You are looking up at the top of a building at an angle of 30.6 degrees from the horizontal. If the building is 42.0m tall, how far are you from the building? Assume that you are 1.50m tall.

Answers

Answer 1

Answer:

The distance between the person and the building is 68.48 meters.

Explanation:

It is given that,

Angle of elevation, θ = 30.6 degrees

Height of building, MP = 42 m

Height of person, AB = 1.5 m

We need to find the distance between person and building. It is given by BP.

Since, MN + NP = 42

So, MN = 40.5 m

Using trigonometric equation as :

[tex]tan\theta=\dfrac{MN}{AN}[/tex]

[tex]tan(30.6)=\dfrac{40.5}{AN}[/tex]

AN = 68.48 meters.

So, the distance between the person and the building is 68.48 meters. Hence, this is the required solution.

You Are Looking Up At The Top Of A Building At An Angle Of 30.6 Degrees From The Horizontal. If The Building
Answer 2
Final answer:

To determine the distance from a building, we use trigonometry and the formula adjacent = opposite / tangent(angle), taking into account the height of the building minus your height. The distance is calculated to be approximately 68.88 meters.

Explanation:

To find out how far you are from the building, we need to calculate the horizontal distance from the building's base to the point where you are standing. To do this, we can use trigonometry, specifically the tangent function which relates the angle of elevation to the opposite side and the adjacent side of a right-angle triangle. We need to consider the height of the building minus your height to find the correct opposite side.

Since the building is 42.0 meters tall, and you are 1.50 meters tall, the effective height we are looking at is 42.0 m - 1.50 m = 40.5 m. The angle of elevation you are looking at is 30.6 degrees. By using the formula tangent (angle) = opposite / adjacent, we can rearrange this to find the adjacent side (the distance from you to the building): adjacent = opposite / tangent (angle).

Therefore, the distance from you to the building is approximately adjacent = 40.5 m / tan(30.6°). Plugging in the values, we get:

Distance = 40.5 m / tan(30.6°) ≈ 40.5 m / 0.588 ≈ 68.88 m.

So, you are approximately 68.88 meters away from the building.


Related Questions

Red light from three separate sources passes through a diffraction grating with 6.60×105 slits/m. The wavelengths of the three lines are 6.56 ×10−7m (hydrogen), 6.50 ×10−7m (neon), and 6.97 ×10−7m (argon). Part A Calculate the angle for the first-order diffraction line of first source (hydrogen). Express your answer using three significant figures.

Answers

Answer:· Visible light passes through a diffraction grating that has 900 slits per centimeter, and the interference pattern is observed on a screen that is 2.74 m from the grating. In the first-order spectrum, maxima for two different wavelengths are separated on the screen by 3.16 m. What is the difference between these wavelengths? . I know to apply the equation din(theta) = m*wavelength but I'm not sure how to find all the missing variables or to get the difference in wavelengths

On takeoff, the combined action of the engines and the wings of an airplane exert a force of 8.00 × 103 N on the plane upward at an angle of 65.0" above the horizontal. The plane rises with constant velocity in the vertical direction while continuing to accelerate in the horizontal direction. (3 marks) a. What is the weight of the plane? b. What is the horizontal acceleration of the plane? .

Answers

Answer:

a) 7250.5 N

b) 4.6 m/s²

Explanation:

a)

F = applied force = 8000 N

θ = angle with the horizontal = 65 deg

Consider the motion along the vertical direction :

[tex]F_{y}[/tex] = Applied force in vertical direction in upward direction = F Sinθ = 8000 Sin65 = 7250.5 N

[tex]F_{g}[/tex] = weight of the plane in vertical direction in downward direction = ?

[tex]a_{y}[/tex] = Acceleration in vertical direction = 0 m/s²

Taking the force in upward direction as positive and in downward direction as negative, the force equation along the vertical direction can be written as

[tex]F_{y}-F_{g} = m a_{y}[/tex]

[tex]7250.5 -F_{g} = m (0)[/tex]

[tex]F_{g}[/tex] = 7250.5 N

b)

m = mass of the plane

force of gravity is given as

[tex]F_{g} = mg [/tex]

[tex]7250.5 = m(9.8) [/tex]

m = 739.85 kg

Consider the motion along the horizontal direction

[tex]F_{x}[/tex] = Applied force in horizontal direction = F Cosθ = 8000 Cos65 = 3381 N

[tex]a_{x}[/tex] = Acceleration in horizontal direction

Acceleration in horizontal direction is given as

[tex]a_{x}=\frac{F_{x}}{m}[/tex]

[tex]a_{x}=\frac{3381}{739.85}[/tex]

[tex]a_{x}[/tex] = 4.6 m/s²

A 16.0 kg sled is being pulled along the horizontal snow-covered ground by a horizontal force of 25.0 N. Starting from rest, the sled attains a speed of 1.00 m/s in 8.00 m. Find the coefficient of kinetic friction between the runners of the sled and the snow. You Answered

Answers

Answer:

[tex]\mu_k = 0.15[/tex]

Explanation:

according to the kinematic equation

[tex]v^{2} - u^{2} = 2aS[/tex]

