A coin is tossed upward from an initial height of 7 m above the ground, with an initial speed of 7.4 m/s. The magnitude of the gravitational acceleration g = 9.8 m/s^2
Take the point of release to be y0 = 0. Choose UPWARD as positive y direction. Pay attention to the signs of position, velocity and acceleration.
Keep 2 decimal places in all answers. a. Find the coin’s maximum height in meters above the ground?
b. How long in seconds is the coin in the air? You need to set up a quadratic equation with time t. Solve it for time t. Only take the positive solution.
c. What is its speed in m/s when it hits the ground? Note: speed has no sign, or always positive.

Answers

Answer 1

Answer:

a) The coin´s maximum height is 9.79 m above the ground.

b) The coin is 2.17 s in the air.

c) The speed is 13.82 m/s when the coin hits the ground

Explanation:

The equations for the position and velocity of the coin are the following:

y = y0 + v0 · t + 1/2 · g · t²

v =  v0 + g · t

Where

y = height at time t

y0 = initial height

v0 = initial velocity

t = time

g = acceleration due to gravity

v = velocity at time t

a) At its max-height, the velocity of the coin is 0. Using the equation of velocity, we can obtain the time at which the velocity is 0.

v =  v0 + g · t

0 = 7.4 m/s - 9.8 m/s² · t

- 7.4 m/s / - 9.8 m/s² = t

t = 0.76 s

Now calculating the height of the coin at t = 0.76 s, we will obtain the maximum height:

y = y0 + v0 · t + 1/2 · g · t²

y = 0 m + 7.4 m/s · 0.76 s - 1/2 · 9.8 m/s² · (0.76 s)²

y = 2.79 m

The coin´s maximum height above the ground is 7 m + 2.79 m = 9.79 m

b) After the coin reaches its maximum height, it falls to the ground. The initial position will be the max-height (2.8 m) and the final position is the ground (-7 m). The initial velocity, v0, will be 0, because the coin is at the max-height. Then, using the equation of position we can calculate the time the coin is falling:

y = y0 + v0 · t + 1/2 · g · t²

-7 m = 2.79 m - 1/2 · 9.8 m/s² · t²

-2 ·(-7 m - 2.79 m)/ 9.8 m/s² = t²

t = 1.41 s

The coin is (1.41 s + 0.76 s) 2.17 s in the air

c) Using the equation of velocity, we can calculate the speed at time 1.41 s, when the coin hits the ground.

v =  v0 + g · t

v = 0 m/s - 9.8 m/s² · (1.41 s)

v = -13.82 m/s

The speed is 13.82 m/s when the coin hits the ground.


Related Questions

A thin metal bar, insulated along its sides, is composed of five different metal connected together. The left end bar is immersed in a heat bath at 100°C and right end in a heat bath at 0°C. Starting at the left end, the pieces and lenghts are steel(2cm), brass(3cm), copper(1cm), aluminum(5cm) and silver(1cm). What is the temperature of the steel/brass interface?

Answers

Answer:

T = 61.06 °C  

Explanation:

given data:

a thin metal bar consist of 5 different material.

thermal conductivity of ---

K {steel} = 16 Wm^{-1} k^{-1}

K brass = 125 Wm^{-1} k^{-1}

K copper = 401 Wm^{-1} k^{-1}

K aluminium =30Wm^{-1} k^{-1}

K silver = 427 Wm^{-1} k^{-1}

[tex]\frac{d\theta}{dt} = \frac{KA (T_2 -T_1)}{L}[/tex]

WE KNOW THAT

[tex]\frac{l}{KA} = thermal\ resistance[/tex]

total resistance of bar = R steel + R brass + R copper + R aluminium + R silver

[tex]R_{total} =\frac{1}[A} [\frac{0.02}{16} +\frac{0.03}{125} +\frac{0.01}{401} +\frac{0.05}{30} +\frac{0.01}{427}][/tex]

[tex]R_{total} =\frac{1}[A} * 0.00321[/tex]

let T is the temperature at steel/brass interference

[tex]\frac{d\theta}{dt}[/tex] will be constant throughtout the bar

therefore we have

[tex]\frac{100-0}{R_{total}} = \frac{100-T}{R_{steel}}[/tex]  

[tex]\frac{100-0}{0.00321} *A = \frac{100-T}{0.00125} *A[/tex]

solving for T  we get

T = 61.06 °C  

A football is kicked from ground level at an angle of 38 degrees. It reaches a maximum height of 9.7 meters before returning to the ground. How long will the football spend in the air, in seconds?

Answers

Answer:

Football will be in air for 2.8139 sec

Explanation:

We have given maximum height h = 9.7 meters

Angle of projection [tex]\Theta =38^{\circ}[/tex]

We know that maximum height is given by [tex]h=\frac{u^2sin^2\Theta }{2g}[/tex]

So [tex]9.7=\frac{u^2sin^{2}38^{\circ} }{2\times 9.8}[/tex]

[tex]u^2=501.5842[/tex]

u = 22.396 m/sec

Time of flight is given by

[tex]T=\frac{2usin\Theta }{g}=\frac{2\times 22.396\times \times sin38^{\circ}}{9.8}=2.8139sec[/tex]

What is the acceleration of a 20 kg cart if the net force on it is 40 N?

Answers

Answer:

Acceleration of the cart will be [tex]a=2m/sec^2[/tex]

Explanation:

We have given force F = 40 N

Mass of the cart = 20 kg

From newton's second law we know that force, mass and acceleration are related to each other

From second law of motion force on any object moving with acceleration a is given by

F = ma, here m is mass and a is acceleration

So [tex]40=20\times a[/tex]

[tex]a=2m/sec^2[/tex]

If a lens has a power of -14.50, what is the focal length in mm?

