A 2.7-kg cart is rolling along a frictionless, horizontal track towards a 1.1-kg cart that is held initially at rest. The carts are loaded with strong magnets that cause them to attract one another. Thus, the speed of each cart increases. At a certain instant before the carts collide, the first cart's velocity is +3.7 m/s, and the second cart's velocity is -1.6 m/s. (a) What is the total momentum of the system of the two carts at this instant? (b) What was the velocity of the first cart when the second cart was still at rest?

Answers

Answer 1

Answer:

Part a)

P = 8.23 kg m/s

Part b)

v = 3.05 m/s

Explanation:

Part a)

momentum of cart 1 is given as

[tex]P_1 = m_1v_1[/tex]

[tex]P_1 = (2.7)(3.7) = 9.99 kg m/s[/tex]

Momentum of cart 2 is given as

[tex]P_2 = m_2v_2[/tex]

[tex]P_2 = (1.1)(-1.6) = -1.76 kg m/s[/tex]

Now total momentum of both carts is given as

[tex]P = P_1 + P_2[/tex]

[tex]P = 8.23 kg m/s[/tex]

Part b)

Since two carts are moving towards each other due to mutual attraction force and there is no external force on two carts so here momentum is always conserved

so here we will have

[tex]P_i = P_f[/tex]

[tex](2.7 kg)v = 8.23[/tex]

[tex]v = 3.05 m/s[/tex]


Related Questions

A 2 meter long bar has a longitudinal/axial wave speed of 5,000 m/s. If the bar is fixed at each end, what is the second natural frequency an for this system in rad/s? a. 12,450 b. 14,850 e 15,710 d. 16,800 e. 18,780 f. None of the above

Answers

Answer:

The second natural frequency an for this system is 15710 rad/s.

(e) is correct option.

Explanation:

Given that,

Length = 2 m

Wave speed = 5000 m/s

We need to calculate the second natural frequency

Using formula of Time period

[tex]T = \dfrac{L}{v}[/tex]

[tex]T=\dfrac{2}{5000}\ s[/tex]

We know that,

The frequency is the reciprocal of time period.

[tex]f=\dfrac{1}{T}[/tex]

[tex]f=\dfrac{5000}{2}[/tex]

[tex]f=2500\ Hz[/tex]

We know that,

[tex]1\ rad/s =\dfrac{1}{2\pi}\ Hz[/tex]

So, The frequency is in rad/s

[tex]f= 15710\ rad/s[/tex]

Hence, The second natural frequency an for this system is 15710 rad/s.

The frequency factor and activation energy for a chemical reaction are A = 4.23 x 10–12 cm3/(molecule·s) and Ea = 12.9 kJ/mol at 384.7 K, respectively. Determine the rate constant for this reaction at 384.7 K.

Answers

Final answer:

The rate constant for this reaction at 384.7 K is 7.945 x 10^-4 cm^3/(molecule·s).

Explanation:

The rate constant, denoted by k, can be determined using the Arrhenius equation: k = Ae^-Ea/RT, where A is the frequency factor, Ea is the activation energy, R is the ideal gas constant, and T is the temperature in Kelvin. To find the rate constant at 384.7 K, we first need to convert Ea from kJ/mol to J/mol by multiplying it by 1000, giving us 12,900 J/mol. Plugging in the values A = 4.23 x 10^-12 cm^3/(molecule·s), Ea = 12,900 J/mol, and R = 8.314 J/mol/K, into the Arrhenius equation, we can calculate k as follows:

k = (4.23 x 10^-12 cm^3/(molecule·s)) * e^(-12,900 J/mol / (8.314 J/mol/K * 384.7 K))

k = 7.945 x 10^-4 cm^3/(molecule·s)

If a 76.2 kg patient is exposed to 52.6 rad of radiation from a beta source, then what is the dose (mrem) absorbed by the person's body?

Answers

Answer:

The dose absorbed by the person's body is 52600 mrem.

Explanation:

Given that,

Radiation = 52.6 rad

We need to calculate the absorbed dose

We know that,

The equivalent dose is equal to the absorbed radiation for beta source.

So, The patient is exposed 52.6 rad of radiation.

Therefore, The absorbed radiation is equal to the exposed 52.6 rad of radiation.

[tex]1 rad = \dfrac{1\ rem}{1000\ mrem}[/tex]

So, radiation absorbed = 52.6 rad

[tex]radiation\ absorbed =52.6\times1000\ mrem[/tex]

[tex]radiation\ absorbed = 52600\ mrem[/tex]

Hence, The dose absorbed by the person's body is 52600 mrem.

Two long, straight wires are parallel and are separated by a distance of d = 0.210 m. The top wire in the sketch carries current I1 = 4.00 A , toward the right, and the bottom wire carries current I2 = 5.90 A , also to the right. At point P, midway between the two wires, what are the magnitude and direction of the net magnetic field produced by the two wires?

Answers

Answer:

[tex]1.88\cdot 10^{-5} T[/tex], inside the plane

Explanation:

We need to calculate the magnitude and direction of the magnetic field produced by each wire first, using the formula

[tex]B=\frac{\mu_0 I}{2\pi r}[/tex]

where

[tex]\mu_0[/tex] is the vacuum permeability

I is the current

r is the distance from the wire

For the top wire,

I = 4.00 A

r = d/2 = 0.105 m (since we are evaluating the field half-way between the two wires)

so

[tex]B_1 = \frac{(4\pi\cdot 10^{-7})(4.00)}{2\pi(0.105)}=7.6\cdot 10^{-6}T[/tex]

And using the right-hand rule (thumb in the same direction as the current (to the right), other fingers wrapped around the thumb indicating the direction of the magnetic field lines), we find that the direction of the field lines at point P is inside the plane

For the bottom wire,

I = 5.90 A

r = 0.105 m

so

[tex]B_2 = \frac{(4\pi\cdot 10^{-7})(5.90)}{2\pi(0.105)}=1.12\cdot 10^{-5}T[/tex]

And using the right-hand rule (thumb in the same direction as the current (to the left), other fingers wrapped around the thumb indicating the direction of the magnetic field lines), we find that the direction of the field lines at point P is also inside the plane

So both field add together at point P, and the magnitude of the resultant field is:

[tex]B=B_1+B_2 = 7.6\cdot 10^{-6} T+1.12\cdot 10^{-5}T=1.88\cdot 10^{-5} T[/tex]

And the direction is inside the plane.

