A kite is 85 feet high with 100 feet of string let out. What is the angle of elevation of the string with the ground? Please show all work.

Answers

Answer 1

Answer:

  58°

Step-by-step explanation:

A right triangle can be drawn to model the geometry of the problem. The hypotenuse of the triangle is the length of the string, 100 ft. The side opposite the angle is the height of the kite above the ground, 85 ft.

The mnemonic SOH CAH TOA reminds you of the relationship between sides and angles.

  Sin = Opposite/Hypotenuse

  sin(α) = (85 ft)/(100 ft) = 0.85

The angle whose sine is 0.85 is found using the arcsine (inverse sine) function:

  α = arcsin(0.85) ≈ 58.2°

The angle of elevation is about 58°.

_____

When using your calculator to find the values of inverse trig functions, make sure it is in degrees mode. Otherwise, you're likely to get the answer in radians (≈ 1.01599 radians).

A Kite Is 85 Feet High With 100 Feet Of String Let Out. What Is The Angle Of Elevation Of The String
A Kite Is 85 Feet High With 100 Feet Of String Let Out. What Is The Angle Of Elevation Of The String

Related Questions

A study conducted at a certain college shows that 72% of the school's graduates find a job in their chosen field within a year after graduation. Find the probability that 5 randomly selected graduates all find jobs in their chosen field within a year of graduating.

Answers

Answer:

  19.3%

Step-by-step explanation:

Assuming the events are independent, the probability of all five is ...

  0.72^5 ≈ 0.19349 ≈ 19.3%

Answer: 19.3%

Step-by-step explanation:

If we randomly select 5 students, we know that each of them has a probability of 72% of finding a job in that year (or 0.72 in decimal form)

The joint probability in where the 5 of them have found a job, is equal to the product of the 5 probabilities:

P = 0.72*0.72*0.72*0.72*0.72 = 0.72^5 = 0.193

Where because all the students are in the same result, the number of permutations is only one.

If we want the percentage form, we must multiplicate it by 100%, and we have that P = 19.3%

The vertex form of the equation of a parabola is y=(x-3)^2+35 what is the standard form of the equation

Answers

Answer:

x^2 -6x+44

Step-by-step explanation:

Develop form of (x-3)^2 is x^2 - 6x +9

Then y= x^2 -6x +9 + 35

So, y= X^2 -6x +44

Answer:

[tex]y=x^2 -6x+44[/tex]

Step-by-step explanation:

The standard form of a quadratic equation is:

[tex]y = ax ^ 2 + bx + c[/tex].

In this case we have the following quadratic equation in vertex form

[tex]y=(x-3)^2+35[/tex]

Now we must rewrite the equation in the standard form.

[tex]y=(x-3)(x-3)+35[/tex]

Apply the distributive property

[tex]y=x^2 -3x -3x +9+35[/tex]

[tex]y=x^2 -6x+9+35[/tex]

[tex]y=x^2 -6x+44[/tex]

the standard form of the equation is: [tex]y=x^2 -6x+44[/tex]

PLEASE HELP ME WITH-THIS MATH QUESTION

Answers

Answer:

146 degrees

Step-by-step explanation:

The measure of the arc is the measure of the central angle that the arc is created from.

The central angle has a measure of 146 degrees so that is the measure of the arc there.

Which of the following inequalities has a solution set that when graphed on the number line, is a single segment of finite length? A. x4 ≥ 1 B. x3 ≤ 27 C. x2 ≥ 16 D. 2≤ |x| ≤ 5 E. 2 ≤ 3x+4 ≤ 6

Answers

Answer:

Step-by-step explanation:

E

Answer:

B

Step-by-step explanation:

Edge


Which value is needed in the expression below to create a perfect square trinomial?

x2+8x+______

4
8
16
64

Answers

Answer:

16

Step-by-step explanation:

i know because i did the test

Answer:

16 for people with ads i really need brainliest

Step-by-step explanation:

A right rectangular prism has base dimensions of 3 inches by 12 inches. An oblique rectangular prism has base dimensions of 4 inches by 9 inches.
If the prisms are the same height, how do their volumes compare?