Answers

Answer:

Focal length of the lens, f = - 68 mm

Explanation:

Given that,

Power of a lens, P = -14.50 D

We need to find the focal length of the lens. We know that the focal length and the power of lens has inverse relationship. Mathematically, it is given by :

[tex]f=\dfrac{1}{P}[/tex]

f is the focal length of the lens

[tex]f=\dfrac{1}{-14.50}[/tex]

f = -0.068 m

or

f = -68 mm

So, the focal length of the lens is (-68 mm). Hence, this is the required solution.

The best rebounders in basketball have a vertical leap (that is, the vertical movement of a fixed point on their body) of about 100 cm . a) What is their initial "launch" speed off the ground?
b)How long are they in the air?

Answers

Answer:

a) 4.45 m/s

b) 0.9 seconds

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 9.81 m/s²

[tex]v^2-u^2=2as\\\Rightarrow -u^2=2as-v^2\\\Rightarrow u=\sqrt{v^2-2as}\\\Rightarrow u=\sqrt{0^2-2\times -9.81\times 1}\\\Rightarrow u=4.45\ m/s[/tex]

a) The vertical speed when the player leaves the ground is 4.45 m/s

[tex]v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{0-4.45}{-9.81}\\\Rightarrow t=0.45\ s[/tex]

Time taken to reach the maximum height is 0.45 seconds

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 1=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{1\times 2}{9.81}}\\\Rightarrow t=0.45\ s[/tex]

Time taken to reach the ground from the maximum height is 0.45 seconds

b) Time the player stayed in the air is 0.45+0.45 = 0.9 seconds

A mechanics shop has a 16,500 N car sitting on a large car lift of 125 cm^2 piston. How much force is needed to be applied to the small piston of area 4.51 cm^2 to lift it?

Answers

Answer:595.32 N

Explanation:

Given

Mechanic shop has a car of weight([tex]F_1[/tex]) 16,500 N

Area of lift([tex]A_1[/tex])=[tex]125 cm^2[/tex]

Area of small piston([tex]A_2[/tex])=[tex]4.51 cm^2[/tex]

According to pascal's law pressure transmit will be same in all direction in a closed container

[tex]P_1=P_2[/tex]

[tex]\frac{F_1}{A_1}=\frac{F_2}{A_2}[/tex]

[tex]F_2=F_1\frac{A_2}{A_1}[/tex]

[tex]F_2=16,500\times \frac{4.51}{125}=595.32 N[/tex]

An apple falls (from rest) from a tree. It hits the ground at a speed of about 4.9 m/s. What is the approximate height (in meters) of the tree above the ground? The magnitude of the gravitational acceleration g = 9.8 m/s2 Enter your answer in meters. Keep 2 decimal places.

Answers

Answer:

The inicial height of the apple is 1.22 meters

Explanation:

Using the equation for conservarion of mechanical energy:

[tex]E=V+K=constant[/tex]

[tex]K_i=\frac{1}{2}mv_i^2[/tex] where v is the velocity

[tex]V=mgh[/tex]where h is the height

We equate the initial mechanical energy to the final:

Since [tex]v_0=0\ and h_f=0 [/tex]:

[tex]\frac{1}{2}mv_0^2+mgh_0= \frac{1}{2}mv_f^2+mgh_f\\gh_0= \frac{1}{2}v_f^2[/tex]

Solving for h:

[tex]h_0=\frac{4.9^2}{2g}= 1.22 m[/tex]

Which of the following combinations of position (x) and direction of motion would give a velocity in the x-direction that has a negative value? a. Positive x, moving towards the origin.b. Negative x, moving away from the origin.c. Both a and b.d. Positive x, moving away from the origin.e. Negative x, moving towards the origin.

Answers

Answer:

c) Both a) and b) are the combinations that have a negative velocity.

Explanation:

The velocity is given by this equation:

v = Δx / Δt

Where

Δx = final position - initial position

Δt = elapsed time

Now let´s evaluate the options. We have to find those combinations in which  Δx < 0 since Δt is always positive.

a) If the initial position, x, is positive and you move towards the origin, the final position will be a smaller value than x. Then:

                          final position < initial position

final position - initial position < 0 The velocity will be negative.

b) If x is negative and you move away from the origin, the final position will be a more negative number than x. Again:

                          final position < initial position

final position - initial position < 0 The velocity will be negative.

Let´s do an example to show it:

initial position = -5

final position = -10 (since you moved away from the origin)

final position - initial position = -10 -(-5) = -5

d) If x is positive and you move away from the origin, the final position will be a greater value than the initial position. Then:

                          final position > initial position

final position - initial position > 0 The velocity will be positive.

e) If x is negative and you move towards the origin, the final position will be a greater value than the initial position. Then:

                          final position > initial position

final position - initial position > 0 The velocity will be positive.

Let´s do an example:

initial position = -10

final position = -5

final postion - initial position = -5 - (-10) = 5

or with final position = 0

final postion - initial position = 0 -(-10) = 10

And so on.

The right answer is c) Both a) and b) are the combinations that have a negative velocity.