The magnitude and direction of the net magnetic field generated by the two wires will be [tex]1.55\times 10^{-8}[/tex].

What is magnetic field strength?

The number of magnetic flux lines on a unit area passing perpendicular to the given line direction is known as induced magnetic field strength .it is denoted by B.

[tex]B = \frac{u_00I}{2\pi r}[/tex]

(I) is the current

r is the distance from the probe

B is the induced magnetic field

r denotes the distance between the wire and the object.

[tex]u_0[/tex] is the permeability to vacuum

For magnetic field in the top wire

Given

0.105 m = r = d/2

[tex]B_1= \frac{4\pi\times10^{-7}\times4.00}{2\pi \times 0.105}[/tex]

[tex]\rm{B_1=7.6\times 10^{-6}}[/tex] T

As the current to the left other fingers wrapped around the thumb showing the direction of the magnetic field lines.

Given data for bottom wire

I= 5.90 A

r = 0.105 m r = 0.105 m r = 0.105 m

[tex]B_2= \frac{4\pi\times10^{-7}\times5.90}{2\pi \times 0.105}[/tex]

[tex]\rm{B_2=1.12 \times 10^-5[/tex] T

As the current to the left other fingers wrapped around the thumb showing the direction of the magnetic field lines. The field lines direction at point P is also inside the plane.

The megnitude of the resultant magnetic field be the sum of both the field

[tex]\rm{B=B_1+B_2}[/tex]

[tex]\rm{B=7.6\times 10^{-6}+ 1.12\times 10^{-5}}[/tex]

[tex]B = 1.88\times 10^{-5}[/tex] T

Hence The megnitude of the resultant magnetic field be the sum of both the fields  [tex]1.88\times 10^{-5}[/tex]T.

To learn more about the strength of induced magnetic field refer to the link;

https://brainly.com/question/2248956

Choose the statement(s) that is/are true about an electric field. (i) The electric potential decreases in the direction of an electric field. (ii) A positive charge experiences a force in the direction of an electric field. (iii) An electron placed in an electric field will move opposite to the direction of the field.

Answers

Answer:

A positive charge experiences a force in the direction of an electric field.

Explanation:

Electric field is defined as the electric force acting per unit positive charge. Mathematically, it is given by :

[tex]E=\dfrac{F}{q}[/tex]

We know that like charges repel each other while unlike charges attract each other. The direction of electric field is in the direction of electric force. For a positive charge the field lines are outwards and for a negative charge the electric field lines are inwards.

So, the correct option is (b) "A positive charge experiences a force in the direction of an electric field".

A system gains 757 kJ757 kJ of heat, resulting in a change in internal energy of the system equal to +176 kJ.+176 kJ. How much work is done? ????=w= kJkJ Choose the correct statement. Work was done on the system. Work was done by the system.

Answers

•If a system gains 757 kJ of heat, resulting in a change in internal energy of the system equal to +176 kJ. How much work is done is  - 581 kJ

•The correct statement is: Work was done by  the system

Let Change in internal energy ΔU = 176 kJ

Let Heat gained by the system (q) = 757 kJ

Using the  First law of thermodynamics

ΔU = q + w

Where:

ΔU  represent  change in internal energy

q represent  heat added to system and w is work done.

Let plug in the formula

176 kJ = 757 kJ + w

w = 176 kJ - 757 kJ

w= - 581 kJ

Based on the above calculation the negative sign means  that work is done by the system

Inconclusion:

•If a system gains 757 kJ of heat, resulting in a change in internal energy of the system equal to +176 kJ. How much work is done is  - 581 kJ

•The correct statement is: Work was done by  the system

Learn more here:

https://brainly.com/question/20309171?referrer=searchResults

Final answer:

The amount of work done by the system, based on given heat gain and change in internal energy is 581 kJ, meaning the work was done by the system.

Explanation:

The question asks about the amount of work done by or on a system in the field of thermodynamics. According to the first law of thermodynamics, the change in internal energy of a system (ΔU) is equal to the heat added to the system (Q) minus the work done by the system (W), or written as ΔU = Q - W. In this case, the heat added to your system was 757 kJ and the change in internal energy of the system was +176 kJ.

So we have: 176 kJ = 757 kJ - W. Subtracting 757 kJ from both sides of the equation would give us W = 757 kJ - 176 kJ. This results in the value of W = 581 kJ. Conclusively, since W is positive, we say that work was done by the system.

Learn more about Thermodynamics here:

https://brainly.com/question/35546325

#SPJ3

At time t0 = 0 the mass happens to be at y0 = 4.05 cm and moving upward at velocity v0 = +4.12 m/s. (Mind the units!) Calculate the amplitude A of the oscillating mass. Answer in units of cm.

Answers

The amplitude of the oscillating mass is [tex]\(A = 4.05 \, \text{cm}\).[/tex]

To calculate the amplitude  A of the oscillating mass, we can use the equations of motion for simple harmonic motion (SHM). In SHM, the displacement [tex]\( y(t) \)[/tex] of the mass at time [tex]\( t \)[/tex] is given by:

[tex]\[ y(t) = A \sin(\omega t + \phi) \][/tex]

where:

- [tex]\( A \)[/tex]) is the amplitude,

- [tex]\( \omega \)[/tex] is the angular frequency, and

- [tex]\( \phi \)[/tex] is the phase angle.