Where

u is initial velocity  = 0 m/s

a = acceleration

S is distance = 8.00 m

final velocity = 1.0 m/s

[tex]a = \frac {v^{2}}{2S}[/tex]

[tex]a = \frac {1{2}}{2*8.6}[/tex]

a = 0.058 m/s^2

from newton second law

Net force = ma

[tex]f_{net} = ma[/tex]

F - f = ma

2[tex]5 - \mu_kN = ma[/tex]

[tex]25 - \mu_kmg = ma[/tex]

[tex]\frac {25 - ma}{mg} =\mu_k[/tex]

[tex]\frac {25 - 16*0.058}{16*9.81} = 0.15[/tex]

[tex]\mu_k = 0.15[/tex]

If there were no air resistance, a penny dropped from the top of a skyscraper would reach the ground 9.3 s later. To the nearest integer, what would the penny's speed in m/s be right as it reaches the ground if it was dropped from rest?

Answers

Answer:

To the nearest integer, the penny's speed in m/s be right as it reaches the ground if it was dropped from rest = 91 m/s

Explanation:

We have equation of motion

S = ut + 0.5at²

Here u = 0, a = g  and t = 9.3 s

We have equation of motion v = u +at

Substituting

       v = u +at

       v = 0 + 9.8 x 9.3 = 91.14 m/s

To the nearest integer, the penny's speed in m/s be right as it reaches the ground if it was dropped from rest = 91 m/s

A golf club (mass 0.5kg) hits a golf ball (mass 0.03kg) with a constant force of 25N over a time of 0.02 seconds. What is the magnitude of the impulse delivered to the ball? Select one: o a. 0.05 Ns b. 1250 Ns C.1.67 x102 Ns d.12.5Ns o e.8.00 x 104 Ns

Answers

Answer:

0.5 Ns

Explanation:

When a large force acting on a body for a very small time it is called impulsive force.

Impulse = force × small time

Impulse = 25 × 0.02 = 0.5 Ns

It is a vector quantity

The shortest air column inside a resonator vibrates with a frequency of 250 Hz, if the next harmonic is 750 Hz, and the speed of sound is 343 m/s.
a. Is this resonator closed at one end or open at both ends? Explain.
b. Find the length of the resonator.

Answers

Answer:

Part a)

the two frequencies are in ratio of odd numbers so it must be closed at one end

Part b)

L = 34.3 cm

Explanation:

Part a)

Since the shortest frequency is known as fundamental frequency

It is given as

[tex]f_o = 250 Hz[/tex]

next higher frequency is given as

[tex]f_1 = 750 Hz[/tex]

since the two frequencies here are in ratio of

[tex]\frac{f_1}{f_o} = \frac{750}{250} = 3 : 1[/tex]

since the two frequencies are in ratio of odd numbers so it must be closed at one end

Part b)

For the length of the pipe we can say that fundamental frequency is given as

[tex]f_o = \frac{v}{4L}[/tex]

here we have

[tex]250 = \frac{343}{4(L)}[/tex]

now we will have

[tex]L = \frac{343}{4\times 250}[/tex]

[tex]L = 34.3 cm[/tex]

A 300 g bird is flying along at 6.0 m/s and sees a 10 g insect heading straight towards it with a speed of 30 m/s. The bird opens its mouth wide and swallows the insect. a. What is the birds speed immediately after swallowing the insect? b. What is the impulse on the bird? c. If the impact lasts 0.015 s, what is the force between the bird and the insect?

Answers

Answer:

(a): The bird speed after swallowing the insect is V= 4.83 m/s

(b): The impulse on the bird is I= 0.3 kg m/s

(c): The force between the bird and the insect is F= 20 N

Explanation:

ma= 0.3 kg

va= 6 m/s

mb= 0.01kg

vb= 30 m/s

(ma*va - mb*vb) / (ma+mb) = V

V= 4.83 m/s (a)

I= mb * vb

I= 0.3 kg m/s  (b)

F*t= I

F= I/t

F= 20 N (c)

Final answer:

This physics problem uses the principle of conservation of momentum to calculate the bird's speed after swallowing the insect, the impulse experienced by the bird, and the force between the bird and the insect.

Explanation:

This is a physics problem relating to the conservation of momentum. Let's start by defining some facts, where m bird = 0.3 kg and v bird = 6.0 m/s are the mass and speed of the bird before the incident and m insect = 0.01 kg and v insect = 30 m/s are the mass and speed of the insect.

a. To find the bird's speed immediately after swallowing the insect, we need to apply the conservation of momentum principle: initial total momentum = final total momentum, which can be written as m bird * v bird + m insect * v insect = (m bird + m insect) * v final.

b. The impulse on the bird equals the change in momentum of the bird, thus equals to the final momentum of the bird - initial momentum of the bird.

c. The force between the bird and the insect is obtained from the definition of impulse: Force * time = impulse, or Force = Impulse/time.

Learn more about Conservation of Momentum here:

https://brainly.com/question/30801640

#SPJ3

A uniformly charged sphere has a potential on its surface of 450 V. At a radial distance of 7.2 m from this surface, the potential is150 V What is the radius of the sphere?

Answers

Answer:

The radius of the sphere is 3.6 m.