Tom Sawyer runs 10 m/s down the dock and leaps on to his floating raft already moving 1.5 m/s away from shore. If Tom weighs 70 kg and the raft weighs 130 kg, what speed will they both be moving? A. 895 kg m/sB. 11.5 m/sC. 6.4 m/sD. 5.75 m/s

Answers

Answer:

Not the right answer in the options, speed is 4.47 m/s, and the procedure is coherent with option A

Explanation:

Answer A uses mass and velocity units, which are momentum units. By using the conservation of momentum:

.[tex]p_{initial} =p_{final} \\m_{Tom}*v_{Tom}+m_{raft}*v_{raft}=(m_{Tom}+m_{raft})*v_{both} \\70*10+130*1.5 kg*m/s=895kg*m/s\\v_{both}=\frac{895 kg*m/s}{200 kg} =4.47 m/s[/tex]

Since Tom stays in the raft, then both are moving with the same speed. From the options, the momentum is in agreement with option A, however, the question asks for speed.

A package is dropped from a helicopter moving upward at 15m/s. If it takes 10 s before the package strikes the ground, how high above the ground was the ground was the package when it was released if air resistance is negligible?

(A) 408 m
(B) 272 m
(C) 204 m
(D) 340 m

Answers

Answer:

The right answer is (D) 340m

Explanation:

If the package is dropped from a helicopter moving upward and the air resistance is negligible, the only acting force in the package is the gravity force. Therefore you can consider this as a Vertical Projectile Motion problem.

The initial speed of the package V₀ is 15m/s.

The acceleration of the package G is 9.8m/s².

The initial hight is Y₀. Therefore:

Y(t)=Y₀+V₀·t-0.5·G·t²

But we know than T(10s)=0m

0m=Y₀+150m-490m

Y₀=340m

Considere un campo vectorial U que apunta radialmente hacia afuera de un punto P. La magnitud del campo en un punto Q una distancia r del punto P es a K donde K es una constante positiva. Calcule el flujo de este campo vectorial a través de una superficie esférica de radio R centrada en el punto P

Answers

Answer:

El flujo del campo U a través de dicha superficie es [tex]\Phi_U=4\pi r^2K[/tex]

Explanation:

El flujo vectorial de un campo U a través de una superficie S está dado por

[tex]\Phi_U=\int_S \vec{U} \cdot \hat{n} \ dS[/tex]

donde [tex]\hat{n}[/tex] representa el vector unitario normal a la superficie. Teniendo en cuenta que el campo se encuentra en dirección radial, se tiene

[tex]\Phi_U=\int_S K\hat{r} \cdot \hat{r} \ dS = K\int_S dS = KS=K*4\pi r^2[/tex]

Force is a vector, while mass is a scalar. Why can we use mass as an indicator of the magnitude of the force vector?

Answers

Answer:

Explanation:

Force = mass x acceleration

[tex]\overrightarrow{F}=m\overrightarrow{a}[/tex]

Force is always vector and acceleration also vector but the mass is a saclar quanity.

here, the direction of force vector is same as the direction of acceleration vector but the magnitude of force depends on the magnitude of mass of the body.

Is mass is more, force is also more.

Thus, the mass is like an indicator of the magnitude of force.

Starting from rest, a runner reaches a speed of 2.8 m/s in 2.1 s. In the same time 2.1 s time, a motorcycles increases speed from 37. 0 to 43.0 m/s. In both cases, assume the acceleration is constant: (a). What is the acceleration (magnitude only) of the runner?(b). What is the acceleration (magnitude only) of the motorcycle?(c). Does the motorcycle travel farther than the runner during the 2.1 s? (yes or no)If som how much father? (if not, enter zero)?

Answers

Answer:

a) Acceleration of runner is 1.33 m/s²

b)  Acceleration of motorcycle is 2.85 m/s²

c) The motorcycle moves 84.21-2.94 = 81.06 m farther than the runner.

Explanation:

t = Time taken

u = Initial velocity = 0

v = Final velocity

s = Displacement

a = Acceleration

Equation of motion

[tex]v=u+at\\\Rightarrow a=\frac{v-u}{t}\\\Rightarrow a=\frac{2.8-0}{2.1}\\\Rightarrow a=1.33\ m/s^2[/tex]

Acceleration of runner is 1.33 m/s²

[tex]v=u+at\\\Rightarrow a=\frac{v-u}{t}\\\Rightarrow a=\frac{43-37}{2.1}\\\Rightarrow a=2.85\ m/s^2[/tex]

Acceleration of motorcycle is 2.85 m/s²

[tex]v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{2.8^2-0^2}{2\times 1.33}\\\Rightarrow s=2.94\ m[/tex]

The runner moves 2.94 m

[tex]v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{43^2-37^2}{2\times 2.85}\\\Rightarrow s=84.21\ m[/tex]

The motorcycle moves 84.21 m

The motorcycle moves 84.21-2.94 = 81.06 m farther than the runner.

A car is driven east for a distance of 47 km, then north for 23 km, and then in a direction 32° east of north for 27 km. Determine (a) the magnitude of the car's total displacement from its starting point and (b) the angle (from east) of the car's total displacement measured from its starting direction.

Answers

Answer:

(a). The car's total displacement from its starting point is 76.58 m.

(b). The angle of the car's total displacement measured from its starting direction is 36.81°.

Explanation:

Given that,

Distance = 47 km in east

Distance = 23 km in north

Angle = 32° east of north

Distance = 27 km

According to figure,

Angle = 90-32 = 58°

(a). We need to calculate the magnitude of the car's total displacement from its starting point

Using Pythagorean theorem

[tex]AC=\sqrt{AB^2+BC^2}[/tex]

[tex]AC=\sqrt{(47+27\cos58)^2+(23+27\sin58)^2}[/tex]

[tex]AC=76.58\ m[/tex]

The magnitude of the car's total displacement from its starting point is 76.58 m.

