Therefore, the lamp's resistance is 460 ohms.

Learn more about Calculating Resistance here:

https://brainly.com/question/33886529

#SPJ2

A simple pendulum is used to determine the acceleration due to gravity at the surface of a planet. The pendulum has a length of 2 m and its period is measured to be 2 s. The value of g obtained in this investigation is most nearly __________.A. 1 m/s²B. 2 m/s²C. 5 m/s²D. 10 m/s²E. 20 m/s²

Answers

Answer:

Acceleration due to gravity is 20 [tex]m/sec^2[/tex]

So option (E) will be correct answer

Explanation:

We have given length of the pendulum l = 2 m

Time period of the pendulum T = 2 sec

We have to find acceleration due to gravity g

We know that time period of pendulum is given by

[tex]T=2\pi \sqrt{\frac{l}{g}}[/tex]

[tex]2=2\times 3.14 \sqrt{\frac{2}{g}}[/tex]

[tex]0.3184= \sqrt{\frac{2}{g}}[/tex]

Squaring both side

[tex]0.1014= {\frac{2}{g}}[/tex]

[tex]g=19.71=20m/sec^2[/tex]

So acceleration due to gravity is 20 [tex]m/sec^2[/tex]

So option (E) will be correct answer.

Final answer:

Using the formula for the period of a simple pendulum and given values for length and period, the acceleration due to gravity on the planet is calculated to be approximately 9.87 m/s², which is closest to 10 m/s².

Explanation:

To determine the value of acceleration due to gravity (g) at the surface of a planet using a simple pendulum, we use the formula for the period (T) of a simple pendulum: T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.

Rearranging the formula to solve for g gives us: g = (4π²L) / T². Given that the length (L) is 2 m and the period (T) is 2 s, we plug these values into the formula: g = (4π² × 2 m) / (2 s)².

Calculating this gives us: g = (4π² × 2 m) / 4, simplifying further gives g = π² × 2 m. Now substituting π = 3.14159, we find g = (3.14159)² × 2 m ≈ 9.87 m/s², which is closest to choice D: 10 m/s².

Un cuerpo de 10N de peso esta apoyado sobre una superficie horizontal. Se le ata una cuerda y se tira de él con una fuerza de 15 N que forma un ángulo de 60° con la horizontal. ¿Cuál es la fuerza normal sobre el cuerpo?

Answers

Final Answer:

La fuerza normal sobre el cuerpo es de [tex]\(5 \, N\)[/tex].

Explanation:

El problema implica un cuerpo de [tex]\(10 \, N\)[/tex] de peso que está siendo sometido a una fuerza de tracción de [tex]\(15 \, N\)[/tex] a un ángulo de [tex]\(60^\circ\)[/tex] con la horizontal. La fuerza normal es la componente perpendicular de la fuerza peso, ya que no hay movimiento vertical. Utilizamos la relación trigonométrica [tex]\(F_{\text{normal}} = F_{\text{peso}} \cdot \cos(\theta)\)[/tex], donde [tex]\(F_{\text{peso}}\)[/tex] es el peso del cuerpo y [tex]\(\theta\)[/tex] es el ángulo entre la fuerza peso y la horizontal.

En este caso, la fuerza peso [tex]\(F_{\text{peso}}\) es \(10 \, N\)[/tex] hacia abajo, y el ángulo [tex]\(\theta\)[/tex] es [tex]\(60^\circ\)[/tex]. Aplicando la fórmula, obtenemos [tex]\(F_{\text{normal}} = 10 \, N \cdot \cos(60^\circ)\)[/tex]. Calculando esto, encontramos [tex]\(F_{\text{normal}} = 10 \, N \cdot 0.5 = 5 \, N\)[/tex].

La fuerza normal es, por lo tanto, [tex]\(5 \, N\)[/tex], lo que significa que la superficie horizontal ejerce una fuerza hacia arriba de [tex]\(5 \, N\)[/tex] para equilibrar la componente vertical de la fuerza aplicada.

Este resultado es consistente con el principio de equilibrio en el plano horizontal. La fuerza normal contrarresta la componente vertical de la fuerza aplicada, manteniendo el cuerpo en equilibrio sin movimiento vertical. Este enfoque, basado en las leyes de la trigonometría y el equilibrio, proporciona una solución clara y precisa para el problema.