Explanation:

Given that,

Potential of first sphere = 450 V

Radial distance = 7.2 m

If the potential of sphere =150 V

We need to calculate the radius

Using formula for potential

For 450 V

[tex]V=\dfrac{kQ}{r}[/tex]

[tex]450=\dfrac{kQ}{r}[/tex]....(I)

For 150 V

[tex]150=\dfrac{kQ}{r+7.2}[/tex]....(II)

Divided equation (I) by equation (II)

[tex]\dfrac{450}{150}=\dfrac{\dfrac{kQ}{r}}{\dfrac{kQ}{r+7.2}}[/tex]

[tex]3=\dfrac{(r+7.2)}{r}[/tex]

[tex]3r=r+7.2[/tex]

[tex]r=\dfrac{7.2}{2}[/tex]

[tex]r=3.6\ m[/tex]

Hence, The radius of the sphere is 3.6 m.

The radius of the sphere whose surface has a potential difference of  450 V is 3.6 m.

What is the radius of the sphere?

We know that the potential difference can be written as,

[tex]V = k\dfrac{Q}{R}[/tex]

We know that at  R= R, Potential difference= 450 V,

[tex]450 = k\dfrac{Q}{R}[/tex]

Also, at R = (R+7.2), Potential difference = 150 V,

[tex]150 = k\dfrac{Q}{(R+7.2)}[/tex]

Taking the ratio of the two,

[tex]\dfrac{450}{150} = \dfrac{kQ}{R} \times \dfrac{(R+7.2)}{kQ}\\\\\dfrac{450}{150} = \dfrac{(R+7.2)}{R}\\\\R = 3.6\ m[/tex]

Hence, the radius of the sphere whose surface has a potential difference of  450 V is 3.6 m.

Learn more about Potential differences:

https://brainly.com/question/118936

What is the force on your eardrum if its area is 1.00 cm^2, and you are swimming 3.0 m below water level?

Answers

Answer:

Force on eardrum

       [tex]F=29400\times 1\times 10^{-4}=2.94N[/tex]

Explanation:

Force = Pressure x Area

Pressure = hρg

Height, h = 3 m

ρ = 1000 kg/m³

g = 9.8 m/s²

Pressure = hρg = 3 x 1000 x 9.8 = 29400 N/m²

Area = 1 cm²

Force on eardrum

       [tex]F=29400\times 1\times 10^{-4}=2.94N[/tex]

A typical adult ear has a surface area of 2.90 × 10-3 m2. The sound intensity during a normal conversation is about 2.19 × 10-6 W/m2 at the listener's ear. Assume that the sound strikes the surface of the ear perpendicularly. How much power is intercepted by the ear?

Answers

Answer:

[tex]6.35\cdot 10^{-9} W[/tex]

Explanation:

The relationship between power and intensity of a sound is given by:

[tex]I=\frac{P}{A}[/tex]

where

I is the intensity

P is the power

A is the area considered

In this problem, we know

[tex]A=2.90\cdot 10^{-3}m^2[/tex] is the surface area of the ear

[tex]I = 2.19\cdot 10^{-6} W/m^2[/tex] is the intensity of the sound

Re-arranging the equation, we can find the power intercepted by the ear:

[tex]P=IA=(2.19\cdot 10^{-6} W/m^2)(2.90\cdot 10^{-3} m^2)=6.35\cdot 10^{-9} W[/tex]

If the axes of the two cylinders are parallel, but displaced from each other by a distance d, determine the resulting electric field in the region R>R3, where the radial distance R is measured from the metal cylinder's axis. Assume d<(R2−R1). Express your answer in terms of the variables ρE, R1, R2, R3, d, R, and appropriate constants.

Answers

Answer:

E =  ρ ( R1²) / 2 ∈o R

Explanation:

Given data

two cylinders are parallel

distance = d

radial distance = R

d < (R2−R1)

to find out

Express answer in terms of the variables ρE, R1, R2, R3, d, R, and constants

solution

we have two parallel cylinders

so area is 2 [tex]\pi[/tex] R × l

and we apply here gauss law that is

EA = Q(enclosed) / ∈o   ......1

so first we find  Q(enclosed) = ρ Volume

Q(enclosed) = ρ ( [tex]\pi[/tex] R1² × l )

so put all value in equation 1

we get

EA = Q(enclosed) / ∈o

E(2 [tex]\pi[/tex] R × l)  = ρ ( [tex]\pi[/tex] R1² × l ) / ∈o

so

E =  ρ ( R1²) / 2 ∈o R

Final answer:

The resulting electric field in the specified region can be calculated using Gauss' Law. The equation for the electric field in that region is [tex]E = 2\pi R_1^2ho_E[/tex].

Explanation:

The resulting electric field in the region R>R3 is:

[tex]E = 2\pi R_1^2ho_E[/tex]

where R_1 is the radius of the inner cylinder, and ρ_E is the charge density. This expression is obtained by applying Gauss' Law for the region where R1 < r < R2.

A 2.7-kg cart is rolling along a frictionless, horizontal track towards a 1.1-kg cart that is held initially at rest. The carts are loaded with strong magnets that cause them to attract one another. Thus, the speed of each cart increases. At a certain instant before the carts collide, the first cart's velocity is +3.7 m/s, and the second cart's velocity is -1.6 m/s. (a) What is the total momentum of the system of the two carts at this instant? (b) What was the velocity of the first cart when the second cart was still at rest?