(b). We need to calculate the angle (from east) of the car's total displacement measured from its starting direction

Using formula of angle

[tex]\tan\theta=\dfrac{y}{x}[/tex]

put the value into the formula

[tex]\theta=tan^{-1}\dfrac{23+27\sin58}{47+27\cos58}[/tex]

[tex]\theta=tan^{-1}0.7486[/tex]

[tex]\theta=36.81^{\circ}[/tex]

Hence, (a). The car's total displacement from its starting point is 76.58 m.

(b). The angle of the car's total displacement measured from its starting direction is 36.81°.

38.4 mol of krypton is in a rigid box of volume 64 cm^3 and is initially at temperature 512.88°C. The gas then undergoes isobaric heating to a temperature of 935.9°C. (a) What is the final volume of the gas?(in cm^3 ) (b) It is then isothermally compressed to a volume 29.3cm^3; what is its final pressure?(in Pa )

Answers

Answer:

Final volumen first process [tex]V_{2} = 98,44 cm^{3}[/tex]

Final Pressure second process [tex]P_{3} = 1,317 * 10^{10} Pa[/tex]

Explanation:

Using the Ideal Gases Law yoy have for pressure:

[tex]P_{1} = \frac{n_{1} R T_{1} }{V_{1} }[/tex]

where:

P is the pressure, in Pa

n is the nuber of moles of gas

R is the universal gas constant: 8,314 J/mol K

T is the temperature in Kelvin

V is the volumen in cubic meters

Given that the amount of material is constant in the process:

[tex]n_{1} = n_{2} = n [/tex]

In an isobaric process the pressure is constant so:

[tex]P_{1} = P_{2} [/tex]

[tex]\frac{n R T_{1} }{V_{1} } = \frac{n R T_{2} }{V_{2} }[/tex]

[tex]\frac{T_{1} }{V_{1} } = \frac{T_{2} }{V_{2} }[/tex]

[tex]V_{2} = \frac{T_{2} V_{1} }{T_{1} }[/tex]

Replacing : [tex]T_{1} =786 K, T_{2} =1209 K, V_{1} = 64 cm^{3}[/tex]

[tex]V_{2} = 98,44 cm^{3}[/tex]

Replacing on the ideal gases formula the pressure at this piont is:

[tex]P_{2} = 3,92 * 10^{9} Pa[/tex]

For Temperature the ideal gases formula is:

[tex]T = \frac{P V }{n R }[/tex]

For the second process you have that [tex]T_{2} = T_{3} [/tex]  So:

[tex]\frac{P_{2} V_{2} }{n R } = \frac{P_{3} V_{3} }{n R }[/tex]

[tex]P_{2} V_{2}  = P_{3} V_{3} [/tex]

[tex]P_{3} = \frac{P_{2} V_{2}}{V_{3}} [/tex]

[tex]P_{3} = 1,317 * 10^{10} Pa[/tex]

Air around the center of surface low pressure systems in the Northern Hemisphere is spinning ______ and _______ the system's center. O counter-clockwise; converging towards O counter-clockwise; diverging away from O clockwise; diverging away from O clockwise; converging towards

Answers

Answer:

Clockwise, converging towards

Explanation:

At the center of surface , system with low pressure in Northern hemisphere have air around the center that rotates in anti clockwise direction.

As a result of low pressure, the air is directed slightly inwards thus converges towards the center of the system.

In the high pressure systems, air rotates in clockwise direction and diverges away from the center of the system.

A man pushes a lawn mower on a level lawn with a force of 195 N. If 37% of this force is directed downward, how much work is done by the man in pushing the mower 5.7 m?

Answers

Final answer:

The work done by the man in pushing the lawn mower is 699.245 J, calculated by determining the horizontal force component and multiplying by the distance pushed.

Explanation:

To calculate how much work is done by the man in pushing the lawn mower, we need to consider only the component of the force that acts in the direction of the movement. Since 37% of the 195 N force is directed downward, only the remaining 63% is contributing to the horizontal movement. Therefore, the horizontal component of the force is 0.63 × 195 N = 122.85 N.

The formula to calculate work (W) is W = force (F) × distance (d) × cosine(θ), where θ is the angle between the force and the direction of movement. In this case, the force and movement are in the same direction, so θ = 0 and cosine(θ) = 1. Thus, the work done is:

W = 122.85 N × 5.7 m × 1 = 699.245 J

In terms of energy expended while pushing a lawn mower, this work is a relatively small amount when compared to a person's daily intake of food energy.

A standard 1 kilogram weight is a cylinder 48.0 mm in height and 55.0 mm in diameter. What is the density of the material?

Answers

Answer:8769 Kg/m^3

Explanation: First of all we have to calculate the volume of the cylinder so it is equal to:

Vcylinder= π*r^2*h where r and h are the radius and heigth, respectively.

Vcylinder= π*0.0275^2*0.048=1.14*10^-4 m^3

The density is defined by ρ=mass/volume

the we have

ρ=1Kg/1.14*10^-4 m^3=8769 Kg/m^3

A hippo drives 42 km due East. He then turns and drives 28 km at 25° East of South. He turns again and drives 32 km at 40° North of East. a) Sketch a plot of the vector sum of this motion. b) Use vector math to find his total displacement in component form. c) Convert to magnitude and direction form. d) How far is the hippo from his starting point? Note: this is distance, a scalar. What total distance has the hippo traveled?

Answers

Answer:

a) Please, see the attched figure

b) Total displacement R = (78.3 km; -4.8 km)

c) R = (78.4 km * cos (-3.5°); 78.4 km * sin (-3.5°))

d) The hippo is 78.4 km from his starting point.