The volumes are equal, because the bases are congruent.
The volumes are equal, because the heights are equal and the horizontal cross-sectional areas at every level are also equal.
The volumes are not equal, because their horizontal cross-sectional areas are not the same at every level.

Answers

Answer:

The correct option is 2.

Step-by-step explanation:

Given information: Height of both prism are same.

Right rectangular prism has base dimensions of 3 inches by 12 inches.

Volume of a right rectangular prism:

[tex]V=Bh[/tex]

where, B is base area and h is height of the prism.

The volume of right rectangular prism is

[tex]V=(3\times 12)\times h=36h[/tex]

Therefore the volume of right rectangular prism is 36h cubic inches.

An oblique rectangular prism has base dimensions of 4 inches by 9 inches.

Volume of a oblique rectangular prism:

[tex]V=Bh[/tex]

where, B is base area and h is height of the prism.

The volume of right rectangular prism is

[tex]V=(4\times 9)\times h=36h[/tex]

Therefore the volume of oblique rectangular prism is 36h cubic inches.

The volumes are equal, because the heights are equal and the horizontal cross-sectional areas at every level are also equal.

Option 2 is correct .

The volumes are equal, because the heights are equal and the horizontal cross-sectional areas at every level are also equal.

How to find the volume of the prism?

The formula for the Volume of a right rectangular prism is:

V = B * h

where,

B is base area.

h is height of the prism.

Thus:

V = 3 * 12 * h

V = 36h

Similarly, the volume of the oblique rectangle is:

V = Bh

V = 4 * 9 * h

V = 36h

Thus, we can see that the volumes are equal, because the heights are equal and the horizontal cross-sectional areas at every level are also equal.

Read more about Volume of Prism at: https://brainly.com/question/23766958

#SPJ6

A widget company produces 25 widgets a day, 5 of which are defective. Find the probability of selecting 5 widgets from the 25 produced where none are defective.

Answers

Final answer:

To find the probability of selecting 5 non-defective widgets from 25 produced, we consider the independent probabilities of selecting a non-defective widget for each selection and multiply them together.Therefore, the probability of selecting 5 widgets where none are defective is 1024/3125 or approximately 0.327.

Explanation:

To find the probability of selecting 5 widgets where none are defective, we need to consider the probability of selecting a non-defective widget for each of the 5 selections.

The probability of selecting a non-defective widget from the 25 produced is (25-5)/25 = 20/25 = 4/5.

Since the selections are independent, we can multiply the probabilities. So the probability of selecting 5 non-defective widgets is (4/5)⁵ = 1024/3125.

Therefore, the probability of selecting 5 widgets where none are defective is 1024/3125 or approximately 0.327.

Cathy lives in a state where speeders fined $ 10 for each mile per hour over the s speed limit cathy was given a fine for $80for speeding on a road where the speed limit is 50 miles per hour how fast was cathy driving

Answers

Answer:

58 miles per hour

Step-by-step explanation:

First you need to divide 80 by 10 to see how many miles she was over the speed limit.

80/10 = 8 miles over the speed limit.

The speed limit was 50, so 50 + 8 = 58 miles.

So Cathy was driving at 58 miles per hour

Answer:

58mph

Step-by-step explanation:

Given:

Each mph over the speed limit gets fined $10

or mathematically, rate of fine = $10/mph

also, total fine was $80.

Number of mph over the speed limit,

= total fine ÷ rate of fine

= $80 ÷ $10/mph

= 8 mph.

Given that the speed limit was 50 mph, Cathy's final speed,

= speed limit + number of mph over speed limit

= 50 + 8

= 58 mph

Find the derivative of f(x) = 12x^2 + 8x at x = 9.

Answers

Answer:

224

Step-by-step explanation:

We will need the following rules for derivative:

[tex](f+g)'=f'+g'[/tex] Sum rule.