Answers

Answer:

Part a)

P = 8.23 kg m/s

Part b)

v = 3.05 m/s

Explanation:

Part a)

momentum of cart 1 is given as

[tex]P_1 = m_1v_1[/tex]

[tex]P_1 = (2.7)(3.7) = 9.99 kg m/s[/tex]

Momentum of cart 2 is given as

[tex]P_2 = m_2v_2[/tex]

[tex]P_2 = (1.1)(-1.6) = -1.76 kg m/s[/tex]

Now total momentum of both carts is given as

[tex]P = P_1 + P_2[/tex]

[tex]P = 8.23 kg m/s[/tex]

Part b)

Since two carts are moving towards each other due to mutual attraction force and there is no external force on two carts so here momentum is always conserved

so here we will have

[tex]P_i = P_f[/tex]

[tex](2.7 kg)v = 8.23[/tex]

[tex]v = 3.05 m/s[/tex]

Which is not a simple harmonic motion (S.H.M.) (a) Simple Pendulum (b) Projectile motion (c) None (d) Spring motion

Answers

Answer:

b) Projectile MOTION

Explanation:

SHM is periodic motion or to and fro motion of a particle about its mean position in a straight line

In this type of motion particle must be in straight line motion

So here we can say

a) Simple Pendulum : it is a straight line to and fro motion about mean position so it is a SHM

b) Projectile motion : it is a parabolic path in which object do not move to and fro about its mean position So it is not SHM

d) Spring Motion : it is a straight line to and fro motion so it is also a SHM

So correct answer will be

b) Projectile MOTION

Final answer:

Projectile motion is not a simple harmonic motion because it does not meet the conditions for SHM.

Explanation:

Simple Harmonic Motion (SHM) is a special type of periodic motion where the restoring force is proportional to the displacement. The three conditions that must be met to produce SHM are: a linear restoring force, a constant force constant, and no external damping forces. Based on these conditions, the answer to the question is (b) Projectile motion, as it does not meet the conditions for SHM. A projectile follows a parabolic path and does not have a linear restoring force.

Consider a torque ~τ that is constant in both magnitude and direction, and acts on a rigid body of mass 10 kg at a point 1 m from the pivot. How much work does the torque do on the rigid body, if it turns through an angle of 180◦ while the torque is acting? Assume the acceleration due to gravity is 10 m/s2 .

Answers

Answer:

314 Joule

Explanation:

m = 10 kg, g = 10 m/s^2, d = 1 m, angle turn = 180 degree = π radian

work = torque x angle turn

torque = force x perpendicular distance

torque = m x g x d = 10 x 10 x 1 = 100 Nm

work = 100 x π

work = 100 x 3.14 = 314 Joule

Final answer:

The work done by a constant torque on a rigid body rotating through an angle of 180° can be found by multiplying the torque by the angle. The torque can be calculated using the equation τ = Iα, where I is the moment of inertia and α is the angular acceleration. Substituting the given values, we find that the work done by the torque on the rigid body is 18000 kg·m^2·rad/s^2.

Explanation:

The work done by a torque on a rigid body is given by the formula W = τθ, where τ is the torque and θ is the angle through which the body rotates. In this case, the torque is constant in both magnitude and direction, so we can use W = τθ. Given that the torque is constant and the body turns through an angle of 180°, we can calculate the work done as follows:

Since τ is constant, we can write W = τθ = τ (180° - 0°). The work done by the torque is equal to the torque multiplied by the change in angle. Substitute the given values into the formula: W = (τ) (180° - 0°) = (τ) (180°). The work done by the torque is equal to the torque multiplied by 180°.

To find the value of the torque, we need to use the equation τ = Iα, where I is the moment of inertia and α is the angular acceleration. In this case, the rigid body has a mass of 10 kg and a distance of 1 m from the pivot. The moment of inertia for a point mass rotating about a fixed axis is given by I = m(r^2), where m is the mass and r is the perpendicular distance from the axis. Substitute the given values into the formula: I = (10 kg)((1 m)^2) = 10 kg·m^2. Since α = a/r and the acceleration due to gravity is 10 m/s^2, we have α = (10 m/s^2)/(1 m) = 10 rad/s^2.

Substitute the values of τ and α into the equation τ = Iα: τ = (10 kg·m^2)(10 rad/s^2) = 100 kg·m^2·rad/s^2. Therefore, the torque is 100 kg·m^2·rad/s^2.

Finally, substitute the values of τ and θ into the equation W = τθ: W = (100 kg·m^2·rad/s^2 )(180°) = 18000 kg·m^2·rad/s^2.

Commander Shepard, an N7 spectre for Earth, weighs 799 N on the Earth's surface. When she lands on Noveria, a distant planet in our galaxy, she weighs 356 N. What is the acceleration of gravity on Noveria in m/s2? Round to one decimal place. (hint: first find her mass!)

Answers

Answer:

Acceleration of gravity on Noveria = 4.4 m/s²

Explanation:

Commander Shepard, an N7 spectre for Earth, weighs 799 N on the Earth's surface.

