A hook in an office storage closet can hold no more than 6 pounds. An order of jumbo paperclips weighs 2 pounds and an
order of packing tape weighs 3 pounds. If x is the number of orders of paperclips and y is the number of orders of packing
tape, which graph represents how many of each order could be put in a bag hanging from the hook?

A Hook In An Office Storage Closet Can Hold No More Than 6 Pounds. An Order Of Jumbo Paperclips Weighs

Answers

Answer 1

Answer:

The first graph represents how many of each order could be put in a bag hanging from the hook ⇒ 1st

Step-by-step explanation:

* Lets explain how to solve the problem

- The order of jumbo paperclips weighs 2 pounds

- x is the number of orders of paperclips

∴ The weight of the paperclips order is 2 × x = 2x

- The order of packing tape weighs 3 pounds

- y is the number of orders of packing  tape

∴ The weight of the tape order is 3 × y = 3y

- The weight of the total order is 2x + 3y

- The hook can hold no more than 6 pounds

∴ 2x + 3y ≤ 6

- Lets find the graph which represent this inequality

∵ The equation of any line is y = mx + c, where m is the slope of the

  line and c is the y-intercept

- The y-intercept means substitute x in the equation by 0

- The x- intercept means substitute y in the equation by 0

∵ The inequality is 2x - 3y ≤ 6

∵ The equation of the line is 2x + 3y = 6

- Subtract 2x from both sides

∴ 3y = 6 - 2x

- Divide both sides by 3

∴ y = 6/3 - 2/3 x

∴ y = 2 - 2/3 x

- Find the y-intercept

∵ x = 0

∴ y = 2

∴ The line intersect the y-axis at point (0 , 2)

- Find the x-intercept

∵ y = 0

∴ 0 = 2 - 2/3 x

- Add 2/3 x to both sides

∴ 2/3 x = 2

- Multiply both sides by 3

∴ 2 x = 6 ⇒ divide both sides by 2

∴ x = 3

∴ The line intersect the x-axis at point (3 , 0)

- From the figure the first and the second figures have the same

 x-intercept and y-intercept

∵ The inequality is 2x + 3y ≤ 6

- The sign ≤ means the line is sold and the shading is under the line

∴ The first figure is the answer

* The first graph represents how many of each order could be put in a

  bag hanging from the hook

Answer 2

Answer:

Option A.

Step-by-step explanation:

Let x is the number of orders of paperclips and y is the number of orders of packing tape.

An order of jumbo paperclips weighs 2 pounds and an order of packing tape weighs 3 pounds.

Total weight = [tex]2x+3y[/tex]

A hook in an office storage closet can hold no more than 6 pounds. It means total weight must be less than or equal to 6 pounds.

[tex]2x+3y\leq 6[/tex]

The related equation is

[tex]2x+3y=6[/tex]

Substitute x=0 in the above equation.

[tex]2(0)+3y=6[/tex]

[tex]3y=6[/tex]

[tex]y=2[/tex]

The y-intercept is 2.

Substitute y=0 in the above equation.

[tex]2x+3(0)=6[/tex]

[tex]2x=6[/tex]

[tex]x=3[/tex]

The x-intercept is 3.

Check the inequality by (0,0).

[tex]2(0)+3(0)\leq 6[/tex]

[tex]0\leq 6[/tex]

This statement is true, it means (0,0) is included in the shaded region.

The sign of inequity is "≤" it means the related line is a solid line and shaded region lie below the line.

Therefore, the correct option is A.


Related Questions

Which of the following are solutions to the equation below x^2+8x+16=2

Answers

Answer:

[tex]x_{1} =-4+\sqrt{2} \\x_{2} =-4-\sqrt{2} \\[/tex]

Step-by-step explanation:

Using quadratic formula:

[tex]\frac{-b+-\sqrt{b^{2} -4*a*c} }{2*a}[/tex]

We will have 2 solutions.

x^2+8x+16=2

x^2+8x+14=0

a= 1    b=8   c= 14

[tex]x_{1}= \frac{-8+\sqrt{8^{2}-4*1*14} }{2*1} \\\\x_{2}= \frac{-8-\sqrt{8^{2}-4*1*14} }{2*1} \\[/tex]

We can write:

[tex]x_{1}= \frac{-8+\sqrt{{64}-56} }{2} \\\\x_{2}= \frac{-8-\sqrt{{64}-56} }{2} \\[/tex]

[tex]x_{1}= -4+\frac{\sqrt{{64}-56} }{2} \\\\x_{2}= -4-\frac{\sqrt{{64}-56} }{2} \\[/tex]

so, we have:

[tex]x_{1}= -4+\frac{\sqrt{{}8} }{2} \\\\x_{2}=-4-\frac{\sqrt{{}8} }{2} \\[/tex]

simplifying we have:

[tex]x_{1}= -4+\frac{\sqrt{{}2*4} }{2} \\\\x_{2}= -4-\frac{\sqrt{{}2*4} }{2} \\[/tex]

Finally:

[tex]x_{1}= -4+\sqrt{2} \\\\x_{2}= -4-\sqrt{2} \\[/tex]

What is the equation of the following line? (-3, 1) and (0,0)

Answers

Answer:

[tex]y = -\frac{1}{3} x[/tex]

Step-by-step explanation:

We are given the following two points and we are to find the equation of the line which passes through them:

(-3, 1) and (0,0)

Slope = [tex]\frac{0-1}{0-(-3)} =-\frac{1}{3}[/tex]

Substituting the given values and the slope in the standard form of the equation of a line to find the y intercept:

[tex]y=mx+c[/tex]

[tex]0=-\frac{1}{3} (0)+c[/tex]

[tex]c=0[/tex]

So the equation of the line is [tex]y = -\frac{1}{3} x[/tex]

Answer:

[tex]y = -\frac{1}{3}x[/tex]

Step-by-step explanation:

The equation of a line in the pending intersection is:

[tex]y = mx + b[/tex]

Where m is the slope of the line and b is the intercept with the y axis.

If we know two points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] then we can find the equation of the line that passes through those points.

[tex]m =\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]b=y_1-mx_1[/tex]

In this case the points are  (-3, 1) and (0,0)

Therefore

[tex]m =\frac{0-1}{0-(-3)}[/tex]

[tex]m =\frac{-1}{3}[/tex]

[tex]b=1-(\frac{-1}{3})(-3)[/tex]

[tex]b=0[/tex]

Finally the equation is:

[tex]y = -\frac{1}{3}x[/tex]

Which equation represents a line that passes through (-2, 4) and has a slope of 2/5?

Answers

Final answer:

The equation of the line that passes through (-2, 4) with a slope of 2/5 is y = (2/5)x + 24/5. This is found using the point-slope form of a line and then simplifying it into the slope-intercept form.

Explanation:

To find an equation of a line that passes through a given point with a specific slope, you can use the point-slope form of the equation of a line, which, after simplifying, can be converted to the slope-intercept form, y = mx + b, where m is the slope and b is the y-intercept.

Given the point (-2, 4) and the slope 2/5, we first use the point-slope form:

y - y1 = m(x - x1)

Substituting the given point and slope, we have:

y - 4 = (2/5)(x + 2)

Expanding and simplifying gives us the equation:

y = (2/5)x + (2/5)(2) + 4

y = (2/5)x + 4/5 + 20/5

y = (2/5)x + 24/5

So, the slope-intercept form of the line that passes through (-2, 4) with a slope of 2/5 is y = (2/5)x + 24/5.

what is the vertex form of y=2x^2-8x+1

Answers

Answer:

[tex]2(x-2)^2-7[/tex]

Step-by-step explanation:

[tex]y=2x^2-8x+1[/tex]

When comparing to standard form of a parabola: [tex]ax^2+bx+c[/tex]

[tex]a=2[/tex][tex]b=-8[/tex][tex]c=1[/tex]

Vertex form of a parabola is: [tex]a(x-h)^2+k[/tex], which is what we are trying to convert this quadratic equation into.

To do so, we can start by finding "h" in the original vertex form of a parabola. This can be found by using: [tex]\frac{-b}{2a}[/tex].

Substitute in -8 for b and 2 for a.

[tex]\frac{-(-8)}{2(2)}[/tex]

Simplify this fraction.

[tex]\frac{8}{4} \rightarrow2[/tex]

[tex]\boxed{h=2}[/tex]

The "h" value is 2. Now we can find the "k" value by substituting in 2 for x into the given quadratic equation.

[tex]y=2(2)^2-8(2)+1[/tex]

Simplify.

[tex]y=-7[/tex]

[tex]\boxed{k=-7}[/tex]

We have the values of h and k for the original vertex form, so now we can plug these into the original vertex form. We already know a from the beginning (it is 2).