[tex](cf)'=cf'[/tex] Constant multiple rule.

[tex](x^n)'=nx^{n-1}[/tex] Power rule.

[tex](x)'=1[/tex] Slope of y=x is 1.

[tex]f(x)=12x^2+8x[/tex]

[tex]f'(x)=(12x^2+8x)'[/tex]

[tex]f'(x)=(12x^2)'+(8x)'[/tex] by sum rule.

[tex]f'(x)=12(x^2)+8(x)'[/tex] by constant multiple rule.

[tex]f'(x)=12(2x)+8(1)[/tex] by power rule.

[tex]f'(x)=24x+8[/tex]

Now we need to find the derivative function evaluated at x=9.

[tex]f'(9)=24(9)+8[/tex]

[tex]f'(9)=216+8[/tex]

[tex]f'(9)=224[/tex]

In case you wanted to use the formal definition of derivative:

[tex]f'(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}[/tex]

Or the formal definition evaluated at x=a:

[tex]f'(a)=\lim_{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}[/tex]

Let's use that a=9.

[tex]f'(9)=\lim_{h \rightarrow 0} \frac{f(9+h)-f(9)}{h}[/tex]

We need to find f(9+h) and f(9):

[tex]f(9+h)=12(9+h)^2+8(9+h)[/tex]

[tex]f(9+h)=12(9+h)(9+h)+72+8h[/tex]

[tex]f(9+h)=12(81+18h+h^2)+72+8h[/tex]

(used foil or the formula  (x+a)(x+a)=x^2+2ax+a^2)

[tex]f(9+h)=972+216h+12h^2+72+8h[/tex]

Combine like terms:

[tex]f(9+h)=1044+224h+12h^2[/tex]

[tex]f(9)=12(9)^2+8(9)[/tex]

[tex]f(9)=12(81)+72[/tex]

[tex]f(9)=972+72[/tex]

[tex]f(9)=1044[/tex]

Ok now back to our definition:

[tex]f'(9)=\lim_{h \rightarrow 0} \frac{f(9+h)-f(9)}{h}[/tex]

[tex]f'(9)=\lim_{h \rightarrow 0} \frac{1044+224h+12h^2-1044}{h}[/tex]

Simplify by doing 1044-1044:

[tex]f'(9)=\lim_{h \rightarrow 0} \frac{224h+12h^2}{h}[/tex]

Each term has a factor of h so divide top and bottom by h:

[tex]f'(9)=\lim_{h \rightarrow 0} \frac{224+12h}{1}[/tex]

[tex]f'(9)=\lim_{h \rightarrow 0}(224+12h)[/tex]

[tex]f'(9)=224+12(0)[/tex]

[tex]f'(9)=224+0[/tex]

[tex]f'(9)=224[/tex]

9x−9y=0 3x−4y=10 solve by elimination

Answers

Answer:

(-10,-10)

Step-by-step explanation:

9x-9y=0

3x-4y=10

In elimination, we want both equations to have the same form and like terms to be lined up.  We have that.  We also need one of the columns with variables to contain opposites or same terms. Neither one of our columns with the variables contain this.  

We can do a multiplication to the second equation so that the first terms of each are either opposites or sames. It doesn't matter which.  I like opposites because you just add the equations together. So I'm going to multiply the second equation by -3.

I will rewrite the system with that manipulation:

9x-9y=0

-9x+12y=-30

----------------------Add them up!

0+3y=-30

     3y=-30

       y=-10

So now once you find a variable, plug into either equation to find the other one.

I'm going to use 9x-9y=0 where y=-10.

So we are going to solve for x now.

9x-9y=0 where y=-10.

9x-9(-10)=0  where I plugged in -10 for y.

9x+90=0  where I simplified -9(-10) as +90.

9x     =-90 where I subtracted 90 on both sides.

x=       -10 where I divided both sides by 9.

The solution is (x,y)=(-10,-10)

PLEASE HELPPPPPPPPPPPP!!!!!!!! Two mechanics worked on a car. The first mechanic charged $115 per hour, and the second mechanic charged $45 per hour. The mechanics worked for a combined total of 35 hours, and together they charged a total of $2975. How long did each mechanic work?

