The slope of BY is -1/5, and BYllJE
What is the slope of JE?
-5
-1/5
1/5
5
The diameter of Jupiter is 88,000 miles This is about 11.1 times the diameter of Earth What is the diameter of the earth
The real number 8.09 belongs to which set of numbers??
A-natural numbers
B-integers
C-irrational numbers
D-rational numbers
14. the number of deer spotted in a nature preserve each day over a two week period is listed below. 32 27 15 12 42 35 46 29 38 18 40 38 32 34
which frequency table represents the data ?
A. deer
10-19
20-29
30-39
40-49
frequency
3
3
5
4
B. Deer
10-19
20-29
30-39
40-49
frequency
3
2
5
4
c. deer
10-19
20-29
30-39
40-49
frequency
4
1
7
2
d. deer
10-19
20-29
30-39
40-49
frequency
3
2
6
3
Using Frequency table, Option: (d) is correct.
What is Frequency?Frequency refers to "the number of times an event or values occurs".
According to the question,
The number of deer spotted in preserve is
32,27,15,1,42,35,46,29,38,18,40,38,32,34
The number deer appear in the interval 10 - 19 is 3
The number deer appear in the interval 20 - 29 is 2
The number deer appear in the interval 30 - 39 is 6
The number deer appear in the interval 40 - 49 is 3
From the above data, we can form frequency table
Deer 10 - 19 20 - 29 30 - 39 40 - 49
Frequency 3 2 6 3
Hence, the answer is Option: (d)
To learn more about Frequency here
https://brainly.com/question/24349035
#SPJ2
On a map, the distance between two cities is 2.4 inches. the two cities are actually 768 miles apart. on this same map, what would be the distance between two cities in miles that are 4.8 inches apart on the map?
You’re baking a circular cake for a party. Your cake can be any size you want. What will the radius of your cake be and how many slices will you be able to cut?
What is the interquartile range of this data? 6 7 8 9 Box-and whisker plot titled Temperatures in Celsius ranging from 12 to 48 with the five number summary from left to right 18, 25, 28, 33, and 42
What is the interquartile range of this data? 6 7 8 9 Box-and whisker plot titled Temperatures in Celsius ranging from 12 to 48 with the five number summary from left to right 18, 25, 28, 33, and 42
Solution:
The problem is not clear.
But, considering data set is:
18,25,28,33,42
So, if we consider the data set, Interquartile Range is the difference of Quartile3-Quartile1
IQR=Q3-Q1
To find, Q1 and Q3. Let us find the median, or, Q2 first.
Median is the middle term of the data set.
So, Median, Q2=28
Q1 is the median of first half of the data set. That is, 18,25,28
So, Lower Quartile, Q1=25
Q3 is the median of second half of data set. That is, 28, 33,42
So, Upper Quartile, Q3=33
IQR=Q3-Q1
=33-25=8
Answer: IQR=8
If we consider data set: 6,7,8,9
Median, Q2=[tex] \frac{(7+8)}{2}=\frac{15}{2} [/tex]=7.5
Lower Quartile, Q1=6.25
Upper Quartile, Q2=8.75
IQR=Q3-Q1=8.75-6.25=2.5
IQR=2.5
I need help! Math question
Calculate cos theta where theta is the angle between u and v
Mr. Hart is hanging a picture on a wall. the picture frame has a length of 13 inches and a width of 9 inches. how much wall space will the picture need?
To determine the wall space needed for Mr. Hart's picture, calculate the area of the rectangle formed by the picture's dimensions: length (13 inches) times width (9 inches), resulting in 117 square inches of wall space.
The student's question about Mr. Hart hanging a picture on a wall involves calculating the wall space the picture will occupy. This is essentially a question about finding the area of a rectangle. To find the area, one must multiply the length by the width of the rectangle. In this case, the length of the picture frame is 13 inches and the width is 9 inches. The calculation will be:
Area = Length × Width
Area = 13 inches × 9 inches
Area = 117 square inches
Therefore, the picture will need 117 square inches of wall space.
Simplify the expression below. 6n2 - 5n2 + 7n2
divide and simplify completely. 8x-8/x^2-1 * x + 1 / 6x^2 - 12x / 24 / x^2 - 4
A 32 / x(x + 2)(x - 2)^2
B x + 2 / 18x
C 32(x + 1) / x(x + 2)(x - 2)^2
D (x + 2)(x + 1) / 18x(x - 1)
A students is taking a 5-question
a. True
b. False quiz and guesses at each question. find the probability that the student will get all questions correct. find the probability that the student will get no questions correct.
Demarco wants to find the angle measures of this parallelogram. He knows that the first step is to find the value of x. Which of these equations will result in the correct value of x?
A. x + 15 = 6x + 4
B. 7x − 19 + 2x − 8 = 180
C. 7x − 19 = x + 15
D. 6x + 4 + 7x − 19 = 180
Answer:
B
Step-by-step explanation:
imagine math
Similar triangles ABC and PQR are located on the coordinate plane. The sin A = sin P = 7 over 8. If triangle PQR is translated 3 units to the left and dilated by a scale factor of two, what is the resulting value of sin P?
negative 7 over 8
4 over 5
7 over 8
14 over 16
Question 2)
If the tan of angle x is 4 over 3 and the triangle is dilated to be two times as big as the original, what would be the value of the tan of x for the dilated triangle?