[tex]a(x-h)^2+k\\ \\ 2(x-2)^2-7[/tex]

To find the vertex form of a quadratic equation \( y = ax^2 + bx + c \), we can complete the square to transform it into the vertex form, which is written as \( y = a(x - h)^2 + k \), where \( (h, k) \) is the vertex of the parabola.
The quadratic equation given is \( y = 2x^2 - 8x + 1 \).
Here, \( a = 2 \), \( b = -8 \), and \( c = 1 \).
First, find \( h \) using the formula \( h = -\frac{b}{2a} \):
\[
h = -\frac{-8}{2 \cdot 2} = \frac{8}{4} = 2
\]
Next, we will use the value of \( h \) to find \( k \). The value of \( k \) is the y-value of the vertex, which we find by plugging \( h \) into the original equation:
\[
k = 2h^2 - 8h + 1
\]
Now substituting \( h = 2 \) into this formula, we get:
\[
k = 2(2)^2 - 8(2) + 1 = 2 \cdot 4 - 16 + 1 = 8 - 16 + 1 = -7
\]
Therefore, the vertex \( (h, k) \) is \( (2, -7) \).
Now, we rewrite the original quadratic equation in vertex form using the values of \( h \) and \( k \):
\[
y = a(x - h)^2 + k
\]
Substitute \( a = 2 \), \( h = 2 \), and \( k = -7 \) into this equation:
\[
y = 2(x - 2)^2 - 7
\]
So, the vertex form of the equation \( y = 2x^2 - 8x + 1 \) is \( y = 2(x - 2)^2 - 7 \).

Determine the solution for x2 + 36 > 12x

Answers

Final answer:

To solve the inequality x^2 + 36 > 12x, rearrange the terms to have all variables on one side and the constant on the other side. Subtracting 12x from both sides, we get x^2 - 12x + 36 > 0. This is now a quadratic inequality. The solution is x > 6 or x < 6.

Explanation:

To solve the inequality x^2 + 36 > 12x, we need to rearrange the terms to have all variables on one side and the constant on the other side. Subtracting 12x from both sides, we get x^2 - 12x + 36 > 0. This is now a quadratic inequality. To solve it, we can factor the expression into (x-6)(x-6) > 0. From this, we see that the inequality is satisfied when x > 6 or x < 6, since the parabola opens upwards and the expression is equal to zero at x = 6.

Suppose medical records indicate that the length of newborn babies(in inches) is normally distributed with a mean of 20 and a standard deviation of 2.6 find the probability that a given infant is between 14.8 and 25.2 inches long

Answers

Answer:

P=0.954 or 95.4%

Step-by-step explanation:

Using the formula for the standardized normal distribution to find Z:

[tex]Z=\frac{X-\mu}{\sigma}[/tex]

Where μ is the mean (μ=20) and σ is the standard deviation (σ=2.6).  

[tex]Z_{1} =\frac{14.8-20}{2.6}=-2.0[/tex]

[tex]Z_{1} =\frac{25.2-20}{2.6}=2.0[/tex]

In the table of the normal distribution, we can look for positive values z, and these values are going to represent the area under the curve between z=0 and the values searched. the negatives values are found by symmetry (with the corresponding positive value but remember this area is under the left side of the curve).  To find a value in the table, find the units in the first column and the follow over the same row till you find the decimals required.

[tex]P_1=0.4772[/tex]

[tex]P_2=0.4772[/tex]

[tex]P_1[/tex] represents the probability of length being between 14.8 and 20 (the mean) and [tex]P_2[/tex] represents the probability of length being between 20 and 25.2, The requested probability is the sum of these two.

[tex]P=P_1+P_2=0.954[/tex]

Answer:

95%

Step-by-step explanation:

Write the domain of the function using interval notation

The domain is :

Answers

[tex]x\in(-3,\infty)[/tex]

You need 320 mL of a 65% alcohol solution. On hand, you have a 60% alcohol mixture. How much of the 60% alcohol mixture and pure alcohol will you need to obtain the desired solution?

You will need
____ mL of the 60% solution
and
_____ mL of pure alcohol.

Answers

Answer:

You will need

280 mL of the 60% solution

and  40 mL of pure alcohol.

Step-by-step explanation:

Let 'x' be the amount of 60% alcohol solution and y the amount of pure alcohol.

Therefore:

(0.6x + y)/320 = 0.65 ⇒ 0.6x + y = 208

x + y = 320

Solving the sistem of equations:

x = 280 and y = 40

Therefore, You will need

280 mL of the 60% solution

and  40 mL of pure alcohol.

gabe has an employer sponsored 401(k) plan that he contributes to and his employer matches 25% of his 401(k) contributions Gabe salary is $30,000 and last year he contributed 401K plan what was the total amount that he contributed to his 401(k) last year?