Answers

Answer:

First mechanic: 20 hours

Second mechanic: 15 hours

Step-by-step explanation:

First we create two equations where:

x - hours of first mechanic

y - hours of second mechanic

x+y=35

115x+45y=2975

Then, we multiply both sides of the first equation by 45, and then subtract it from the second equation:

45x+45y=1575

|115x+45y=2975

-|45x+45y = 1575

70x = 1400

x=20 hours

Now we know for how many hours the first mechanic worked. Now we just need to subtract that from the combined total to find the second mechanic's hours:

35-20=15 hours

On a set of blueprints for a new home, the contractor has established a scale of 0.5in : 10 ft. What are the dimensions on the blueprints of a bedroom that will be 18 feet by 16 feet.

Answers

Answer:

The dimensions on the blueprints are 0.9 inches and 0.8 inches

Step-by-step explanation:

* Lets explain the relation between the drawing dimensions and

 the real dimensions

- A scale drawing make a real object with accurate sizes reduced

 or enlarged by a certain amount called the scale

- Ex: If the scale drawing is 1 : 10, so anything drawn with the size of

 1 have a size of 10 in the real so a measurement of 15 cm on the

 drawing will be 150 cm on the real

- In a scale drawing, all dimensions have been reduced by the same

 proportion

* Lets solve the problem

- On a set of blueprints for a new home, the contractor has

  established a scale of 0.5 in : 10 ft

∵ The drawing scale ratio must be in same unit

∴ Change the feet to inch

1 foot = 12 inches

∴ 10 feet = 10 × 12 = 120 inches

∴ The scale is 0.5 inches : 120 inches

- Simplify the scale by multiply it by 2

The scale is 1 in : 240 in

- Lets find the dimensions on the blueprints

∵ The real dimensions are 18 feet and 16 feet

- Change the feet to inches

18 feet = 18 × 12 = 216 inches

16 feet = 16 × 12 = 192 inches

∵ The scale is 1 : 240

∴ 1/240 = x/216 ⇒ use cross multiplication

∴ 240 x = 216 divide both sides by 240

x = 0.9 inch

∵ The scale is 1 : 240

∴ 1/240 = y/192 ⇒ use cross multiplication

∴ 240 y = 192 divide both sides by 240

y = 0.8 inch

* The dimensions on the blueprints are 0.9 inches and 0.8 inches

Find the value of z such that "0.9544" of the area lies between −z and z. round your answer to two decimal places.

Answers

Answer:

  z = 2.00

Step-by-step explanation:

This is a number many statistics students memorize.

95.44% of the distribution lies within 2 standard deviations of the mean.

Answer:

z = 2.00

Step-by-step explanation:

The value of z such that "0.9544" of the area lies between −z and z rounded to two decimal places is z = 2.00.

Subtract the second equation from the first.

6x+5y=16
(6x+2y=10)
-
------------------------

A. 12x = 26
B. 3y = 6
C. –12x = 6
D. 7y = 26



Answers

Answer:

  B.  3y = 6

Step-by-step explanation:

(6x +5y) -(6x +2y) = (16) -(10)

6x +5y -6x -2y = 6 . . . eliminate parentheses

(6-6)x +(5-2)y = 6 . . . . add like terms

3y = 6 . . . . . . . . . . . simplify

Write an equation in standard form for each parabola.​

Answers

Answer:

[tex]x=1/4(y-2)^{2}-1[/tex]

Step-by-step explanation:

Use Vertex form: [tex]x=a(y-k)^{2}+h[/tex]

Given: vertek (h, k)=(-1, 2)  

[tex]x=a(y-2)^2 -1[/tex]

A point:(x , y) = (3, 6)

[tex]3 = a (6-2)^{2} -1[/tex]