We have weight, W = mg

Acceleration due to gravity, g = 9.81m/s²    

799 = m x 9.81

Mass of Shepard, m = 81.45 kg            

She lands on Noveria, a distant planet in our galaxy, she weighs 356 N.

We have weight, W = mg'

                 356 = 81.45 xg'

Acceleration of gravity on Noveria, g' = 4.4 m/s²

Water is boiled in a pan on a stove at sea level. During 10 min of boiling, it is observed that 200 g of water has evaporated. Then the rate of heat transfer to the water is 225.7 kJ/min 45.1 kJ/min 53.5 kJ/min 0.84 kJ/min 41.8 kJ/min

Answers

Answer:

Rate of heat is 45.1 kJ/min

Explanation:

Heat required to evaporate the water is given by

Q = mL

here we know that

[tex]L = 2.25 \times 10^6 J/kg[/tex]

now we have

[tex]Q = (0.200)(2.25 \times 10^6 J/kg)[/tex]

[tex]Q = 452.1 kJ[/tex]

now the power is defined as rate of energy

[tex]P = \frac{Q}{t}[/tex]

[tex]P = \frac{452.1 kJ}{10}[/tex]

[tex]P = 45.1 kJ/min[/tex]

A proton experiences a force of 3.5x 10^-9 N when separated from a second charge by a distance of 1.6 mm. a) What is the size of the second charge? b) How many fundamental charges make up this charge in part a)?

Answers

Answer:

(a) 6.22 x 10^-6 C

(b) 3.8 x 10^13

Explanation:

Let the second charge is q2 = q

q1 = 1.6 x 10^-19 C

F = 3.5 x 10^9 N

d = 1.6 mm = 1.6 x 10^-3 m

(a) Use the formula of Coulomb's law

F = K q1 x q2 / d^2

3.5 x 10^-9 = 9 x 10^9 x 1.6 x 10^-19 x q / (1.6 x 10^-3)^2

q = 6.22 x 10^-6 C

(b)

Let the number of electrons be n

n = total charge / charge of one electron

n = 6.22 x 10^-6 / (1.6 x 10^-19) = 3.8 x 10^13

A sign is held in equilbrium by 7 vertically hanging ropes attached to the ceiling. If each rope has an equal tension of 53 Newtons, what is the mass of the sign in kg?

Answers

Answer:

37.86 kg

Explanation:

The weight of sign board is equally divided on each rope. It means the tension in all the ropes is equal to the weight of the sign board in equilibrium condition.

Tension in each rope = 53 N

Tension in 7 ropes = 7 x 53 N = 371 N

Thus, The weight of sign = 371 N

Now, weight = m g

where m is the mass of sign.

m = 371 / 9.8 = 37.86 kg

A system gains 757 kJ757 kJ of heat, resulting in a change in internal energy of the system equal to +176 kJ.+176 kJ. How much work is done? ????=w= kJkJ Choose the correct statement. Work was done on the system. Work was done by the system.

Answers

•If a system gains 757 kJ of heat, resulting in a change in internal energy of the system equal to +176 kJ. How much work is done is  - 581 kJ

•The correct statement is: Work was done by  the system

Let Change in internal energy ΔU = 176 kJ

Let Heat gained by the system (q) = 757 kJ

Using the  First law of thermodynamics

ΔU = q + w

Where:

ΔU  represent  change in internal energy

q represent  heat added to system and w is work done.

Let plug in the formula

176 kJ = 757 kJ + w

w = 176 kJ - 757 kJ

w= - 581 kJ

Based on the above calculation the negative sign means  that work is done by the system

Inconclusion:

•If a system gains 757 kJ of heat, resulting in a change in internal energy of the system equal to +176 kJ. How much work is done is  - 581 kJ

•The correct statement is: Work was done by  the system

Learn more here:

https://brainly.com/question/20309171?referrer=searchResults

Final answer:

The amount of work done by the system, based on given heat gain and change in internal energy is 581 kJ, meaning the work was done by the system.

Explanation:

The question asks about the amount of work done by or on a system in the field of thermodynamics. According to the first law of thermodynamics, the change in internal energy of a system (ΔU) is equal to the heat added to the system (Q) minus the work done by the system (W), or written as ΔU = Q - W. In this case, the heat added to your system was 757 kJ and the change in internal energy of the system was +176 kJ.

So we have: 176 kJ = 757 kJ - W. Subtracting 757 kJ from both sides of the equation would give us W = 757 kJ - 176 kJ. This results in the value of W = 581 kJ. Conclusively, since W is positive, we say that work was done by the system.

Learn more about Thermodynamics here:

https://brainly.com/question/35546325

#SPJ3

Calculate the mass of a 0.9 m^3 block of a material having a density of 12500 kg/m^3.

Answers

Answer: The mass of the object will be 11250 kg.

Explanation:

Density is defined as the mass contained per unit volume.

[tex]Density=\frac{mass}{Volume}[/tex]

Given :

Density of the object= [tex]12500kg/m^3[/tex]

Mass of object = ?