Answers

Answer:

$5000

Step-by-step explanation:

25% of 4,000 is 1,000.

4,000 + 1,000 = 5,000

Answer:

5000 is correct

Step-by-step explanation:

I don’t get this question

Answers

This is a right triangle and to solve this you must use Pythagorean theorem:

[tex]a^{2} +b^{2} =c^{2}[/tex]

a and b are the legs (the sides that form a perpendicular/right angle)

c is the hypotenuse (the side opposite the right angle)

In this case...

a = 60

b = x

c = 65

^^^Plug these numbers into the theorem

[tex]60^{2} +x^{2} =65^{2}[/tex]

simplify

3600 + [tex]x^{2}[/tex] = 4225

Now bring 3600 to the right side by subtracting 3600 to both sides (what you do on one side you must do to the other). Since 3600 is being added on the left side, subtraction (the opposite of addition) will cancel it out (make it zero) from the left side and bring it over to the right side.

3600 - 3600 + [tex]x^{2}[/tex] = 4225 - 3600

0 + [tex]x^{2}[/tex] = 625

[tex]x^{2}[/tex] = 625

To remove the square from x take the square root of both sides to get you...

x = √625

x = 25

(option C)

Hope this helped!

Just a girl in love with Shawn Mendes

if f(x)=3 x and g(x)= 1/x , what is the domain of (g o f)(x)?

Answers

Answer:

The domain is (-∞ , 0)∪(0 , ∞) OR The domain is {x : x ≠ 0}

Step-by-step explanation:

* Lets revise the composite function

- A composite function is a function that depends on another function.

- A composite function is created when one function is substituted into

 another function.

- Ex: f(g(x)) is the composite function that is formed when g(x) is

 substituted for x in f(x).

- In the composition (f ο g)(x), the domain of f becomes g(x).

* Lets solve the problem

∵ f(x) = 3x and g(x) = 1/x

- In (g o f)(x) we will substitute x in g by f

∴ (g o f)(x) = 1/3x

- The domain of the function is all real values of x which make the

  function defined

- In the rational function r(x) = p(x)/q(x) the domain is all real numbers

 except the values of x which make q(x) =0

∵ (g o f)(x) = 1/3x

∵ 3x = 0 ⇒ divide both side by 3

∴ x = 0

∴ The domain of (g o f)(x) is all real numbers except x = 0

∴ The domain is (-∞ , 0)∪(0 , ∞) OR The domain is {x : x ≠ 0}

The diagram shows EFG. Which term describes point H?​

Answers

Answer:

D

Step-by-step explanation:

The line segments drawn from each vertex of the triangle and intersecting at H are the Altitudes of the triangle.

The point H is called the Orthocenter

Answer:

D. Ortho-center.

Step-by-step explanation:

We have been given an image of a triangle. We are asked to find the term that describes point H.

We can see that point H is the point, where, all the altitudes of our given triangle EFF are intersecting.

We know that ortho-center of a triangle is the point, where all altitudes of triangle intersect. Therefore, point H is the ortho-center of our given triangle and option D is the correct choice.

How can I put -2-3=5/4(-2*(2)) into slope intercept form

Answers

Answer:

Slope intercept form is: -5=5/4(-4)

Step-by-step explanation:

The general form of slope intercept form is

y = mx+b

where m is the slope and b is y intercept

We are given the equation:

-2-3=5/4(-2*(2))

-5=5/4(-4)

so, y =-5, m= 5/4, x =-4, and b=0

so, Slope intercept form is: -5=5/4(-4)

What is the measure of angle A in the triangle below?

Answers

The answer is 30.
You need to use sine here
So:


If a line or a segment is perpendicular to another segment at its midpoint, it is called the perpendicular bisector.

True or False

Answers

Answer:

True

Step-by-step explanation:

Bisector means to cut into two equal halves.  The midpoint is the middle point so it halves the line too.

If a segment is perpendicular to while cutting it in half, then it is called a perpendicular bisector.

(2x^2+x+3)/(x-2)with remainder

Answers

Answer:

2x+5 r. 13

Step-by-step explanation:

So using long division, you can solve for the quotient and the remainder.

Please look at the attached for the solution.

Step 1: need to make sure that you right the terms in descending order. (If there are missing terms in between, you need to fill them out with a zero so you won't have a problem with spacing)

Step 2: Divide the highest term in the dividend, by the highest term in the divisor.

Step 3: Multiply your result with the divisor and and write it below the dividend, aligning it with its matched term.

Step 4: Subtract and bring down the next term.