You stop for a cappuccino at a coffee shop and notice that the tiny white bubbles of steamed milk remain on the surface of the coffee. These air-filled bubbles stay where they are, rather than descending into the coffee or rising into the air, because they are:

A. more dense than the coffee but less dense than the air above thecoffee.

B. thicker than the coffee but less thick than the air above thecoffee.

C. less dense than the coffee but more dense than the air above thecoffee.

D. lighter than the cup of coffee but heavier than the column ofair above the coffee.

Answers

Answer:

C. less dense than the coffee but more dense than the air above thecoffee.

Explanation:

Objects 1 and 2 attract each other with a electrostatic force of 72.0 units. If the distance separating objects 1 and 2 is changed to one- halved the original value (i.e, halved), then the new electrostatic force will be

Answers

72x4= 288.0 units
The force between the two charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. Hence, if distance between charges is halved (charges remaining kept constant), the force between the two charges is quadrupled.

The rate of change of angular momentum of a particle equals the torque of the net force acting on it is called

Answers

Answer:

Explanation:

The rate of change of angular momentum of a particle equals the torque of the net force acting on it is called CONSERVATION OF ANGULAR MOMENTUM

ΣIα = τ

τ(net) = I•α

Where,

α is angular acceleration

τ is Torque

Answer:

Conservation of angular momentum

Explanation:

The rate of change of angular momentum of a particle equals the torque of the net force acting on it is called conservation of angular momentum.

L = ΣF x r = τ

where;

L is the angular momentum of the particle

τ is torque on the particle

r is the distance through which the force act on the particle

ΣF is the net force on the particle

Thus,  the rate of change of angular momentum of a particle equals the torque of   net force acting on it, (L = τ) and it is called conservation of angular momentum.

A 100-W lightbulb is placed in a cylinder equipped with a moveable piston. The lightbulb is turned on for 0.010 hour, and the assembly expands from an initial volume of 0.90 L to a final volume of 5.92 L against an external pressure of 1.0 atm. Use the wattage of the lightbulb and the time it is on to calculate ΔE in joules (assume that the cylinder and lightbulb assembly is the system and assume two significant figures). Calculate w and q.

Answers

Answer:

[tex]w = - 508.53[/tex] joules

[tex]q = - 3091.47[/tex] joules

Explanation:

Let us convert the time in hours into seconds

[tex]0.010* 3600\\= 36[/tex]

Change in internal energy

[tex]\delta E = p * \delta t[/tex]

where E is the internal energy in Joules

p is the power in watts

and t is the time in seconds

[tex]\delta E = - 100 * 36\\[/tex]

[tex]\delta E = - 3600[/tex] Joules

Amount of work done by the system

[tex]w = - P * \delta V[/tex]

where P is the pressure and V is the volume

Substituting the given values in above equation, we get -

[tex]w = - 1 * ( 5.92 -0.90)\\[/tex]

[tex]w = -5.02[/tex] liter-atmospheres

Work done in Joules

[tex]- 5.02 * 101.3\\[/tex][tex]= 508.53[/tex]Joules

[tex]q = \delta E - w\\[/tex]

Substituting the given values we get -

[tex]q = - 3600 - (-508.53)\\q = - 3091.47[/tex]

Thus

[tex]w = - 508.53[/tex] joules

[tex]q = - 3091.47[/tex] joules

Final answer:

The change in energy (ΔE) is 1 joule (J), the work (w) is -41 J, and the heat (q) is 42 J.

Explanation:

To calculate the change in energy (ΔE) in joules, we can use the formula ΔE = power (P) x time (t). In this case, the power of the lightbulb is 100 W and the time it is on is 0.010 hour. Therefore, ΔE = 100 W x 0.010 hour = 1 joule (J).

To calculate work (w), we can use the equation w = -PΔV, where ΔV is the change in volume of the assembly. Here, ΔV = final volume - initial volume = 5.92 L - 0.90 L = 5.02 L. Given that the external pressure is 1.0 atm, we can convert the volume to liters-atmospheres (L·atm) by multiplying by 0.0821. Therefore, w = -100 W x (5.02 L x 0.0821) = -41 J.

Finally, to calculate heat (q), we can use the first law of thermodynamics, which states that q = ΔE - w. Substituting the values, q = 1 J - (-41 J) = 42 J.