Given that at [tex]\( t = t_0 = 0 \)[/tex], the mass is at [tex]\( y_0 = 4.05 \)[/tex] cm and moving upward at velocity [tex]\( v_0 = +4.12 \)[/tex] m/s, we can find the amplitude A

At [tex]\( t = 0 \),[/tex] we have:

[tex]\[ y(0) = A \sin(\phi) = y_0 = 4.05 \, \text{cm} \][/tex]

And also:

[tex]\[ v(0) = \omega A \cos(\phi) = v_0 = +4.12 \, \text{m/s} \][/tex]

To find [tex]\( A \),[/tex]A we'll use the fact that at [tex]\( t = 0 \)[/tex], the mass is at its maximum displacement, which means the velocity is zero at [tex]\( t = 0 \).[/tex] This gives us:

[tex]\[ \omega A \cos(\phi) = 0 \]\[ \cos(\phi) = 0 \][/tex]

Since [tex]\( \cos(\phi) = 0 \) when \( \phi = \frac{\pi}{2} \) or \( \phi = \frac{3\pi}{2} \), we'll consider \( \phi = \frac{\pi}{2} \).[/tex]

Now, from the equation [tex]\( A \sin(\phi) = y_0 \),[/tex] we can find [tex]\( A \):[/tex]

[tex]\[ A \sin\left(\frac{\pi}{2}\right) = 4.05 \]\[ A = 4.05 \, \text{cm} \][/tex]

So, the amplitude[tex]\( A \)[/tex] of the oscillating mass is [tex]\( 4.05 \, \text{cm} \).[/tex]

A cylinder is fitted with a piston, beneath which is a spring, as in the drawing. The cylinder is open to the air at the top. Friction is absent. The spring constant of the spring is 3600 N/m. The piston has a negligible mass and a radius of 0.028 m. (a) When the air beneath the piston is completely pumped out, how much does the atmospheric pressure cause the spring to compress? (b) How much work does the atmospheric pressure do in compressing the spring?

Answers

Answer:

a) 0.0693 m

b) Work done = 8.644 J

Explanation:

Given:

Spring constant, k = 3600 N/m

Radius of the piston, r = 0.028 m

Now, we know that the atmospheric pressure at STP = 1.01325 × 10⁵ Pa  = 101325 Pa

Now,

The force ([tex]F_P[/tex]) due to the atmospheric pressure on the piston will be:

[tex]F_P[/tex] = Pressure × Area of the piston

on substituting the values we get,

[tex]F_P[/tex] = 101325 × πr²

F = 101325 × π × (0.028)² = 249.56 N

also,

Force on spring is given as:

F = kx

where,

x is the displacement in the spring

 on substituting the values we get,

 249.56 N = 3600N/m × x

or

x = 0.0693 m

thus, the compression in the spring will be = 0.0693 m

b) Applying the concept of conservation of energy

we have,

Work done by the atmospheric pressure in compressing the spring = Potential energy gained  by the spring

mathematically,

[tex]W = \frac{1}{2}kx^2[/tex]

 on substituting the values we get,

[tex]W = \frac{1}{2}\times 3600\times (0.0693)^2[/tex]

W = 8.644 J

a) x = 0.0693 m

b) W = 8.644 J

Given :

Spring constant, K = 3600 N/m

Radius of the piston, r = 0.028 m

Solution :

Now the atmospheric pressure at STP = 1.01325 × 10⁵ Pa  = 101325 Pa

Force due to the atmospheric pressure on the piston is,

Force = Pressure × Area of the piston

on substituting the values we get,

[tex]\rm F_P = 101325\times \pi r^2[/tex]

[tex]\rm F_P = 249.56\;N[/tex]

a) We know that the force on spring is given by,

F = Kx

where, k is spring constant and x is the displacement in the spring.

[tex]249.56 = 3600\times x[/tex]

[tex]\rm x = 0.0693\;m[/tex]

b) We know that the Work Done is given by,

[tex]\rm W= \dfrac{1}{2} k x^2[/tex]

[tex]\rm W = 0.5\times 3600\times (0.0693)^2[/tex]

W = 8.644 J

For more information, refer the link given below

https://brainly.com/question/22599382?referrer=searchResults

If the axes of the two cylinders are parallel, but displaced from each other by a distance d, determine the resulting electric field in the region R>R3, where the radial distance R is measured from the metal cylinder's axis. Assume d<(R2−R1). Express your answer in terms of the variables ρE, R1, R2, R3, d, R, and appropriate constants.

Answers

Answer:

E =  ρ ( R1²) / 2 ∈o R

Explanation:

Given data

two cylinders are parallel

distance = d

radial distance = R

d < (R2−R1)

to find out

Express answer in terms of the variables ρE, R1, R2, R3, d, R, and constants

solution

we have two parallel cylinders

so area is 2 [tex]\pi[/tex] R × l

and we apply here gauss law that is

EA = Q(enclosed) / ∈o   ......1

so first we find  Q(enclosed) = ρ Volume

Q(enclosed) = ρ ( [tex]\pi[/tex] R1² × l )

so put all value in equation 1

we get

EA = Q(enclosed) / ∈o

E(2 [tex]\pi[/tex] R × l)  = ρ ( [tex]\pi[/tex] R1² × l ) / ∈o

so

E =  ρ ( R1²) / 2 ∈o R

Final answer:

The resulting electric field in the specified region can be calculated using Gauss' Law. The equation for the electric field in that region is [tex]E = 2\pi R_1^2ho_E[/tex].

Explanation:

The resulting electric field in the region R>R3 is:

[tex]E = 2\pi R_1^2ho_E[/tex]

where R_1 is the radius of the inner cylinder, and ρ_E is the charge density. This expression is obtained by applying Gauss' Law for the region where R1 < r < R2.

What is the kinetic energy of the rocket with mass 15,000 kg and speed of 5200 m/s? A. 2.01 x 10^11 J B. 2.02x 10^11 J C. 2.03 x 10^11 J D. 2.04 x 10^11 J

Answers

C. [tex]E_{k}=2.03x10^{11}J[/tex]

The kinetic energy of a body is the ability to perform work due to its movement given by the equation [tex]E_{k}=\frac{1}{2}mv^{2}[/tex].

To calculate the kinetic energy of a rocket with mass 15000kg and speed of 5200m/s:

[tex]E_{k}=\frac{1}{2}(15000kg)(5200m/s)^{2}=202800000000J=2.03x10^{11}J[/tex]

Example: Alice is outside ready to begin her morning run when she sees Bob run past her with a constant speed of 10.0 m/s. Alice starts to chase after Bob after 5 seconds How far away is Bob when Alice starts running?