Repeat the steps until you cannot divide any further. If you have left-overs that is your remained.

A circle has its center at (1, 4) and a radius of 2 units. What is the equation of the circle? (1 point) (x + 2)2 + (y + 4)2 = 2 (x − 1)2 + (y − 4)2 = 4 (x + 1)2 + (y − 4)2 = 4 (x − 1)2 + (y − 4)2 = 2

Answers

Answer:

3rd one. The general form of a circle is set equal to the radius squared. So right side is 4 then plug in values until true.

Answer:

The answer is the second option

[tex](x-1)^{2}+(y-4)^{2}= 4[/tex]

Step-by-step explanation:

The general equation of a circle is:

[tex](x-h)^{2}+(y-k)^{2}= r^{2}[/tex]

in this equation (h,k) is the center of the circle and r is the radius, so if the center is in (1,4) and the radius is 2, the values of the constants are:

h = 1

k = 4

r = 2

And the formula for this circle is:

[tex](x-1)^{2}+(y-4)^{2}= 2^{2}[/tex]

[tex](x-1)^{2}+(y-4)^{2}= 4[/tex]

One day Mr. Pritz drove for 6 1/3 hours. The next day he drove 9 1/2 hours. For how many hours did he drive during the two days?

Answers

Answer:

Step-by-step explanation:

First convert them into improper fractions: [tex]6\frac{1}{3} =\frac{19}{3}[/tex] and [tex]9\frac{1}{2} =\frac{19}{2}[/tex]. Now we add: [tex]\frac{19}{2}+\frac{19}{3}=\frac{95}{6}[/tex] or [tex]15\frac{5}{6}[/tex].

An Aluminum bar is 2 m long at a temperature of 20 degrees Celsius. What will it be at 100 degrees Celsius?

Answers

Answer:

5

Step-by-step explanation:

20*5=100

Answer:

10 meters

Step-by-step explanation:

Let at 100 degrees Celsius, the aluminum bar is x m long.

We have been given that aluminum bar is 2 m long at a temperature of 20 degrees Celsius.

Thus, we have the equation

[tex]\frac{2}{20}=\frac{x}{100}[/tex]

Solve the equation for x

[tex]x=\frac{2\times100}{20}\\\\x=10[/tex]

Thus, at 100 degree Celsius, the aluminium bar is 10 meters long.

modern computer microchips contain millions of microscopic Parts call Transistors in a certain microchip the transistors are only 0.004 millimeters wide
A.on the microchip these transistors are placed side-by-side filling width of 2 mm How many transistors are there?
B.on this microchip there is an even smaller component called a capacitor. If the capacitors have a width of just 0.00004 mm, How many would it take to fill up the 2mm space?
C.how many capacitors will fit in the width of one transistor?

Answers

Answer:

A. 500 transistors

B. 50,000 capacitors

C. 100 capacitors

Step-by-step explanation:

The width of one transistor =0.004 mm

The total length filled by the 0.004 mm transistors is 2 mm.

A. In 2 mm there are: 2 mm/ 0.004 mm/transistor =500 transistors.

B. In 2 mm there are 2 mm/ 0.00004 mm/capacitor= 50,000 Capacitors.

C. The number of capacitors to fit in one transistor is given by the quotient between the width of a transistor and the width of  a capacitor.

=0.004 mm ÷0.00004 mm

=100 capacitors/transistor

Thus only 100 capacitors can fit into 1 transistor

If Samantha wants two bags of chips and a coke,how much should she plan to spend?

Answers

Answer:

C. 7$

Step-by-step explanation:

Answer:

Samantha should plan to spend $7.

Step-by-step explanation:

Let the price of 1 pizza be = p

Let the price of 1 coke = c

Let the price of 1 pack of chips = b

As per table, we get following equations:

[tex]p+c+b=9[/tex] or [tex]p=9-c-b[/tex]   ......(1)

[tex]p+2c=10[/tex]     .......(2)

[tex]2p+2b=12[/tex]    ......(3)

Substituting the value of p from (1) in (2)

[tex]9-c-b+2c=10[/tex]

=> [tex]c-b=1[/tex]    ......(4)

Substituting the value of p from (1) in (3)

[tex]2(9-c-b)+2b=12[/tex]

=> [tex]18-2c-2b+2b=12[/tex]

=> [tex]18-2c=12[/tex]

=> [tex]2c=18-12[/tex]

=> [tex]2c=6[/tex]

c = 3

We have [tex]c-b=1[/tex]

=> [tex]b=c-1[/tex]

=> [tex]b=3-1[/tex]

b = 2

And [tex]p=9-c-b[/tex]

[tex]p=9-3-2[/tex]

p = 4

We get the following cost now.