Learn more about Calculating energy, work, and heat in a system here:

https://brainly.com/question/35463055

#SPJ3

Other Questions
If China wished to reduce their accumulation of foreign exchange reserves they could: A. allow their currency, the yuan, to float freely in the market place. B. reduce their current account surplus by importing more goods than they export. C. undertake both of the activities identified in choices A and B. D. try their best to reduce the trade imbalances with the rest of the world. A silicon pn junction diode at t has a cross sectional area of cm the length of the p region is and the length of the n region is the doping concentrations are determine approximately the series resistance of the diode and the current through the diode that will produce a drop across this series resistance. Find the equation of the line.Use exact numbers.y=___x+_____ Which disease can destroy red blood cells?EOSWhich disease infects T cells?Which disease produces a scaly, stinging, and itchy rash on the feet? 1 pointWhich of the following meet the qualifications for becoming a lieutenant governor forGeorgia?OA 36 year old who moved into Georgia 4 years ago and is working towards citizenshipOA 27 year old who has lived in Georgia for 1 year and has always been a U.S. citizenOA 25 year old who has lived in Georgia for 6 years and has always been a U.S. citizenA 32 year old who became a U.S. citizen 20 years ago and has lived in Georgia for 15years AnincomingcollegestudenttookhercollegesplacementexamsinFrenchandmathematics.InFrench,shescored 85, andinmath80.Theoverallresultsforbothexamsareapproximatelynormal.ThemeanFrenchtestscorewas 72withaSDof12,whilethemeanmath testscorewas68 withaSDof8.Onwhichexamdidshedobetteras comparedwiththeotherincomingcollegestudents?Computethez-scoresandthepercentilesforeachexamto supportyouranswer most of the values are blank the mean ? PLSSSSS NEEDED ASAPP!!! WILL MARK BRAINLISt Explain the situation on the island by using Piggys glasses as a metaphor. Howcan you trace the descent to savagery through the glasses? 2 PointsWhich of the following is described by the equation H2O(l) + heat H2O(g)? Please help me I just am a little confused."Old longings nomadic leap,Chafing at custom's chainAgain from its brumal sleepWakens the ferine strain."What word does nomadic modify if it is being used as an adjective?What word does nomadic modify if it is being used as an adverb?Explain how the meaning of the line changes depending on which word nomadic describes. Regular aerobic exercise training affects carbohydrate (CHO) usage by ____. Select one: a. increasing the enzymatic activity associated with glycolysis b. increasing the number and size of mitochondria c. decreasing liver glycogen storage so more CHO is stored as muscle glycogen d. decreasing the oxidative capacity of muscle Whats the answer?^^^^^^^^^^^^^^(PLEASE ANSWER NOW) The reaction:L-glutarmate + pyruvate -ketoglutarate + L-alanine is catalyzed by the enzyme L-glutamate-pyruvate aminotransferase. At 300 K, the equilibrium constant for the reaction is 1.1. Predict whether the forward reaction (left to right) will occur spontaneous if the concentrations of the reactants and products are [L-glutarmate] = 3.0 x 10-5 M, [pyruvate] = 3.3 x 10-4 M,[-ketoglutarate] = 1.6 x 10-2 M, and [L-alanine] = 6.25 x 10-3 M. What were native apples (crabapples) used for in the 1700s and 1800s? Why? a) Convert 30 inches to centimetres.centimetres Gordron Inc. manufactures and markets medical equipment. To ensure that its salespeople are knowledgeable enough to answer all product queries, the company hires only those individuals who have a good understanding of both the medical profession and the mechanics of the equipment used. Which of the following is the most accurate classification of Gordron's salesforce?A) techniciansB) demand creatorsC) deliverersD) order takersE) missionaries Water in a household plumbing system originates at the neighborhood water main where the pressure is 480 kPa, the velocity is 5 m/s, and the elevation is 2.44 m. A 19-mm (3/4-in) copper service line supplies water to a two-story residence where the faucet in the master bedroom is 40 m (of pipe) away from the main and at an elevation of 7.62 m. If the sum of the minor-loss coefficients is 3.5, estimate the maximum (open faucet) flow. How would this flow be affected by the operation of other faucets in the house? Respuesta de la tarea consider a household that uses 23.8 kw-hour of electricity per day on average. (kw-hours is a measure of energy that will be discussed in detail in a later chapter. at this point we want to establish estimations.) most of that electricity is supplied by fossil fuels. to reduce their carbon footprint, the household wants to install solar panels, which receive on average 336 w/m2 from the sun each day. if the solar panels are 19.0% efficient (fraction of solar energy converted into useable electrical energy), what area of solar panels is needed to power the household UNIDAD 6EL GERUNDIO Y LAS PROFESIONES. GUIA DE ESTUDIOAbril 16 de 20201. Encierre en un crculo si la oracin es cierta (C) o falsa (F). ( Mark if this sentences aretrue (C) or false (F).a. Si eres un ingeniero, casi nunca trabajas con una computadorab. Si quieres ser fotgrafo, tienes que tener una buena cmarac. Si quieres ser abogado, necesitas tener una oficinad. Si quieres ser un atleta profesional, no tienes que comer biene. Si quieres ser secretario, tienes que hacer mucho deporteF. Si quieres ser mdico, no necesitas estudiar