The total distance traveled is 102 km

Explanation:

a)Please, see the attached figure.

b) The vector A can be expressed as:

A = (magnitude * cos α; magnitude * sin α)

Where

magnitude = 42 km

α= 0

Then,

A = (42 km ; 0) or 42 km i

In the same way, we can proceed with the other vectors:

B = ( Bx ; By)

where

(apply trigonometry of right triangles: sen α = opposite / hypotenuse and

cos α = adjacent / hypotenuse. See the figure to determine which component of vector B is the opposite and adjacent side to α)

Bx = 28 km * sin 25 = 11.8 km

By = 28 km * cos 25 = -25.4 km (it has to be negative since it is directed towards the negative vertical region according to our reference system)

B = (11.8 km; -25.4 km) or 11.8 km i - 25.4 km j

C = (Cx; Cy)

where

Cx = 32 km * cos 40° = 24.5 km

Cy = 32 km * sin 40 = 20.6 km

C = (24.5 km; 20.6 km)

Then:

R = A+B+C = (42 km + 11.8 km + 24.5 km; 0 - 25.4 km + 20.6 km)

= (78.3 km; -4.8 km) or 78.3 km i -4.8 km j

c) R = (78.3 km; -4.8 km)

The magnitude of R is:

[tex]magnitude = \sqrt{(78.3)^{2 }+ (-4.8)^{2}}= 78.4 km[/tex]

Using trigonometry, we can calculate the angle:

Knowing that

tan α = opposite / adjacent

and that

opposite = Ry = -4.8 km

adjacent = Rx = 78.3 km

Then:

tan α = -4.8 km / 78.4 km

α = -3.5°

We can now write the vector R in magnitude and direction form:

R = (78.4 km * cos (-3.5°); 78.4 km * sin (-3.5°))

d) The displacement of the hipo relative to the starting point is the magnitude of vector R calculated in c):

magnitude R = 78. 4 km

The total distance traveled is the sum of the magnitudes of each vector:

Total distance = 42 km + 28 km + 32 km = 102 km  

The brakes on your automobile are capable of creating a deceleration of 4.6 m/s^2. If you are going 114 km/h and suddenly see a state trooper, what is the minimum time in which you can get your car under the 79 km/h speed limit? (The answer reveals the futility of braking to keep your high speed from being detected with a radar or laser gun.)

Answers

Answer:

The minimum time to get the car under max. speed limit of 79 km/h is 2.11 seconds.

Explanation:

[tex]a=\frac{V_f-V_0}{t}[/tex]

isolating "t" from this equation:

[tex]t=\frac{V_f-V_0}{a}[/tex]

Where:

a=[tex]-4.6m/s^2[/tex] (negative because is decelerating)

[tex]V_f= 79 km/h[/tex]

[tex]V_0= 114 km/h[/tex]

First we must convert velocity from km/h to m/s to be consistent with units.

[tex]79\frac{km}{h}*\frac{1000m}{1 km}*\frac{1h}{3600s}=\frac{79*1000}{3600}=21.94 m/s[/tex]

[tex]114\frac{km}{h}*\frac{1000m}{1 km}*\frac{1h}{3600s}=\frac{114*1000}{3600}=31.67 m/s[/tex]

So;

[tex]t=\frac{V_f-V_0}{a}=\frac{21.94 m/s-31.66m/s}{-4.6 m/s^2}=2.11 s[/tex]

An object is dropped from rest and falls through height h. It travels 0.5h in the last 1 second of fall. Find the total time & height of the fall. (Hint: use two triangles!)

Answers

Answer:

3.41 s

114 m

Explanation:

The object is falling in free fall, accelerated by the surface gravity of Earth. We can use the equation for position under constant acceleration:

X(t) = X0 + V0 * t + 1/2 * a * t^2

We set up a frame of reference with the origin at the point the object was released and the X axis pointing down. Then X0 = 0. Since the problem doesnt mention an initial speed we assume V0 = 0.

It travels 0.5h in the last 1 second of the fall. This means it also traveled in the rest of the time of the fall. t = t1 is the moment when it traveled 0.5*h.

0.5*h = 1/2 * a * t1^2

h = a * t1^2

It travels 0.5*h in 1 second.

h = X(t1 + 1) = 1/2 * a * (t1+1)^2

Equating both equations:

a * t1^2 = 1/2 * a * (t1+1)^2

We simplify a and expand the square

t1^2 = 1/2 * (t1^2 + 2*t1 + 1)

t1^2 - 1/2 * t1^2 - t1 - 1/2 = 0

1/2 * t1^2 - t1 - 1/2 = 0

Solving electronically:

t1 = 2.41 s

total time = t1 + 1 = 3.41.

Now

h = a * t1^2

h = 9.81 * 3.41^2 = 114 m

A vacuum gage attached to a power plant condenser gives a reading of 27.86 in. of mercury. The surrounding atmospheric pressure is 14.66 lbf/in. Determine the absolute pressure inside the condenser, in lbf/in. The density of mercury is 848 lb/ft and the acceleration of gravity is g = 32.0 ft/s?.