Cost of 1 pizza = $4

Cost of 1 coke = $3

Cost of 1 chips bag = $2

We have been given that Samantha wants two bags of chips and a coke.

So, she should spend [tex](2\times2)+3[/tex]= [tex]4+3=7[/tex]

Hence, Samantha should plan to spend $7.

An elevator started on the 14th floor. It went down 7 floors, up 4 floors, up 9 floors, and down 3 floors. On what floor did the elevator finally stop?

Answers

Answer:

17

Step-by-step explanation:

14 - 7 = 7

7 + 4 +9 =20

20 - 3 = 17

Which of the following statements is correct about the data set 2,4,6,8,10,12,14,16?

A. The data set has a median that is not in the data set
B. The data set has a mode that is not in the data set
C. The data set has an interquartile range of 9
D. The data set has the same median and mode

Answers

Answer:

A. The data set has a median that is not in the data set

Step-by-step explanation:

The given data is:

2,4,6,8,10,12,14,16

The median for the data set is:

(8+10)/2 = 9

The data set has no mode as no number is repeated in the data set.

The IQR is:

= [(12+14)/2-(4+6)/2)]

=[26/2 - 10/2]

=13-5

=8

By looking at the options, we can see that the correct answer is:

A. The data set has a median that is not in the data set

as 9 is not a member of the data set ..

what is te discontinuity of the function f(x) = the quantity of x squared plus 6x plus 8 all over x plus 4?

Answers

Answer:

A hole at x=-4.

Step-by-step explanation:

This is a fraction so we have to worry about division by zero.

The only time we will be dividing by 0 is when x+4 is 0.

Solving the equation

x+4=0 for x:

Subtract 4 on both sides:

x=-4

So there is either a vertical asymptote or a hole at x=-4.

These are the kinds of discontinuities we can have for a rational function.

If there is a hole at x=-4, then x=-4 will make the top zero and can be cancelled out after simplification.

If is is a vertical asymptote, x=-4 will make the top NOT zero.

Let's see what -4 for x in x^2+6x+8 gives us:

(-4)^2+6(-4)+8

16+-24+8

-8+8

0

Top and bottom are 0 when x=-4.

Let's see what happens after simplication.

We are going to factor a^2+bx+c if factorable by finding two numbers that multiply to be c and add up to be b.

So what 2 numbers together multiply to be 8 and add up to be 6.

I hoped you said 4 and 2 because (4)(2)=8 where 4+2=6.

[tex]\frac{x^2+6x+8}{x+4}=\frac{(x+4)(x+2)}{x+4}=x+2[/tex]

We we able to cancel out that factor that was giving us x=-4 is a zero.  

Therefore there is a hole at x=-4.

Which ordered pairs could be points on a line parallel to the line that contains (3, 4) and (–2, 2)? Check all that apply.

Answers

Answer:

Step-by-step explanation:

As we go from (–2, 2) to  (3, 4), x increases by 5 and y increases by 4.  Thus, the slope of the line through (–2, 2) and (3, 4) is

m = rise / run = 4/5.

Use the slope-intercept form of the equation of a straight line:

y = mx + b becomes 4 = (4/5)(3) + b.  Multiplying all three terms by 5, we eliminate the fraction:  20 = 12 + b.  Thus, b = 8, and the equation of the line through (–2, 2) and (3, 4) is y = (4/5)x + 8.

A line parallel to this one would have the form  y = (4/5)x + b; note that the slopes of these two lines are the same, but the y-intercept, b, would be different if the two lines do not coincide.

Unfortunately, you have not shared the ordered pairs given in this problem statement.  

You could arbitrarily let b = 0.  Then the parallel line has equation

y = (4/5)x; if x = 3, then y = (4/5)(3) = 12/5, and so (3, 12/5) lies on the parallel line.

he possible ordered pairs are b) (–1, 1) and (–6, –1)  , d) (1, 0) and (6, 2)  and e) (3, 0) and (8, 2).

To find points on a line parallel to the line containing the points (3, 4) and (-2, 2), we need to find a line with the same slope. The slope of the line containing the points (3, 4) and (-2, 2) can be calculated using the formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \]\[ m = \frac{2 - 4}{-2 - 3} \]\[ m = \frac{-2}{-5} \]\[ m = \frac{2}{5} \][/tex]

So, the slope of the given line is 2/5.