8 over 6
4 over 3
8 over 3
The tan value cannot be determined for the dilated triangle.
Question 3
If the sin of angle x is 3 over 7 and the triangle is dilated to be three times as big as the original, what would be the value of the sin of x for the dilated triangle?
3 over 7
6 over 14
9 over 21
The sin value cannot be determined for the dilated triangle.
PLEASE ANSWER + BRAINLIEST!!!
What is the sum of the polynomials?
A. 10x^2 - 9
B. 11x^2 - x - 9
C. 11x^2 + x - 1
D. 12x^2 - 1
There is a spinner with 11 equal areas, number 1 through 11. If the spinner is spun one time, what is the probability that the result is a multiple of 5 and a multiple of 2?
The probability that the result is a multiple of 5 and a multiple of 2 is 6/11
How to calculate the probability of an event?Suppose that there are finite elementary events in the sample space of the considered experiment, and all are equally likely.
Then, suppose we want to find the probability of an event E.
Then, its probability is given as
[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text{Number of total cases}} = \dfrac{n(E)}{n(S)}[/tex]
where favorable cases are those elementary events who belong to E, and total cases are the size of the sample space.
For this case, we're given that:
Spinner has 11 parts, numbered 1, 2, .... , 11P(result of spin is multiple of 5 or multiple of 2) = To find.Take E = Event of spinner's spin resulting in multiple of 5 or multiple of 2
S = results of Sample
Then, favorable results (in favor of E) are: 2,4,5,6,8,10 (total 6 in count)
All possible results are 1, 2, ... , 11 (total 11 in count)
Thus, we get:
[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text{Number of total cases}} = \dfrac{6}{11}[/tex]
Thus, the probability that the result is a multiple of 5 and a multiple of 2 is 6/11
Learn more about probability here:
brainly.com/question/1210781
In a spinner numbered 1 through 11, there is only one number (10) that is both a multiple of 5 and a multiple of 2. As there are 11 possible outcomes in a single spin, the probability of spinning and landing on 10 is 1/11.
Explanation:The subject of this question is mathematical probability. Given that there is a spinner with 11 equal areas numbered 1 through 11, we are asked to find the probability of landing on a number that is both a multiple of 5 and a multiple of 2 when the spinner is spun once.
Firstly, we identify the numbers which are both multiples of 5 and 2 between 1 and 11. In this case, only one such number exists, which is 10. Hence, there is only one favorable outcome. The total number of outcomes are 11 (as the spinner has 11 equal areas).
Probability is defined as 'number of favorable outcomes' divided by the 'total number of outcomes'. In this case, since there is 1 favorable outcome (i.e. landing on '10') and 11 possible outcomes (any of the numbers 1 to 11), the probability is therefore 1/11.
Learn more about Probability here:https://brainly.com/question/32117953
#SPJ11
In a study of 38% of adults questioned reported that their health was excellent. a researcher wishes to study the health of people living close to a nuclear power plant. find the probability that when 11 adults are randomly selected, at most 3 are in excellent health
The probability that when 12 adults are randomly selected, 3 or fewer are in excellent health is 0.947.
To find the probability that when 12 adults are randomly selected, 3 or fewer are in excellent health, we can use the binomial distribution formula.
The formula for the probability of getting exactly k successes in n trials, with a probability of success p, is:
P(X = k) = (n choose k) * (p^k) * ((1-p)^(n-k))
In this case, n = 12, k = 3, and p = 0.38 (as 38% of adults reported excellent health).
So, the probability that 3 or fewer adults are in excellent health can be calculated as follows:
P(X <= 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)
Let's calculate each term:
P(X = 0) = (12 choose 0) * (0.38^0) * (0.62^12) = 0.190P(X = 1) = (12 choose 1) * (0.38^1) * (0.62^11) = 0.342P(X = 2) = (12 choose 2) * (0.38^2) * (0.62^10) = 0.269P(X = 3) = (12 choose 3) * (0.38^3) * (0.62^9) = 0.146Adding up these probabilities:
P(X <= 3) = 0.190 + 0.342 + 0.269 + 0.146 = 0.947
Rounded to three decimal places, the probability that when 12 adults are randomly selected, 3 or fewer are in excellent health is 0.947.
The probable question may be:
In a study, 38% of adults questioned reported that their health was excellent. A researcher wishes to study the health of people living close to a nuclear power plant. Among 12 adults randomly selected from this area, only 3 reported that their health was excellent. Find the probability that when 12 adults are randomly selected, 3 or fewer are in excellent health. Round to three decimal places.
Help me I don’t understand this
Draw a box plot for the data:
135, 149, 156, 112, 134, 141, 154, 116, 134, 156
The solution is: The box plot is attached.
What is median?In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value.