Answers

Answer:

The distance of bob when Alice starts running is 50 m.

Explanation:

Given that,

Speed v = 10.0 m/s

Time t = 5 sec

We need to calculate the distance

Using formula of distance

[tex]D=v\times t[/tex]

[tex]D=10\times5[/tex]

[tex]D=50\ m[/tex]

Hence, The distance of bob when Alice starts running is 50 m.

The maximum magnitude of the magnetic field of an electromagnetic wave is 13.5 μΤ. (3396) Problem 3: 笄What is the average total energy density (in μ1m3) of this electromagnetic wave? Assume the wave is propagating in vacuum.

Answers

Answer:

The average total energy density of this electromagnetic wave is [tex]72.5\ \mu\ J/m^3[/tex].

Explanation:

Given that,

Magnetic field [tex]B = 13.5\mu T[/tex]

We need to calculate the average total energy density

Using formula of energy density

[tex]Energy\ density =\dfrac{S}{c}[/tex]....(I)

Where, S = intensity

c = speed of light

We know that,

The intensity is given by

[tex]S = \dfrac{B^2c}{2\mu_{0}}[/tex]

Put the value of S in equation (I)

[tex]Energy\ density =\dfrac{\dfrac{B^2c}{2\mu_{0}}}{c}[/tex]

[tex]Energy\ density = \dfrac{(13.5\times10^{-6})^2}{2\times4\pi\times10^{-7}}[/tex]

[tex]Energy\ density = 0.0000725\ J/m^3[/tex]

[tex]Energy\ density = 72.5\times10^{-6}\ J/m^3[/tex]

[tex]Energy\ density = 72.5\ \mu\ J/m^3[/tex]

Hence, The average total energy density of this electromagnetic wave is [tex]72.5\ \mu\ J/m^3[/tex].

The same 1710 kg artificial satellite is placed into circular orbit at the same altitude of 2.6x10° m around an exoplanet with the same radius as the Earth, but twice the mass. a. What is the orbital speed of the satellite? b. What is the period of the satellite? C. What is the kinetic energy of the satellite? d. What is the total energy of the satellite?

Answers

Given:

mass of satellite, m = 1710 kg

altitude, h = [tex]2.6\times 10^{6} m[/tex]

G =  [tex]6.67\times 10^{-11} [/tex]

we know

mass of earth, [tex]M_{E}[/tex] =  [tex]5.972\times 10^{24} kg[/tex]

Here, according to question we will consider

[tex]2M_{E}[/tex] =  [tex]11.944\times 10^{24} kg[/tex]

radius of earth,  [tex]R_{E}[/tex] =  [tex]6.371\times 10^{6} m[/tex]

Formulae Used and replacing [tex]M_{E}[/tex] by  [tex]2M_{E}[/tex] :

1). [tex]v = \sqrt{\frac{2GM_{E}}{R_{E} + h}}[/tex]

2). [tex]T = \sqrt{\frac{4\pi ^{2}(R_{E} + h)^{3}}{2GM_{E}}}[/tex]

3). [tex]KE = \frac{1}{2}mv^{2}[/tex]

4). [tex]Total Energy, E = -\frac{2GM_E\times m}{2(R_{E} + h)}[/tex]

where,

v = orbital velocity of satellite

T = time period

KE = kinetic energy

Solution:

Now, Using Formula (1), for orbital velocity:

 [tex]v = \sqrt{\frac{6.67 \times 10^{-11} \times 11.944 \times 10^{24}}{6.371 \times 10^{6} + 2.6 \times 10^{6}}[/tex]

v =  [tex]9.423 \times 10^{3}[/tex]  m/s

Using Formula (2) for time period:

[tex]T = \sqrt{\frac{4\pi ^{2}(6.371\times 10^{6} + 2\times 10^{6})^{3}}{6.67\times 10^{-11}\times 9.44\times 10^{24}}}[/tex]

[tex]T = 6.728\times 10^{3} s[/tex]

Now, Using Formula(3) for kinetic energy:

[tex]KE = \frac{1}{2}(9.44\times 10^{24})(9.42\times 10^{3})^{2}[/tex]

[tex]KE = \frac{1}{2}(1710)(9.42\times 10^{3})^{2} = 7.586\times 10^{10} J[/tex]

Now, Using Formula(4) for Total energy:

[tex]E = -\frac{6.67\times 10^{-11}\times 9.44\times 10^{24}\times 1710}{2( 6.371\times 10^{6} + 2.6\times 10^{6})}[/tex]

[tex]E = - 7.59\times 10^{10} J[/tex]

If there were no air resistance, a penny dropped from the top of a skyscraper would reach the ground 9.3 s later. To the nearest integer, what would the penny's speed in m/s be right as it reaches the ground if it was dropped from rest?

Answers

Answer:

To the nearest integer, the penny's speed in m/s be right as it reaches the ground if it was dropped from rest = 91 m/s

Explanation:

We have equation of motion

S = ut + 0.5at²

Here u = 0, a = g  and t = 9.3 s

We have equation of motion v = u +at

Substituting

       v = u +at

       v = 0 + 9.8 x 9.3 = 91.14 m/s

To the nearest integer, the penny's speed in m/s be right as it reaches the ground if it was dropped from rest = 91 m/s

A uniformly charged sphere has a potential on its surface of 450 V. At a radial distance of 7.2 m from this surface, the potential is150 V What is the radius of the sphere?

Answers

Answer:

The radius of the sphere is 3.6 m.

Explanation:

Given that,

Potential of first sphere = 450 V

Radial distance = 7.2 m

If the potential of sphere =150 V

We need to calculate the radius

Using formula for potential

For 450 V

[tex]V=\dfrac{kQ}{r}[/tex]

[tex]450=\dfrac{kQ}{r}[/tex]....(I)

For 150 V

[tex]150=\dfrac{kQ}{r+7.2}[/tex]....(II)

Divided equation (I) by equation (II)

[tex]\dfrac{450}{150}=\dfrac{\dfrac{kQ}{r}}{\dfrac{kQ}{r+7.2}}[/tex]

[tex]3=\dfrac{(r+7.2)}{r}[/tex]

[tex]3r=r+7.2[/tex]

[tex]r=\dfrac{7.2}{2}[/tex]

[tex]r=3.6\ m[/tex]

Hence, The radius of the sphere is 3.6 m.