Now, let's check the slopes of the other lines to see if they match 2/5:

a) Slope of the line passing through (−2, −5) and (−7, −3):

[tex]\[ m = \frac{-3 - (-5)}{-7 - (-2)} = \frac{2}{-5} \][/tex]

The slope matches, so point a) is a possible point on a line parallel to the given line.

b) Slope of the line passing through (−1, 1) and (−6, −1):

[tex]\[ m = \frac{-1 - 1}{-6 - (-1)} = \frac{-2}{-5} = \frac{2}{5} \][/tex]

The slope matches, so point b) is a possible point on a line parallel to the given line.

c) Slope of the line passing through (0, 0) and (2, 5):

[tex]\[ m = \frac{5 - 0}{2 - 0} = \frac{5}{2} \][/tex]

The slope does not match, so point c) is not a possible point on a line parallel to the given line.

d) Slope of the line passing through (1, 0) and (6, 2):

[tex]\[ m = \frac{2 - 0}{6 - 1} = \frac{2}{5} \][/tex]

The slope matches, so point d) is a possible point on a line parallel to the given line.

e) Slope of the line passing through (3, 0) and (8, 2):

[tex]\[ m = \frac{2 - 0}{8 - 3} = \frac{2}{5} \][/tex]

The slope matches, so point e) is a possible point on a line parallel to the given line.

Complete question: Which ordered pairs could be points on a line parallel to the line that contains (3, 4) and (–2, 2)? Check all that apply.

a-(–2, –5) and (–7, –3)

b-(–1, 1) and (–6, –1)

c-(0, 0) and (2, 5)

d-(1, 0) and (6, 2)

e-(3, 0) and (8, 2)

The graph represents the piecewise function

Answers

let's take a peek in the graph on the area from -3 to 0, namely -3 ⩽ x < 0, tis a line, so hmmm let's use two points off of it to get the equation hmmm (-3, -6) and (0,0)

[tex]\bf (\stackrel{x_1}{-3}~,~\stackrel{y_1}{-6})\qquad (\stackrel{x_2}{0}~,~\stackrel{y_2}{0}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{0-(-6)}{0-(-3)}\implies \cfrac{0+6}{0+3}\implies \cfrac{6}{3}\implies 2 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-(-6)=2[x-(-3)] \\\\\\ y+6=2(x+3)\implies y+6=2x+6\implies y=2x[/tex]

now the smaller line from 1/2 to 3/2 well, heck is just a flat-line, namely y = 3

[tex]\bf f(x)= \begin{cases} 2x&,-3\leqslant x < 0\\ 3&,\frac{1}{2}<x<\frac{3}{2} \end{cases}[/tex]

Divide and express 3.7/2 to the nearest tenth.

Answers

3.7 divided by 2 is 1.85, rounded to the nearest tenth is 1.9.

To divide 3.7 by 2 to the nearest tenth, you first perform the division:

[tex]\[ \frac{3.7}{2} = 1.85 \][/tex]

Now, to express this result to the nearest tenth, you look at the first decimal place after the decimal point. Here, it's 8, which is closer to 9 than to 0. So, you round up the digit in the tenths place.

Thus, 3.7 divided by 2, rounded to the nearest tenth, is [tex]\(1.9\).[/tex]

What is the slope of a line that passes through the points (-2,3) and (4,-12)

Answers

Answer:

m = -5/2

Step-by-step explanation:

Solve for slope with the following equation:

m (slope) = (y₂ - y₁)/(x₂ - x₁)

Let:

(4 , -12) = (x₁ , y₁)

(-2 , 3) = (x₂ , y₂)

Plug in the corresponding numbers to the corresponding variables:

m = (3 - (-12))/(-2 - 4)

m = (3 + 12)/(-2 - 4)

m = (15)/(-6)

Simplify the slope:

m = -(15/6) = -5/2

-5/2 is your slope.

~

[tex]\text{Hey there!}[/tex]

[tex]\bf\dfrac{y_2-y_1}{x_2-x_1}}\leftarrow\text{is the slope formula}[/tex]

[tex]\bf{y_2=-12}\\\bf{y_1=3}\\\bf{x_2=4}\\\bf{x_1=-2}[/tex]

[tex]\dfrac{-12-3}{4-(-2)}\\\\\\\text{-12 - 3 = -15}\\\\\\\text{4 - (-2) = 6}[/tex]

[tex]= \dfrac{-15}{6}[/tex]

[tex]\boxed{\boxed{\bf{Answer: \dfrac{-15}{6}}}}\checkmark[/tex]

[tex]\text{Good luck on your assignment and enjoy your day!}[/tex]

~[tex]\frak{LoveYourselfFirst:)}[/tex]

What does the number 2 represent in this function

Answers

Your answer is C) The ant is crawling at 2 feet per minute.