Answers

Answer:

absolute pressure =  1.07 lbft/in^2

Explanation:

given data:

vaccum gauge reading h = 27.86 inch = 2.32 ft

we know that

gauge pressure p is given as

[tex]p = \rho gh[/tex]

[tex]p = 848 \ lb/ft^3 * 32 \ ft/s^2 *2.32 ft  = 62955.52 \ lbft/s^2 * 1/ft^2[/tex]

we know that  [tex]1\  lb ft\s^2 = \frac{1}{32.174}\  lbft[/tex]

1 ft = 12 inch

therefore [tex]p = 62955.52 * \frac{1}{32.174} * \frac{1}{12^2}\ lbf/in^2[/tex]

               [tex]p = 13.59\  lbft/in^2[/tex]

[tex]P_{atm} = 14.66\  lbf/in^2[/tex]

so absolute pressure = [tex]P_{atm} - p[/tex]

                                   = 14.66 - 13.59 = 1.07 lbft/in^2

A busy chipmunk runs back and forth along a straight line of acorns that has been set out between its burrow and a nearby tree. At some instant, it moves with a velocity of −1.29 m/s−1.29 m/s . Then, 2.91 s2.91 s later, it moves with a velocity of 1.77 m/s1.77 m/s . What is the chipmunk's average acceleration during the 2.91 s2.91 s time interval?

Answers

Answer:

1.05 ms⁻²

Explanation:

Acceleration = change in velocity / Time

Change in velocity = Final velocity - initial velocity

= 1.77 - (-1.29)

= 1.77 + 1.29

= 3.06 m/s

Time = 2.91

Acceleration = 3.06 / 2.91

= 1.05 ms⁻² .

The density of a rock will be measured by placing it into a graduated cylinder partially filled with water, and then measuring the volume of water displaced. The density D is given by D = m/(V1 − V0), where m is the mass of the rock, V0 is the initial volume of water, and V1 is the volume of water plus rock. Assume the mass of the rock is 750 g, with negligible uncertainty, and that V0 = 500.0 ± 0.1 mL and V1 = 813.2 ± 0.1 mL. Estimate the density of the rock, and find the uncertainty in the estimate.

Answers

Answer:

[tex]\rho = 2.39 g/mL[/tex]

[tex]\Delta \rho = 1.53 \times 10^{-3} mL[/tex]

Explanation:

As we know that density is the ratio of mass and volume of the object

here we know that

mass of the rock is

[tex]m = 750 g[/tex]

volume of the rock is given as

[tex]V = V_1 - V_o[/tex]

here we know that

[tex]V_1 = 813.2 \pm 0.1 mL[/tex]

[tex]V_2 = 500.0 \pm 0.1 mL[/tex]

now we have

[tex]V = 313.2 \pm 0.2 mL[/tex]

now density is given as

[tex]\rho = \frac{750}{313.2}[/tex]

[tex]\rho = 2.39 g/mL[/tex]

now uncertainty of density is given as

[tex]\Delta \rho = \frac{\Delta V}{V} \rho[/tex]

[tex]\Delta \rho = \frac{0.2}{313.2}(2.39)[/tex]

[tex]\Delta \rho = 1.53 \times 10^{-3} mL[/tex]

The density of the rock, given its mass is 750 g and the volume of water displaced is 313.2 mL, is 2.394 g/mL. The uncertainty in this measurement is ± 0.0015 g/mL, considering an uncertainty of ± 0.1 mL for both the initial and final volume measurements.

Given that the mass (m) of the rock is 750 g, the initial volume of water (V0) is 500.0 mL, and the volume of water plus the rock (V1) is 813.2 mL, we can determine the density (D) and the uncertainty in the density.

Using the formula:

D = m / (V1 - V0)

Therefore, D = 750 g / (813.2 mL - 500.0 mL)

= 750 g / 313.2 mL

= 2.394 g/mL.

Using the uncertainties in V0 and V1, which are both ± 0.1 mL. Since we subtract these volumes, the total volume uncertainty is ± (0.1 mL + 0.1 mL) = ± 0.2 mL. Thus, the uncertainty in the density (ΔD) can be approximated by the formula:

ΔD = D × (ΔV / (V1 - V0))

where ΔV is the total volume uncertainty. Substituting the values, we get ΔD = 2.394 g/mL × (0.2 mL / 313.2 mL) = ± 0.00153 g/mL (rounded to four significant figures).

Therefore, the estimated density of the rock is 2.394 ± 0.0015 g/mL.

Consider steady heat transfer between two large parallel plates at constant temperatures of T1 = 210 K and T2 = 150 K that are L = 2 cm apart. Assume that the surfaces are black (emissivity ε = 1). Determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is filled with atmospheric air.

Answers

Answer:

[tex]Q=81.56\ W/m^2[/tex]

Explanation:

Given that

[tex]T_1= 210 K[/tex]

[tex]T_2= 150 K[/tex]

Emissivity of surfaces(∈) = 1

We know that heat transfer between two surfaces due to radiation ,when both surfaces are black bodies

[tex]Q=\sigma (T_1^4-T_2^4)\ W/m^2[/tex]

So now by putting the values

[tex]Q=\sigma (T_1^4-T_2^4)\ W/m^2[/tex]

[tex]Q=5.67\times 10^{-8}(210^4-150^4)\ W/m^2[/tex]

[tex]Q=81.56\ W/m^2[/tex]

So rate of heat transfer per unit area

[tex]Q=81.56\ W/m^2[/tex]

Two objects are dropped at the same time from heights of 0.49 m and 1.27 m. How long after the first object hits the ground does the second object hit the ground?

Answers

Answer:

After 0.19288 sec second object hit the ground after hitting first object    

Explanation:

We have given two objects are dropped from at the same time from height 0.49 m and 1.27 m

As the object is dropped so its initial velocity will be zero u = 0 m/sec

For object 1 height h = 0.49 m

From second equation of motion

[tex]h=ut+\frac{1}{2}gt^2[/tex]

[tex]0.49=0\times t+\frac{1}{2}\times 9.8\times t^2[/tex]

[tex]t^2=0.1[/tex]

t = 0.31622 sec

For second object

[tex]h=ut+\frac{1}{2}gt^2[/tex]

[tex]1.27=0\times t+\frac{1}{2}\times 9.8\times t^2[/tex]

[tex]t^2=0.1[/tex]

t = 0.5091 sec

So difference in time = 0.5091-0.31622 = 0.19288 sec

So after 0.19288 sec second object hit the ground after hitting first object

Two very small 8.55-g spheres, 15.0 cm apart from center to center, are charged by adding equal numbers of electrons to each of them.