The radius of the sphere whose surface has a potential difference of  450 V is 3.6 m.

What is the radius of the sphere?

We know that the potential difference can be written as,

[tex]V = k\dfrac{Q}{R}[/tex]

We know that at  R= R, Potential difference= 450 V,

[tex]450 = k\dfrac{Q}{R}[/tex]

Also, at R = (R+7.2), Potential difference = 150 V,

[tex]150 = k\dfrac{Q}{(R+7.2)}[/tex]

Taking the ratio of the two,

[tex]\dfrac{450}{150} = \dfrac{kQ}{R} \times \dfrac{(R+7.2)}{kQ}\\\\\dfrac{450}{150} = \dfrac{(R+7.2)}{R}\\\\R = 3.6\ m[/tex]

Hence, the radius of the sphere whose surface has a potential difference of  450 V is 3.6 m.

Learn more about Potential differences:

https://brainly.com/question/118936

By how much will the length of a chicago concrete walkway that is 18 m long contract when the equipment drops from 24 degrees celcius in July to (-16 degrees celcius) in Janruary?

Answers

Answer:

Contraction of Chicago concrete walkway = 8.64 x 10⁻³ m

Explanation:

Thermal expansion or compression is given by ΔL = LαΔT

Here Length of Chicago concrete walkway, L = 18 m

         Change in temperature, ΔT = (-16 - 24) = -40 °C

         Coefficient of thermal expansion for concrete, α = 12 x 10⁻⁶ °C⁻¹

Substituting

    ΔL = LαΔT = 18 x 12 x 10⁻⁶ x (-40) = -8.64 x 10⁻³ m

Contraction of Chicago concrete walkway = 8.64 x 10⁻³ m

An electron moving with a velocity v⃗ = 5.0 × 107 m/s i^ enters a region of space where perpendicular electric and a magnetic fields are present. The electric field is E⃗ = 104 V/m j^. What magnetic field will allow the electron to go through the region without being deflected?

Answers

Final answer:

To allow the electron to pass through the region without being deflected, the magnetic field should be equal and opposite to the electric field with a magnitude of 5.0 x 10^3 T in the -i^ direction.

Explanation:

The force experienced by an electron moving in a magnetic field is given by the formula F = qvB sin(θ), where q is the charge of the electron, v is its velocity, B is the magnetic field, and θ is the angle between the direction of velocity and the magnetic field. To allow the electron to pass through the region without being deflected, the magnetic force should be equal and opposite to the electric force. Since the electric field is in the j^ direction, the magnetic field should be in the -i^ direction with a magnitude of 5.0 x 10^3 T.

Learn more about Magnetic field here:

https://brainly.com/question/36936308

#SPJ12

To prevent the electron from being deflected, the magnetic field should be [tex]2.0 \times 10{^-4} T[/tex]. This is calculated by balancing the electric and magnetic forces acting on the electron.

To determine the magnetic field that allows an electron to pass through a region with perpendicular electric and magnetic fields without being deflected, we use the concept of force balance. When the forces from the electric field and the magnetic field are equal and opposite, the electron will move in a straight line without deflection. Given the electron's velocity[tex]v = 5.0 \times 10^7 m/s \hat i[/tex] and the electric field [tex]E = 10^4 V/m \hat j[/tex], we can use the formula:

[tex]qE = qvB[/tex]

Here, q is the charge of the electron, E is the magnitude of the electric field, v is the electron's velocity, and B is the magnetic field strength. Solving for B, we get:

[tex]B = E/v[/tex]

Plug in the given values:

[tex]B = 10^4 V/m / 5.0 \times 10^7 m/s[/tex]

This simplifies to:

[tex]B = 2.0 \times 10^{-4} T[/tex]

Therefore, the magnetic field required is [tex]2.0 \times 10^{-4} T[/tex].

A golf club (mass 0.5kg) hits a golf ball (mass 0.03kg) with a constant force of 25N over a time of 0.02 seconds. What is the magnitude of the impulse delivered to the ball? Select one: o a. 0.05 Ns b. 1250 Ns C.1.67 x102 Ns d.12.5Ns o e.8.00 x 104 Ns

Answers

Answer:

0.5 Ns

Explanation:

When a large force acting on a body for a very small time it is called impulsive force.

Impulse = force × small time

Impulse = 25 × 0.02 = 0.5 Ns

It is a vector quantity

It is desiredto FDM 30voice channels (each with a bandwidth of 4.5KHz) along with a guard band of 0.8KHz. Ignoring a guard band before the first channel and the one after the last channel, what is the total bandwidth, in KHz,required for such a system.

Answers

Answer:

Total bandwidth required  = 158.2 KHz

Explanation:

given data:

number of channel 30

bandwidth of each channel is 4.5 KHz

bandwidth of guard band 0.8 KHz

According to the given information, first guard band and the guard band after last channel should be ignored, therefore we have total number of  29 guard band.

As per data, we can calculate total bandwidth  required

total bandwidth = 30*4.5 + 29*0.8

total bandwidth required  = 158.2 KHz

A photon has a momentum of 5.55 x 10-27 kg-m/s. (a) What is the photon's wavelength? nm (b) To what part of the electromagnetic spectrum does this wavelength correspond? the tolerance is +/-2%

Answers

Explanation:

It is given that,

Momentum of the photon, [tex]p=5.55\times 10^{-27}\ kg-m/s[/tex]

(a) We need to find the wavelength of this photon. It can be calculated using the concept of De-broglie wavelength.

[tex]\lambda=\dfrac{h}{p}[/tex]

h is the Planck's constant

[tex]\lambda=\dfrac{6.67\times 10^{-34}\ Js}{5.55\times 10^{-27}\ kg-m/s}[/tex]

[tex]\lambda=1.2\times 10^{-7}\ m[/tex]

or

[tex]\lambda=120\ nm[/tex]

(b) The wavelength lies in the group of ultraviolet rays. The wavelength of UV rays lies in between 400 nm to 10 nm.