We first order the data from least to greatest:
112, 116, 134, 134, 135, 141, 149, 154, 156, 156
We find the median (middle value). There are 10 data values, which puts the median between 135 and 141:
(135+141)/2 = 276/2 = 138
The Upper Quartile (UQ) is the median of the upper half of data, cut by the median. This is 154.
The Lower Quartile (LQ) is the median of the lower half of data, cut by the median. This is 134.
The middle line of the box is drawn at the median, 138. The left side of the box is at the LQ, 134. The right side of the box is at the UQ, 154. There is a whisker drawn from the right side to the highest value, 156. There is a whisker drawn from the left side to the smallest value, 112.
To learn more on median click:
brainly.com/question/20425811
#SPJ2
A piggy bank contains the same number of quarters, nickels, and dimes. the coins total $4.40. how many of each type of coin does the piggy bank contain?
Answer: 11 of each type
Step-by-step explanation:
Isabel deposits $6,000 into an account that earns 1.5% interest compounded monthly. Assuming no more deposits and no withdrawals are made, how much money is in the account after 4 years? Compound interest formula:mc002-1.jpg t = years since initial deposit n = number of times compounded per year r = annual interest rate (as a decimal) P = initial (principal) investment V(t) = value of investment after t years
After 4 years, with an initial deposit of $6,000 at a 1.5% annual interest rate compounded monthly, Isabel will have approximately $6,370.07 in her account.
Calculating Compound Interest
To calculate the amount of money Isabel will have in her account after 4 years with an initial deposit of $6,000 at an annual interest rate of 1.5% compounded monthly, we can use the compound interest formula:
V(t) = P(1 + r/n)nt
P = principal amount (initial investment) = $6,000
r = annual interest rate (as a decimal) = 0.015
n = number of times the interest is compounded per year = 12
t = number of years the money is invested or borrowed for = 4
Substituting these values into the formula, we get:
V(4) = $6,000(1 + 0.015/12)12(4)
This simplifies to:
V(4) = $6,000(1 + 0.00125)48
Calculating the value inside the parentheses first:
1 + 0.00125 = 1.00125
Then raising it to the 48th power gives us:
1.0012548 ≈ 1.061678
Multiplying this by the principal:
V(4) ≈ $6,000 × 1.061678 ≈ $6,370.07
After 4 years, Isabel's account will have approximately $6,370.07.
Answer:$6,370.07
Step-by-step explanation:
A fair coin is tossed three time sin succession. the set of equally likely outcomes is {hhh,hht,hth,thh,htt,tht,tth,ttt}. find the probabilty of getting exactly zero tails
Sara loves to go hiking this weekend she hiked 3 miles on Monday 4 miles on Tuesdays and 3 miles on Thursday .last week Sara hiked 8 miles. How many more miles did Sara hike this week than last week
Answer:
2 miles
Step-by-step explanation:
Sara loves to go hiking.
She hiked 3 miles on Monday 4 miles on Tuesdays and 3 miles on Thursday.
Last week Sara hiked 8 miles
This week sara hiked = Monday + Tuesday + Thursday
= 3 + 4 + 3
= 10 miles
Last week hiked = 8 miles
Difference in two week hiked by Sarah = 10 - 8
= 2 miles
So, Sarah hike 2 miles more than last week.
Which of the following is equivalent to C(16, 4)?
answer choices:
12!
C(16, 12)
C(15, 3)
Answer- C(16,12)
C(n,r) = n! / r!* (n-r)!
So,
C(16,4) = 16!/ 4! * 12!
C(16,12) = !6!/ 12! * 4!
42) According to the 2000 Census the population of Canton was 7,720. Holly Spring's population was 3,200. Canton's population increases at a rate of 80 people a year and Holly Spring's population increases by 120 people a year. Which equation may be used to determine the number of years before the populations are equal?
PLEASE HELP. evaluate the radical 3√1000
Emma enjoys flying kites. her red kite has a maximum altitude of 117.46 meters, and her black kite has a maximum altitude of 362.26 feet. one foot is the same as 0.3048 meters. which kite has a higher maximum altitude, and how many feet higher is it?
Answer:
Red kite has maximum altitude with 23.1 feet higher.
Step-by-step explanation:
Given : Emma enjoys flying kites. her red kite has a maximum altitude of 117.46 meters, and her black kite has a maximum altitude of 362.26 feet.
one foot is the same as 0.3048 meters.
To find : Which kite has a higher maximum altitude, and how many feet higher is it?
Solution :
First we have to convert meter into feet.
We have given, 1 feet = 0.3048 meters.
[tex]1 \text{ meter }=\frac{1}{0.3048} \text{ feet}[/tex]
So, red kite has a maximum altitude of 117.46 meters
In feet, red kite has a maximum altitude of
[tex]117.46\text{ meter }=\frac{117.46}{0.3048}=385.36 \text{ feet}[/tex]
Now, Red kite has a maximum altitude of 385.36 feet
Black kite has a maximum altitude of 362.26 feet.
385.36>362.26 feet.
Difference is 385.36-362.26=23.1 ft.
Therefore, Red kite has maximum altitude with 23.1 feet higher.
How do I solved this question. 1/3c=3/8;c=3/4
help please, i don't understand it!!!!