16a=4, a=1/4

The equation is : [tex]x=1/4(y-2)^{2}-1[/tex]

the radious of each wheel of a car is 16 inches at how many revolutions per minute should a spin balancer be set to balance the tires at a speed of 90 miles per hour is the setting different for a wheel of radious 14 inches

Answers

Answer:

revolutions per minute for 16 inches is 946 / minute

revolutions per minute for 14 inches is 1081 / minute

Step-by-step explanation:

Given data

radius = 16 inch

speed = 90 mph  = 90/60 = 1.5 miles/minute = 1.5 × 5280 feet /12 inches = 95040 inches /minute

radius 2 = 14 inches

to find out

revolutions per minute

solution

first we calculate the circumference of the wheel i.e. 2×[tex]\pi[/tex]×radius

circumference = 2×[tex]\pi[/tex]×16

circumference = 32[tex]\pi[/tex]

we know that revolution is speed / circumference

revolution = 95040/32[tex]\pi[/tex]

revolution = 945.38 / minute

we have given radius 14 inches than revolution will be i.e.

revolution = speed / circumference

circumference = 2×[tex]\pi[/tex]×14

circumference = 28[tex]\pi[/tex]

revolution =  95040/ 28[tex]\pi[/tex]

revolution = 1080.43 / minute

Write the standard form of the equation that is parallel to y = -3x + 3 and goes through point (-5, 5).

Answers

3x + y = -10. The standard form of the equation that is parallel to y = -3x + 3 and goes through point (-5, 5) is 3x + y = -10.

The equation is written in the slope-intercept form y = mx +b. So:

y = -3x + 3

The slope m = -3

Since the slopes of parallel lines are the same, we are looking for a slope line m = -3 and goes through point (-5, 5).

With the slope-intercept form:

y = mx + b

Introducing the slope m = -3:

y = -3x + b

Introducing the point (-5, 5):

5 = -3(-5) + b

5 = 15 + b

b= 5 - 15

b = -10

then

y = -3x -10

write the equation in standard form ax + by = c:

y = -3x -10

3x + y = -10

To find the standard form of the equation of a line that is parallel to y = -3x + 3 and passes through the point (-5, 5), let's follow these steps:
1. **Identify the slope**: Since parallel lines have the same slope, we can take the slope of the given line y = -3x + 3, which is -3.
2. **Use the point-slope form**: With the slope known and a point provided, we can use the point-slope form of the equation, which is:
  \[ y - y_1 = m(x - x_1) \]
  where \(m\) is the slope and \((x_1, y_1)\) is the point the line passes through.
3. **Apply the point and slope**: Insert the slope (-3) and the point (-5, 5):
  \[ y - 5 = -3(x - (-5)) \]
  \[ y - 5 = -3(x + 5) \]
4. **Distribute the slope**: Multiply -3 by both terms inside the parentheses:
  \[ y - 5 = -3x - 15 \]
5. **Isolate y:** Add 5 to both sides of the equation to isolate y:
  \[ y = -3x - 15 + 5 \]
  \[ y = -3x - 10 \]
6. **Convert to standard form**: The standard form of a linear equation is \(Ax + By = C\), where \(A\), \(B\), and \(C\) are integers, and \(A\) should be non-negative. Arrange the terms:
  \[ 3x + y = -10 \]
So the standard form of the equation that is parallel to y = -3x + 3 and passes through the point (-5, 5) is \(3x + y = -10\).

Which of the following has no solution?

Answers

Answer:

  see below

Step-by-step explanation:

Option 1: the two solution sets overlap at x=1.

Option 2: the two solution sets do not overlap; no solution.

Option 3: together, the two set describe all real numbers.

If the length of a diagonal of a square is "a", what is the length of its side?

Answers

[tex]b[/tex] - the side of a square

[tex]a=b\sqrt2\\b=\dfrac{a}{\sqrt2}\\\\b=\dfrac{a\sqrt2}{2}[/tex]

Answer:

a√2 / 2.

Step-by-step explanation:

Using the Pythagoras Theorem;

a^2 = s^2 + s^2 where s is the length of each side of the square.