Consider two charges, q1=3C and q2=2C 2m apart from each other. Calculate the electric force between them. Is the force attractive or repulsive?

Answers

Answer:

Electric force between the charges, [tex]F=1.35\times 10^{10}\ N[/tex]

Explanation:

It is given that,

Charge 1, q₁ = 3 C

Charge 2, q₂ = 2 C

Distance between them, r = 2 m

We need to find the electric force between them. The formula for electric force is given by :

[tex]F=k\dfrac{q_1q_2}{r^2}[/tex]

k is the electrostatic constant

[tex]F=9\times 10^9\times \dfrac{3\ C\times 2\ C}{(2\ m)^2}[/tex]

[tex]F=1.35\times 10^{10}\ N[/tex]

So, the force between the charges is [tex]1.35\times 10^{10}\ N[/tex]. Hence, this is the required solution.

A 300 g bird is flying along at 6.0 m/s and sees a 10 g insect heading straight towards it with a speed of 30 m/s. The bird opens its mouth wide and swallows the insect. a. What is the birds speed immediately after swallowing the insect? b. What is the impulse on the bird? c. If the impact lasts 0.015 s, what is the force between the bird and the insect?

Answers

Answer:

(a): The bird speed after swallowing the insect is V= 4.83 m/s

(b): The impulse on the bird is I= 0.3 kg m/s

(c): The force between the bird and the insect is F= 20 N

Explanation:

ma= 0.3 kg

va= 6 m/s

mb= 0.01kg

vb= 30 m/s

(ma*va - mb*vb) / (ma+mb) = V

V= 4.83 m/s (a)

I= mb * vb

I= 0.3 kg m/s  (b)

F*t= I

F= I/t

F= 20 N (c)

Final answer:

This physics problem uses the principle of conservation of momentum to calculate the bird's speed after swallowing the insect, the impulse experienced by the bird, and the force between the bird and the insect.

Explanation:

This is a physics problem relating to the conservation of momentum. Let's start by defining some facts, where m bird = 0.3 kg and v bird = 6.0 m/s are the mass and speed of the bird before the incident and m insect = 0.01 kg and v insect = 30 m/s are the mass and speed of the insect.

a. To find the bird's speed immediately after swallowing the insect, we need to apply the conservation of momentum principle: initial total momentum = final total momentum, which can be written as m bird * v bird + m insect * v insect = (m bird + m insect) * v final.

b. The impulse on the bird equals the change in momentum of the bird, thus equals to the final momentum of the bird - initial momentum of the bird.

c. The force between the bird and the insect is obtained from the definition of impulse: Force * time = impulse, or Force = Impulse/time.

Learn more about Conservation of Momentum here:

https://brainly.com/question/30801640

#SPJ3

A 21.6−g sample of an alloy at 93.00°C is placed into 50.0 g of water at 22.00°C in an insulated coffee-cup calorimeter with a heat capacity of 9.20 J/K. If the final temperature of the system is 31.10°C, what is the specific heat capacity of the alloy?

Answers

Final answer:

The specific heat capacity of the alloy can be calculated using the formula q = m * c * ΔT, where q is the heat transferred, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. We can use the principle of conservation of heat to calculate the specific heat capacity of the alloy.

Explanation:

The specific heat capacity of the alloy can be calculated using the formula: q = m * c * ΔT, where q is the heat transferred, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. In this case, the heat transferred to the water can be calculated by q_water = m_water * c_water * ΔT_water. Using the principle of conservation of heat, q_water = -q_alloy. We can rearrange the equation to solve for c_alloy: c_alloy = -q_water / (m_alloy * ΔT_alloy)



Plugging in the values, we have: c_alloy = -q_water / (m_alloy * (ΔT_final - ΔT_initial)). This gives us the specific heat capacity of the alloy.



In this case, the final temperature of the system is 31.10°C, which means that ΔT_alloy = 31.10°C - 93.00°C = -61.90°C. Plugging in the values, we get: c_alloy = -(-50.0 g * 4.184 J/g °C * (31.10°C - 22.00°C)) / (21.6 g * -61.90°C). After calculating, you will find the specific heat capacity of the alloy.

Learn more about specific heat capacitycapacitycapacitycapacity#SPJ12
Final answer:

The specific heat capacity of the alloy can be calculated using the formula: q = m × c × ΔT.

Explanation:

The specific heat capacity of the alloy can be calculated using the formula:

q = m × c × ΔT

where q is the heat transferred, m is the mass of the alloy, c is the specific heat capacity of the alloy, and ΔT is the change in temperature. In this case, the heat transferred to the alloy is equal to the heat transferred from the water:

m1 × c1 × ΔT1 = m2 × c2 × ΔT2

Substituting the given values, we can solve for c2 to find the specific heat capacity of the alloy:

c2 = (m1 × c1 × ΔT1) / (m2 × ΔT2)

Learn more about specific heat capacity here:

https://brainly.com/question/28302909

#SPJ3

The steady-state diffusion flux through a metal plate is 7.8 × 10-8 kg/m2-s at a temperature of 1220˚C ( 1493 K) and when the concentration gradient is -500 kg/m4. Calculate the diffusion flux at 1000˚C ( 1273 K) for the same concentration gradient and assuming an activation energy for diffusion of 145,000 J/mol.

Answers

Final answer:

To calculate the diffusion flux at 1000˚C for the same concentration gradient, use the Arrhenius equation.

J ≈ 2.4 × 10-12 kg/m2-s

Explanation:

To calculate the diffusion flux at 1000˚C (1273 K) for the same concentration gradient, we can use the Arrhenius equation:

J = J0 * exp(-Q/RT)

Where J is the diffusion flux, J0 is the pre-exponential factor, Q is the activation energy for diffusion, R is the gas constant, and T is the absolute temperature.