Volume of the object = [tex]0.9m^3[/tex]

Putting in the values we get:

[tex]12500kg/m^3=\frac{mass}{0.9m^3}[/tex]

[tex]12500kg/m^3=\frac{mass}{0.9m^3}[/tex]

[tex]mass=11250kg[/tex]

Thus the mass of the object is 11250 kg.

on a day when the speed of sound in air is 340 m/s a bat emits a shriek whose echo returns to it 0.0250 seconds later. How far away is the mosquito that reflects back the shriek?

Answers

Answer:

The distance of the mosquito from the bat is 4.25 m.

Explanation:

Given that,

Speed of sound in air v= 340 m/s

Time t = 0.0250 second

Let d be the distance of the mosquito from the bat.

The distance traveled by the sound when the echo heard is 2d.

We need to calculate the distance

Using formula of  distance

[tex]v = \dfrac{2d}{t}[/tex]

Put the value into the formula

[tex]v = \dfrac{2d}{25\times10^{-3}}[/tex]

[tex]d =\dfrac{25\times10^{-3}\times340}{2}[/tex]

[tex]d=4.25\ m[/tex]

Hence, The distance of the mosquito from the bat is 4.25 m.

Final answer:

Utilizing the echo time of 0.0250 seconds and the sound speed of 340 m/s, the distance to the mosquito is calculated as 4.25 meters away from the bat.

Explanation:

Calculating the Distance to the Mosquito using Echo Time

To determine the distance to the mosquito that reflects the bat's shriek, we need to use the speed of sound in air and the echo time. Since the shriek's echo returns in 0.0250 seconds and the speed of sound is given as 340 m/s, we can calculate the total distance traveled by the sound (to the mosquito and back to the bat) with the equation:

Distance = Speed × Time

Here, the time is the round-trip time for the sound, so the distance to the mosquito is half the total distance:

Total Distance = 340 m/s × 0.0250 s = 8.5 m

Distance to the Mosquito = Total Distance / 2 = 8.5 m / 2 = 4.25 m

Therefore, the mosquito is 4.25 meters away from the bat.

Absolute pressure in tank is P1 = 260 kPa and local ambient absolute pressure is P2 =100 kPa. If liquid density in pipe is 13600 kg/m3 , compute liquid height, h=..?.. m ? Use g =10 m/s2

Answers

Answer:

1.176m

Explanation:

Local ambient pressure(P1) = 100 kPa

Absolute pressure(P2)=260kPa

Net pressure=absolute pressure-local ambient absolute pressure

Net pressure=P1(absolute pressure)-P2(local ambient absolute pressure)

Net pressure=260-100=160kPa

Pressure= ρgh

160kPa=13600*10*h

h=[tex]\frac{160000}{136000}[/tex]

h=1.176m

A 2.0 kg hanging mass stretches a coiled spring by 0.15 m. The spring constant, k, is: (A) 0.075 N/m, (B) 2.9 N/m (C) 131 N/m, (D) 1,742 N/m, (E) none of the above.

Answers

Answer:

C

Explanation:

Givens

m = 2 kg

F = 2 * 9.81

F =  19.62 N

x = 0.15 m

Formula

F = k*x

Solution

19.62 = k*0.15

k = 19.62/0.15

k = 130.8 which rounded to the nearest given answer is C

The maximum magnitude of the magnetic field of an electromagnetic wave is 13.5 μΤ. (3396) Problem 3: 笄What is the average total energy density (in μ1m3) of this electromagnetic wave? Assume the wave is propagating in vacuum.

Answers

Answer:

The average total energy density of this electromagnetic wave is [tex]72.5\ \mu\ J/m^3[/tex].

Explanation:

Given that,

Magnetic field [tex]B = 13.5\mu T[/tex]

We need to calculate the average total energy density

Using formula of energy density

[tex]Energy\ density =\dfrac{S}{c}[/tex]....(I)

Where, S = intensity

c = speed of light

We know that,

The intensity is given by

[tex]S = \dfrac{B^2c}{2\mu_{0}}[/tex]

Put the value of S in equation (I)

[tex]Energy\ density =\dfrac{\dfrac{B^2c}{2\mu_{0}}}{c}[/tex]

[tex]Energy\ density = \dfrac{(13.5\times10^{-6})^2}{2\times4\pi\times10^{-7}}[/tex]

[tex]Energy\ density = 0.0000725\ J/m^3[/tex]

[tex]Energy\ density = 72.5\times10^{-6}\ J/m^3[/tex]

[tex]Energy\ density = 72.5\ \mu\ J/m^3[/tex]

Hence, The average total energy density of this electromagnetic wave is [tex]72.5\ \mu\ J/m^3[/tex].

ml(d^2θ/dt^2) =-mgθ

1. From the linearized equation, justify Galileo’s observation that the period of a pendulum depends only on its length and not on the mass or on the initial displacement.