(a)Disregarding all other forces, how many electrons would you have to add to each sphere so that the two spheres will accelerate at 25.0g when released?
(b)Which way will they accelerate?

Answers

Answer:

1.43 x 10¹⁷.

They will accelerate away from each other.

Explanation:

Force on each charged sphere F = mass x acceleration

= 8.55 x 10⁻³ x 25 x 9.8

= 2.095 N

Let Q be the charge on each sphere

F = [tex]\frac{9\times10^9\times Q^2}{(15\times10^{-2})^2}[/tex]

2.095 =[tex]\frac{9\times10^9\times Q^2}{(15\times10^{-2})^2}[/tex]

Q² =[tex]\frac{2.095\times(15)^2\times10^{-4}}{9\times10^9}[/tex]

Q = 2.289 X 10⁻⁶

No of electrons = Charge / charge on a single electron

= [tex]\frac{2.289\times10^{-6}}{1.6\times10^{-19}}[/tex]

=1.43 x 10¹³.

They will accelerate away from each other.

The number of electrons would have to add to each sphere to accelerate at 25.0g is 1.43×10¹³ and accelerate away from each other.

What is electric force?

Electric force is the force of attraction of repulsion between two bodies.

According to the Coulombs law, the force of attraction of repulsion between charged two bodies is directly proportional to the product of charges of them and inversely proportional to the square of distance between them. It can be given as,

[tex]F=\dfrac{KQ_1Q_2}{r^2}[/tex]

Here, (k) is the coulombs constant,  (q1 and q2) is the charges of two bodies and (r) is the distance between the two charges.

Two very small 8.55-g spheres, 15.0 cm apart from center to center, are charged by adding equal numbers of electrons to each of them.

(a) The Number of electrons would have to add to each sphere-

Two spheres accelerate at 25.0g when released, and the mass of each sphere is 8.55 g. Thus, the force on the sphere can be given as,

[tex]F=8.55\times{10^{-3}}\times25\times9.8\\F=2.095\rm \;N[/tex]

Two very small spheres are 15.0 cm apart from center to center, are charged by adding equal numbers of electrons to each of them.As the charge on both the sphere is same (say Q) Put these values in the above formula as,

[tex]2.095=\dfrac{(9\times10^{9})QQ}{(15\times10^{-2})^2}\\Q=2.289\times10^{-6}\rm \;C[/tex]

It is known that the charge on one electron is 1.6×10⁻¹⁹ C. Thus the number of electron in the above charge is,

[tex]n=\dfrac{2.289\times10^{-6}}{1.6\times10^{-19}}\\n=1.43\times10^{13}[/tex]

(b)Direction of acceleration-

The direction of acceleration of both the sphere will be opposite to each other. Thus, they accelerate away from each other.

Hence, the number of electrons would have to add to each sphere to accelerate at 25.0g is 1.43×10¹³ and accelerate away from each other.

Learn more about the electric force here;

https://brainly.com/question/14372859

Bragg reflection results in a first-order maximum at 15.0°. In this case, at what angle would the second-order maximum occur?

Answers

Answer:

31.174°

Explanation:

Bragg's condition is occur when the wavelength of radiation is comparable with the atomic spacing.

So, Bragg's reflection condition for n order is,

[tex]2dsin\theta=n\lambda[/tex]

Here, n is the order of maxima, [tex]\lambda[/tex] is the wavelength of incident radiation, d is the inter planar spacing.

Now according to the question, first order maxima occur at angle of 15°.

Therefore

[tex]2dsin(15^{\circ})=\lambda\\sin(15^{\circ})=\frac{\lambda}{2d}[/tex]

Now for second order maxima, n=2.

[tex]2dsin\theta=2\times \lambda\\sin\theta=\frac{2\lambda}{2d}[/tex]

Put the values from above conditions

[tex]sin\theta=2\times sin(15^{\circ})\\sin\theta=2\times 0.258819045103\\sin\theta=0.517638090206\\\theta=sin^{-1}0.517638090206\\ \theta=31.174^{\circ}[/tex]

Therefore, the second order maxima occurs at 31.174° angle.

A motorist drives north for 35.0 min at 85.0 km/h and then stops for 15.0 min. He then continues north, traveling 130 km in 2.00 h. (a) what is his total displacement? b) what is his average velocity?

Answers

Final answer:

The motorist's total displacement is 179.58 km north, and his average velocity is approximately 63.38 km/h north for the entire trip.

Explanation:

Displacement and Average Velocity Calculation

For the given problem, we can find the motorist's total displacement by adding the distances traveled in each segment of the journey, all in the same direction (north). First, the motorist drives north for 35.0 minutes at 85.0 km/h. The distance for this part of the trip is:

Distance = Speed × Time = 85.0 km/h × (35.0 min / 60 min/h) = 49.58 km (rounded to 2 decimal places)

The next segment involves a stop, so the displacement remains unchanged.

Finally, the motorist drives an additional 130 km north.

Therefore, the total displacement is the sum of these distances: Total Displacement = 49.58 km + 130 km = 179.58 km north.