Given that the diffusion flux at 1220˚C (1493 K) is 7.8 × 10-8 kg/m2-s and the activation energy for diffusion is 145,000 J/mol, we can calculate the diffusion flux at 1000˚C as:

J = (7.8 × 10-8) * exp(-145000/(8.314*1273))

J ≈ 2.4 × 10-12 kg/m2-s

Learn more about Diffusion here:

https://brainly.com/question/33319237

#SPJ12

Final answer:

To calculate the steady-state diffusion flux at a different temperature, use the Arrhenius equation to find the diffusion coefficients at the two temperatures, and find the ratio based on the fact that the diffusion flux is proportional to the diffusion coefficient when the concentration gradient is constant. Input the known values into the equation to solve for the unknown diffusion flux.

Explanation:

The steady-state diffusion through a metal plate can be calculated using the Arrhenius equation, which relates the diffusion coefficient (D) to temperature. The equation is D = D0e^-(Q/RT), where D0 is the pre-exponential factor, Q is the activation energy for diffusion, R is the gas constant and T is the temperature in K.

Given that the diffusion flux (J) is defined as J = -D×(dc/dx), where dc/dx is the concentration gradient. We can find that when the concentration gradient remains the same, the ratio of the two diffusion fluxes at different temperatures can be represented as J1/J2 = D1/D2.

Substitute the Arrhenius equation into the ratio, we get J1/J2 = e^(Q/R)×(1/T1-1/T2). Then you can use the given values, namely Q = 145,000 J/mol, R = 8.314 J/(mol×K), and temperatures T1 = 1493K , T2 = 1273K, as well as the known J1, to calculate J2.

Learn more about Steady-state Diffusion here:

https://brainly.com/question/9128896

#SPJ11

Red light from three separate sources passes through a diffraction grating with 6.60×105 slits/m. The wavelengths of the three lines are 6.56 ×10−7m (hydrogen), 6.50 ×10−7m (neon), and 6.97 ×10−7m (argon). Part A Calculate the angle for the first-order diffraction line of first source (hydrogen). Express your answer using three significant figures.

Answers

Answer:· Visible light passes through a diffraction grating that has 900 slits per centimeter, and the interference pattern is observed on a screen that is 2.74 m from the grating. In the first-order spectrum, maxima for two different wavelengths are separated on the screen by 3.16 m. What is the difference between these wavelengths? . I know to apply the equation din(theta) = m*wavelength but I'm not sure how to find all the missing variables or to get the difference in wavelengths

Which is not a simple harmonic motion (S.H.M.) (a) Simple Pendulum (b) Projectile motion (c) None (d) Spring motion

Answers

Answer:

b) Projectile MOTION

Explanation:

SHM is periodic motion or to and fro motion of a particle about its mean position in a straight line

In this type of motion particle must be in straight line motion

So here we can say

a) Simple Pendulum : it is a straight line to and fro motion about mean position so it is a SHM

b) Projectile motion : it is a parabolic path in which object do not move to and fro about its mean position So it is not SHM

d) Spring Motion : it is a straight line to and fro motion so it is also a SHM

So correct answer will be

b) Projectile MOTION

Final answer:

Projectile motion is not a simple harmonic motion because it does not meet the conditions for SHM.

Explanation:

Simple Harmonic Motion (SHM) is a special type of periodic motion where the restoring force is proportional to the displacement. The three conditions that must be met to produce SHM are: a linear restoring force, a constant force constant, and no external damping forces. Based on these conditions, the answer to the question is (b) Projectile motion, as it does not meet the conditions for SHM. A projectile follows a parabolic path and does not have a linear restoring force.

The electic field inside a spherical volume of radius a is given by: vector E = p_0 r^2 / 4 epsilon r cap Find an expression for the charge density inside the spherical volume that gives rise to this electric field.

Answers

Answer:

[tex]\rho = \rho_0 r[/tex]

Explanation:

As we know by Gauss law

[tex]\int E. dA = \frac{q}{\epsilon}[/tex]

here we know that

[tex]E = \frac{\rho_0 r^2}{4\epsilon}[/tex]

so here we have

[tex](\frac{\rho_0 r^2}{4\epsilon})(4\pi r^2) = \frac{(\int\rho dV)}{\epsilon}[/tex]

now we have

[tex]\frac{\pi \rho_0 r^4}{\epsilon} = \frac{(\int\rho dV)}{\epsilon}[/tex]

[tex]\pi \rho_0 r^4 = (\int\rho dV)[/tex]

now differentiate both sides by volume

[tex]\frac{d(\pi \rho_0 r^4)}{dV} = \rho [/tex]

[tex]\frac{\pi \rho_0 4r^3 dr}{4\pi r^2 dr} = \rho[/tex]

[tex]\rho = \rho_0 r[/tex]

9) Two mirrors are at right angles to one another. A light ray is incident on the first at an angle of 30° with respect to the normal to the surface. What is the angle of reflection from the second surface?

Answers

Answer:

60°

Explanation:

In the given question it is given that the two mirrors perpendicular to each other.

The light ray will reflect off the first mirror with an angle of 30° (∠i= ∠r) and then arrive at the second mirror. Using geometry of the two mirrors and the fact that the angle between the two of them is 90°, the incident angle for second mirror is 60°, which will again equal to the angle of reflection.

hence, angle of reflection of second mirror is 60°

The angle of reflection from the second surface is (b) 60◦

Explanation:

Two mirrors are at right angles to one another. A light ray is incident on the first at an angle of 30° with respect to the normal to the surface. What is the angle of reflection from the second surface?

(a) 30◦

(b) 60◦

(c) 45◦

(d) 53◦

(e) 75◦

Reflection is the direction change of a wavefront at interface between two different media. The light ray (it is a line (straight or curved) that is perpendicular to the light's wavefronts and its tangent is collinear with the wave vector) will reflect off of the first mirror with an equal angle  of 30◦  then it arrives at the second mirror. By using the geometry (branch of mathematics that concerned with questions of shape, size, relative position of figures, and the properties of space) of the two  mirrors and the angle between the two of them is 90◦ , the  incident angle (the angle between a ray incident on a surface and the line perpendicular to the surface at the point of incidence called the normal) for the second mirror is 60◦ that equal to the final angle of  reflection.