Answers

The equation of motion of a pendulum is:

[tex]\dfrac{\textrm{d}^2\theta}{\textrm{d}t^2} = -\dfrac{g}{\ell}\sin\theta,[/tex]

where [tex]\ell[/tex] it its length and [tex]g[/tex] is the gravitational acceleration. Notice that the mass is absent from the equation! This is quite hard to solve, but for small angles ([tex]\theta \ll 1[/tex]), we can use:

[tex]\sin\theta \simeq \theta.[/tex]

Additionally, let us define:

[tex]\omega^2\equiv\dfrac{g}{\ell}.[/tex]

We can now write:

[tex]\dfrac{\textrm{d}^2\theta}{\textrm{d}t^2} = -\omega^2\theta.[/tex]

The solution to this differential equation is:

[tex]\theta(t) = A\sin(\omega t + \phi),[/tex]

where [tex]A[/tex] and [tex]\phi[/tex] are constants to be determined using the initial conditions. Notice that they will not have any influence on the period, since it is given simply by:

[tex]T = \dfrac{2\pi}{\omega} = 2\pi\sqrt{\dfrac{g}{\ell}}.[/tex]

This justifies that the period depends only on the pendulum's length.

Two forces are applied to a 5.0-kg crate; one is 3.0 N to the north and the other is 4.0 N to the east. The magnitude of the acceleration of the crate is: a. 1.0 m/s^2 b. 2.8 m/s^2 c.7.5 m/s^2 d. 10.0 m/s^2

Answers

Answer:

The acceleration of the crate is 1 m/s²

Explanation:

It is given that,

Mass of the crate, m = 5 kg

Two forces applied on the crate i.e. one is 3.0 N to the north and the other is 4.0 N to the east. So, there resultant force is :

[tex]F_{net}=\sqrt{3^2+4^2} =5\ N[/tex]

We need to find the acceleration of the crate. It is given by using the second law of motion as :

[tex]a=\dfrac{F_{net}}{m}[/tex]

[tex]a=\dfrac{5\ N}{5\ kg}[/tex]

a = 1 m/s²

So, the acceleration of the crate is 1 m/s². Hence, this is the required solution.  

The magnitude of the acceleration of a crate with forces of 3.0 N north and 4.0 N east applied to it is 1.0 m/s². This is found using the Pythagorean theorem to calculate the resultant force and Newton's Second Law to calculate acceleration.

The forces are 3.0 N to the north and 4.0 N to the east on a 5.0-kg crate. Since the forces are perpendicular, we can use the Pythagorean theorem to find the resultant force. The resultant force (Fr) is √(3.02 + 4.02) N, which is 5.0 N. According to Newton's Second Law, F = ma, hence acceleration (a) is Fr divided by the mass (m). Calculating acceleration: a = 5.0 N / 5.0 kg = 1.0 m/s2. Therefore, the correct answer is a. 1.0 m/s2.

A 0.15 kg baseball is pushed with 100 N force. what will its acceleration be?

Answers

Answer:

The acceleration of the ball is 666.67 m/s²

Explanation:

It is given that,

Mass of the baseball, m = 0.15 kg

Applied force to it, F = 100 N

We need to find the acceleration of the ball. It can be calculated using Newton's second law of motion as :

F = ma

[tex]a=\dfrac{F}{m}[/tex]

[tex]a=\dfrac{100\ N}{0.15\ kg}[/tex]

[tex]a=666.67\ m/s^2[/tex]

So, the acceleration of the ball is 666.67 m/s². Hence, this is the required solution.

A cylinder is fitted with a piston, beneath which is a spring, as in the drawing. The cylinder is open to the air at the top. Friction is absent. The spring constant of the spring is 3600 N/m. The piston has a negligible mass and a radius of 0.028 m. (a) When the air beneath the piston is completely pumped out, how much does the atmospheric pressure cause the spring to compress? (b) How much work does the atmospheric pressure do in compressing the spring?

Answers

Answer:

a) 0.0693 m

b) Work done = 8.644 J

Explanation:

Given:

Spring constant, k = 3600 N/m

Radius of the piston, r = 0.028 m

Now, we know that the atmospheric pressure at STP = 1.01325 × 10⁵ Pa  = 101325 Pa

Now,

The force ([tex]F_P[/tex]) due to the atmospheric pressure on the piston will be:

[tex]F_P[/tex] = Pressure × Area of the piston

on substituting the values we get,

[tex]F_P[/tex] = 101325 × πr²

F = 101325 × π × (0.028)² = 249.56 N

also,

Force on spring is given as:

F = kx

where,

x is the displacement in the spring

 on substituting the values we get,

 249.56 N = 3600N/m × x

or

x = 0.0693 m

thus, the compression in the spring will be = 0.0693 m

b) Applying the concept of conservation of energy

we have,

Work done by the atmospheric pressure in compressing the spring = Potential energy gained  by the spring

mathematically,

[tex]W = \frac{1}{2}kx^2[/tex]

 on substituting the values we get,

[tex]W = \frac{1}{2}\times 3600\times (0.0693)^2[/tex]

W = 8.644 J

a) x = 0.0693 m

b) W = 8.644 J

Given :

Spring constant, K = 3600 N/m

Radius of the piston, r = 0.028 m

Solution :

Now the atmospheric pressure at STP = 1.01325 × 10⁵ Pa  = 101325 Pa

Force due to the atmospheric pressure on the piston is,

Force = Pressure × Area of the piston

on substituting the values we get,

[tex]\rm F_P = 101325\times \pi r^2[/tex]

[tex]\rm F_P = 249.56\;N[/tex]

a) We know that the force on spring is given by,

F = Kx

where, k is spring constant and x is the displacement in the spring.