This is because in the function y = 2t + 5, the 2 represents the slope of the line, which means that for every 1 unit that you go across, you need to go 2 units up. Therefore, for every 1 minute, the ant gains 2 feet so it is crawling at 2 feet per minute.

I hope this helps! Let me know if you have any questions :)

Which graph shows the solution to the system of linear inequalities below?
ys-3x+2
y> 2x-3

Answers

Answer:

I think your answer should be 5x and -5x

The solution of the inequality on the graph is the very dark region.

Inequality

Inequality is an expression that shows the non equal comparison of two or more numbers and variables.

Given the inequalities  y ≤ –(1/3)x + 2 and y > 2x – 3, plotting the two inequalities using the geogebra online graphing tool.

The solution of the inequality on the graph is the very dark region.

Find out more on Inequality at: https://brainly.com/question/24372553

Other Questions
The photons of different light waves:contain the same amount of energy.operate at the same frequency.contain different amounts of energy.are created through the separation of protons from the nucleus of an atom. Hello I will mark you as a brainliestPlease answer my question.....Solve the following equation:-6+5 (a-1) = 30 Were the Americas discovered or were they conquered? the weigth of a body decrease in a coal mine why? Read and choose the option with the correct word or words to complete the sentence.Hola, soy Juana y vivo en la Repblica Dominicana. Casi > siempre hace buen tiempo para salir y practicar nuestros pasatiempos. Yo prefiero correr en las bonitas playas y jardines. Mis hermanos van de pesca al malecn los fines de semana y mi mam va con mi abuela al gimnasio cada tarde. Hay parques de agua para los nios y las nias para jugar. El sol en la tarde es muy bonito para tomar fotos. Es mi pasatiempo favorito!Based on the text , Juana lives in ________. Tampa Ybor City Habana Punta Cana what is the middle term in the simplified product( x+3) (x-4) By encouraging its sales representatives to freely talk to their managers about the changing customer needs, RST Global increased its responsiveness to customers. Which of the following is most likely to be the factor that helped RST achieve this? Low information richness Overload of information High perceptual bias Good communication Effective electronic trail A bag of ice pops contains 2 flavored raspberry, 5 flavored lemon, and 3 flavored lime. Find the probability of each event.a) Picking 2 lemon ice pops at random.b) picking 2 lime and 1 raspberry at random. Which describes the graph of f(x)=[x]-2 on [0,3) 50 points to you Can someone help me with this math question The 2017 balance sheet of Kerbers Tennis Shop, Inc., showed long-term debt of $1.87 million, and the 2018 balance sheet showed long-term debt of $2.21 million. The 2018 income statement showed an interest expense of $255,000. What was the firms cash flow to creditors during 2018? (A negative answer should be indicated by a minus sign. Enter your answer in dollars, not millions of dollars, e.g., 1,234,567.) You are considering an investment in Justus Corporations stock, which is expected to pay a dividend of $2.25 a share at the end of the year and has a beta of 0.9. The risk-free rate is 4.9%, and the market risk premium is 5%. Justus currently sells for $46.00 a share, and its dividend is expected to grow at some constant rate, g. Assuming the market is in equilibrium, what does the market believe will be the stock price at the end of 3 years? (That is, what is ?) Find the speed of light in carbon tetrachlorideethyl alcohol. The refraction index is 1.461 using 3 x 10^8 m/s as the speed of light in vacuum. Answer in units of m/s. suppose the column of the square matrix is linearly independent. What are solutions of Ax=0? At East Middle School, there are 58 left-handed students and 609 right-handed students. The numbers of left- and right-handed students at West Junior High are proportional to the numbers at East Middle School. Which of the following could be the numbers of left-handed and right-handed students at West Junior High? Choose 2 answers:A= left-handed: 42 Right-handed: 483B= lef-handed: 28 Right-handed: 378C= left-handed: 48 Right-handed: 504D= left-handed: 56 Right-handed: 560E: left-handed: 30 Right-handed: 315 Which expression is equivalent to 6x2 19x 55? 241,389.613 which digit is in the hundred millons place The axis of symmetry for the graph of the function is f(x) = 1/4 x2 + bx 10 is x = 6. what is the value of b? Why did some Romans call for change in their government? A provision of the General Agreement on Tariffs and Trade Treaty (GATT)