Learn more about mirrors https://brainly.com/question/13646048

#LearnWithBrainly

The plug-in transformer for a laptop computer puts out 7.50 V and can supply a maximum current of 1.6 A. What is the maximum input current Ip in amps, if the input voltage is 240 V? Assume 100% efficiency

Answers

Answer:

The input current is 0.05 A.

Explanation:

Given that,

Output voltage = 7.50 V

Output current = 1.6 A

Input voltage = 240 v

We need to calculate the input current

The efficiency is 100% so.

Input power = output power

[tex]\dfrac{V_{i}}{V_{o}}=\dfrac{I_{o}}{I_{i}}[/tex]

[tex]\dfrac{240}{7.50}=\dfrac{1.6}{I_{i}}[/tex]

[tex]I_{i}=\dfrac{1.6\times7.50}{240}[/tex]

[tex]I_{i}=0.05\ A[/tex]

Hence, The input current is 0.05 A.

The input current Ip for the plug-in transformer for a laptop computer in amps is 0.05 A.

What is the function of transformer?

The primary winding of the transformer converts the electric power into the magnetic power, and the secondary winding of the transformer converts it back into the required electric power.

The ratio of the input voltage to the output voltage is equal to the ratio of output current to the input current of the transformer (for 100 percent efficiency). Therefore

[tex]\dfrac{V_i}{V_o}=\dfrac{I_o}{I_i}[/tex]

The input and output voltage of the transformer is 240 V and 7.50 V respectively and the output current is 1.6 amp.

As, the efficiency of the transformer is 100 percent. Thus, put the values in the above formula as,

[tex]\dfrac{240}{7.50}=\dfrac{1.6}{I_i}\\I_i=0.05\rm A[/tex]

Thus, the input current Ip for the plug-in transformer for a laptop computer in amps is 0.05 A.

Learn more about the transformer here;

https://brainly.com/question/1312500

A girl is standing on a trampoline. Her mass is 65 kg and she is able to jump 3 m. What is the spring constant for the trampoline? (logger pro?)

Answers

Answer:

k = 212.55 newton per meter

Explanation:

A girl is standing on a trampoline. Her mass is 65 kg and she is able to jump 3 meters.

We have to find the spring constant.

Since by Hooke's law,

F = -kx

Where F = force applied by the spring

k = spring constant

x = displacement

And we know force applied by the spring will be equal to the weight of the girl.

So, F = mg

Therefore, (-mg) = -kx

65×(9.81) = k×(3)

k = [tex]\frac{(65)(9.81)}{3}[/tex]

k = 212.55 N per meter

Therefore, spring constant of the spring is 212.55 Newton per meter.

Other Questions
Why did English settlers colonize New England in the mid-1600s? Which of the following airways precisely carry air to each of the lung?a. terminal bronchiolesb. bronchiolesc. tertiary bronchid. secondary bronchie. primary bronchi How many electrons does a single oxygen gain or lose in the following reaction?H 2 + O 2 H 2 O The primary stress on one syllable of a word is called the ___? Which numbers are imaginary numbers ? Bernard solved the equation 5x+(-4)=6x+4 using algebra tiles.Which explains why Bernard added 5 negative x-tiles to both sides in the first step of the solution ? Two trains leave towns 1152km apart at the same time and travel toward each other. One train travels 14km/h slower than the other. If they meet in 4 hours, what is the rate of each train? Does this sound right for a thesis statement? "Martin Luther King, Jr. used stylistic elements such as the use of simile, imagery, metaphor, and other rhetorical devices, these stylistic elements helped King to influence the person reading the letter, these elements help persuade those reading this letter to see where Martin Luther King Jr. is coming from factually and emotionally." Cognitive-behavioral techniques: a. may substitute for drug treatments in case of severe hypertension. b. can be used without supervision and have no side effects. c. are expensive and highly difficult to implement. d. have been moderately successful in the treatment of hypertension. If there were no air resistance, a penny dropped from the top of a skyscraper would reach the ground 9.3 s later. To the nearest integer, what would the penny's speed in m/s be right as it reaches the ground if it was dropped from rest? Find all solutions to the equation sin(3x)cosx+sinx cos(3x)=0 on the interval [0,2pi]a- x=0,pi/4,pi/2,3pi/4,pi,3pi/2,2pib- x=0,pi/2,pi,3pi/2,2pic- x=0,pi,2pid- x=0,pi/2,3pi/2 Is the Illinois conceal carry law consistent with the social contract theory What is the total number of common tangents that can be drawn to the circles?A. 0B. 2C. 1D. 3 How would you do this problem? It gives me the right answer but I need to show my work. Which of the following statement(s) about cells is/are true?1. Mitosis --- division of somatic cells 2. Meiosis --- division of sex cells 3. Somatic cells are diploid 4. Sex cells are haploid A) 1, 2, 3, 4 B) 1 and 2 C) 3 and 4 D) 1 and 4 E) 1, 2 and 4 In a nuclear reactor, more fuel is burned than is consumed. a)-True b)- False Read the last sentence of the passage. Which of the following best summarizes this sentence?I hope this scandal will bring us all closer together in the end.I hope my resignation can help us move on.I hope you will all follow my example about how to be a good citizen.In passing this office to the Vice President, I also do so with the profound sense of the weight of responsibility that will fall on his shoulders tomorrow and, therefore, of the understanding, the patience, the cooperation he will need from all Americans.As he assumes that responsibility, he will deserve the help and the support of all of us. As we look to the future, the first essential is to begin healing the wounds of this Nation, to put the bitterness and divisions of the recent past behind us and to rediscover those shared ideals that lie at the heart of our strength and unity as a great and as a free people.By taking this action, I hope that I will have hastened the start of that process of healing which is so desperately needed in America.President Richard NixonAugust 8, 1974 The lengths of two sides of a right triangle are 5 inches and 8 inches. What is the difference between the two possiblelengths of the third side of the triangle? Round your answer to the nearest tenth.OOOO3.1 inches3.2 inches10.0 inches15.7 inches Find the value of EB.A. 5B. 11C. 31D. 25 Which of the following is known to promote fat storage in adipocytes? a. Glucagonb. Lipoprotein lipasec. Cellulite synthetased. Lipoprotein synthetase e. Adipose lipase