[tex]249.56 = 3600\times x[/tex]

[tex]\rm x = 0.0693\;m[/tex]

b) We know that the Work Done is given by,

[tex]\rm W= \dfrac{1}{2} k x^2[/tex]

[tex]\rm W = 0.5\times 3600\times (0.0693)^2[/tex]

W = 8.644 J

For more information, refer the link given below

https://brainly.com/question/22599382?referrer=searchResults

A coil is made of 150 turns of copper wire wound on a cylindrical core. If the mean radius of the turns is 6.5 mm and the diameter of the wire is 0.4 mm, calculate the resistance of the coil!

Answers

Answer:

0.84 Ω

Explanation:

r = mean radius of the turn = 6.5 mm

n = number of turns of copper wire = 150

Total length of wire containing all the turns is given as

L = 2πnr

L =  2 (3.14)(150) (6.5)

L = 6123 mm

L = 6.123 m

d = diameter of the wire = 0.4 mm = 0.4 x 10⁻³ m

Area of cross-section of the wire is given as

A = (0.25) πd²

A = (0.25) (3.14) (0.4 x 10⁻³)²

A = 1.256 x 10⁻⁷ m²

ρ = resistivity of copper = 1.72 x 10⁻⁸ Ω-m

Resistance of the coil is given as

[tex]R = \frac{\rho L}{A}[/tex]

[tex]R = \frac{(1.72\times 10^{-8}) (6.123))}{(1.256\times 10^{-7}))}[/tex]

R = 0.84 Ω

If the intensity of light that is incident on a piece of metal is increased, what else will be increased? Choose all that apply. number of electrons ejected stopping voltage cutoff frequency frequency KEmax work function wavelength

Answers

Answer:

explained

Explanation:

When the intensity of light is increased on a piece of metal only the number of electron ejected will increase because all other things independent of intensity of light.

Light below certain frequency will not cause any electron emission no matter how intense.

The intensity produces more electron but does not change the maximum kinetic energy of electrons.

Work function is independent of the intensity of light, because it is an intrinsic property of a material.

Other Questions
How did imperialism contribute to the start of World War I What is the sum of the rational expressions below? 3x/x+9 + x/x-4 You are one of 34 people entering a contest. What is the probability that your name will be drawn first? ULTA series of revolutions in the early 1800s led to independence for nations inO Africa.North AmericaO Europe.O Latin America solve this inequality-3(2x-5) How many cubic units is a box that is 3 units high Specific internal energy is an intensive property True False From a window, the angle of elevation of the top of a flagpole is 25, and the angle of depression of the base of theflagpole is 12.How high is the flagpole if the window is in a building at a distance of 185 feet from the flagpole? Two mechanics worked on a car. The first mechanic charged$95 per hour, and the second mechanic charged$60 per hour. The mechanics worked for a combined total of20 hours, and together they charged a total of$1375 .How long did each mechanic work? 2 PointsHow was the Homestead strike ended?OA. Andrew Carnegie broke the steelworkers' union, which neverrecoveredB. Carnegie lost so much money that he gave in to workers'demandsC. The state government sent troops to end it.OD. The state government forced Carnegie to accept workers'demands The Culture and Human Behavior box featured a study by developmental psychologist Qi Wang, who compared the earliest memories of European American college students and Taiwanese and Chinese college students. Wang found that the earliest memories of the Taiwanese and Chinese college students: A) occurred much later than the memories of European American college students. B) occurred at about the same age as the memories of European American college students. C) occurred much earlier than the memories of European American college students. D) were almost identical in content to European American college students' memories. Aaker Corporation, which has only one product, has provided the following data concerning its most recent month of operations: Selling price $99 Units in beginning inventory 0 Units produced 6,300 Units sold 6,000 Units in ending inventory 300 Variable costs per unit: Direct materials $12 Direct labor $42 Variable manufacturing overhead $6 Variable selling and administrative $6 Fixed costs: Fixed manufacturing overhead $170,100 Fixed selling and administrative $24,000 What is the net operating income for the month under absorption costing? $3,900 ($14,100) $12,000 $8,100 Evaluate f(x) = 1/4 x for x =-5. In terms of explaining the probability of assignment to trial arms in consent forms, ICH notes that is should be included...True or False Grid Corp. acquired some of its own common shares at a price greater than both their par value and original issue price but less than their book value. Grid uses the cost method of accounting for treasury stock. What is the impact of this acquisition on total equity and the book value per common share? Based on sample results, a 90% confidence interval for the mean servings of fruit per day consumed by grade school children is (0.21, 2.45). What is the margin of error? Which of the following occurs during heightened iron needs?a. genes of the GI tract produce more proteins that assist with iron absorptionb. more iron is absorbed from the foods we consumec. our body absorbs iron at a slower rate but more efficientlyd. a and b The purpose of DNA profiling is to ______. transfer genes from one species to another species determine whether two samples of DNA came from the same individual definitively convict a suspect assess the safety concerns associated with genetically modified organisms Is my answer I chose correct? I don't know how to determine if it doubled, tripled, or quadrupled...Between 1965 and 1967, US troop strengthA) more than doubled.B) more than tripled.C) more than quadrupled. Which of the following correctly describes the variation in the equation h= V/lw