To find the average velocity, we need to consider the total displacement and the total time, including the stop:

Total time = Driving time + Stopping time = (35.0 min + 2.00 h + 15.0 min) = 2.833 hours (2 hours and 50 minutes).

Average Velocity = Total Displacement / Total Time = 179.58 km / 2.833 h ≈ 63.38 km/h north.

The motorist's total displacement is 179.58 km north, and his average velocity over the entire trip is approximately 63.38 km/h north.

Alex climbs to the top of a tall tree while his friend Gary waits on the ground below. Alex throws down a ball at 8 m/s from 50 m above the ground at the same time Gary throws a ball up. At what speed must Gary throw a ball up in order for the two balls to cross paths 25 m above the ground? The starting height of the ball thrown upward is 1.5 m above the ground. Ignore the effects of air resistance. whats the answer in m/s?

Answers

Answer:22.62 m/s

Explanation:

Given

two balls are separated by a distance of 50 m

Alex throws  the ball from a height of 50 m with a velocity of 8 m/s and Gary launches a ball with some velocity  exactly at the same time.

ball  from ground travels a distance of 25 m in t sec

For Person on tree  

[tex]25=ut+\frac{1}{2}gt^2[/tex]

[tex]25=8t+\frac{1}{2}\times 9.81\times t^2--------1[/tex]

For person at ground

[tex]23.5=ut-\frac{1}{2}gt^2---------2[/tex]

Solve equation (1)

[tex]50=16t+9.81t^2[/tex]

[tex]9.81t^2+16t-50=0[/tex]

[tex]t=\frac{-16\pm\sqrt{256+4\times 50\times 9.81}}{2\times 9.81}=\frac{47.1-16}{19.62}=1.58 s[/tex]

put the value of t in equation 2

[tex]23.5=u\times 1.58-\frac{9.81\times 1.58^2}{2}[/tex]

[tex]u=\frac{35.744}{1.58}=22.62 m/s[/tex]

Other Questions
Arrange the events related to the establishment of the concentration camps chronologically.1. World War II begins.2. Polish intellectuals are sent to the camp.3. Soviet soldiers are sent to the camp.4. Dachau is liberated by American forces.5. Schutzstaffel gets responsibility of the camps.6. The Dachau camp is established in Germany. The foundation or base word which most commonly refers to the structure within the body Solve each of the following equations for x. (a) 5x-7=28 (b) 12-5x= x+30 (c) 5(x+2)= 1-3xx-y=-5 X+2y=3 The practice of an existing firm replacing one or more of its supplier markets with its own hierarchical structure for creating the supplied product is called _____. 13. What was used by Federalists to help ratify the Constitution? A. The Federalist Papers B. Pamphlets by Thomas Paine C. Newspaper articles supporting the Bill of Rights D. Speech by Washington that the House of Representatives was too small A ball is thrown straight upward and rises to a maximumheightof 16 m aboves its lauch point. At what height aboveitslaunch point has the speed of the ball decreased to one-half ofitsinitial value? Assume that a small country produces only green peppers and red peppers. Last year, it produced 100 green peppers and 50 red peppers and sold them at prices of $2 per green pepper and $3 per red pepper. This year, it produced 150 green peppers and 60 red peppers and sold them at prices of $2 per green pepper and $4 per red pepper. What is real GDP this year if the base year is last year Equations!!Tina is saving to buy a notebook computer. She has two options. The first option is to put $400 awayinitially and save $20 every month. The second option is to put $200 away initially and save $40 everymonth. After how many months would Tina save the same amount using either option? How muchwould she save with either option?Aftermonths,___ Tina will save $with either option___ Which of the following makes it absolutely essential that nonprofit organizations engage in marketing efforts?a. Funding from the government is directed toward nonprofit organizations like hospitals. b. Successful marketing helps attract membership and much-needed funds. c. Nonprofit organizations are among the major contributors to the U.S. economy. d. Nonprofit organizations, like for-profit organizations, lay off people during recessions. e. Churches, zoos, and universities attract the most funding in the United States. what is 6.7 times .2 Since the creation of the Hershey candy bar over 100 years ago, the price of chocolate has fluctuated, but the price of the candy bar has slowly risen. In fact, when the price of chocolate had dramatic price fluctuations over a three-year period, the price of a Hershey's candy bar remained the same. When the price of chocolate was very high, Hershey's was able to maintain its profits by making the bars smaller. Hershey's engaged in:A) top-down marketing.B) trading up.C) bottom-up marketing.D) game-playing.E) downsizing. Which statements describe lattice energy? Which word from the passage is an appeal to pathos? An alloy is a mixture of metals. Suppose that a certain alloy is made by mixing 50 grams of an alloy that contains 52% copper with 78 grams of pure copper.a). How many grams are in the resulting mixture? __grams.b). What percentage of the resulting mixture is copper? ___% Under the Articles of Confederation, the national govenment could regulate the trade of the different states. True or false? Solve for x.6^-2x 6^-x = 1/216 In the book the outsiders what evidence is there to prove that pony boy is selfless Choose the table that represents g(x) = 2f(x) when f(x) = x + 4.xg(x)152637xg(x)152637xg(x)110212314xg(x)114216318 What happened after the declaration of independence? A. The american colonies became free and independent states. B. The american colonies remained part of England. C. The american colonies gained new rights from the king of England. D. The American colonies became French colonies. The cockroach Periplaneta americana can detect a static electric field of magnitude 8.50 kN/C using their long antennae. If the excess static charge on a cockroach is modeled as point charges located at the end of each antenna, what magnitude of charge q would each antenna possess in order for each antennae to experience a force of magnitude 2.00 N from the external electric field? Calculate q in units of nanocoulombs (nC) .