2s^2 = a^2

s^2 = a^2 / 2

s =  √(a^2 / 2)

= a / √2

= a√2 / 2 .

Directions: Answer the questions below. Make sure to show your work and justify all your answers.
15. The city bike rental program is analyzing their growth in member rates. The number of regular members is growing by
4.7% per month. The number of VIP members is growing by 65% per year. Write a function to represent the number of
regular members after t years. Then, write an equivalent function that represents the regular members with only 1
compounding per year. What is the effective yearly rate of growth of regular members? Determine the effective rate of
growth per year for regular members. Which type of member is growing at a faster rate?
a What is the effective YEARLY rate of the growth for regular members?
b. Which type of member is growing at a faster rate?

Answers

Answer:

  a)  73.52%

  b)  Regular membership is growing faster

Step-by-step explanation:

a)  r(t) = r0·1.047^(12t) . . . . regular members after t years, where r0 is the initial value of regular members at t=0.

Equivalently, this is ...

  r(t) = r0·(1.047^12)^t ≈ r0·1.7352^t

This shows the effective annual growth rate for regular members is 73.52%.

__

b) The 74% yearly growth rate of regular members is higher than the 65% yearly growth rate of VIP members. Regular membership is growing faster.

Starting at home Jessica traveled uphill to the toy store for 12 minutes at just 10 mph. She then traveled back home along the same path downhill at a speed of 30 mph. What is her average speed for the entire trip from home to the toy store and back?

Answers

Answer:

15 miles per hour

Step-by-step explanation:

Average Speed is:

Average Speed = Total Distance/Total Time

Going uphill, she took 12 minuets, that is hours is 12/60 = 0.2 hours

We know D = RT, Distance = Rate(speed) * Time

Thus,

D = 10mph * 0.2 hr = 2 miles

So, total distance (uphill and downhill) = 2 + 2 = 4 miles

Downhill the time she took is

D = RT

2miles = 30mph * T

T = 2/30 = 1/15 hours = 1/15 * 60 = 4 minutes

Hence total time is 12 + 4 = 16 minutes

Note: 16 minutes = 16/60 = 4/15 hours

Now

Average Speed = Total Distance/Total Time

Average Speed = 4 miles/ 4/15 hours = 15 mph

Answer:

The Answer is 15.00000000000000000... miles per hour

Step-by-step explanation: You do tis by doing your work and not checking for answers

Water pressure increases 0.44 pounds per square inch (0.44 psi) with each increase of one foot in depth below sea level. Identify the independent and dependent quantity in the situation.

Answers

Answer:

Depth below sea level is the independent quantity,

Water pressure is the dependent quantity

Step-by-step explanation:

An independent quantity is a variable that can be changed in an experiment. While, dependent quantity results from the independent quantity or we can say, that depends upon the independent quantity.

Here,

The water pressure increases 0.44 pounds per square inch (0.44 psi) with each increase of one foot in depth below sea level,

So, for measuring the water pressure we took depth below sea level as a variable,

Depth below sea level is the independent quantity,

While, with increasing depth by 1 foot the pressure is also increase by 0.44 pounds per square inches ⇒ pressure depends upon the depth

Water pressure is the dependent quantity.

Answer:The best answer I think is depth, water pressure

Step-by-step explanation:

A baboon steals an apple and runs to a nearby boulder 10.0 m to its left. The baboon reaches the boulder in 1.0s with a constant acceleration of 20.0m/s^2 leftward. What was the baboon's initial velocity when it started running to the boulder?

Answers

Answer:

Initial velocity is zero.

Step-by-step explanation:

According to second equation of motion

    [tex]s=ut+\frac{1}{2} at^2[/tex]

where s = distance traveled  

           t = time taken

          a = acceleration

          u = initial velocity

here in the question we have

      s = 10 m

     t = 1 second

    a = 20[tex]ms^{-2}[/tex]

plugging the known value in order to find the unknown which is u (initial velocity)

[tex]10=u(1)+\frac{1}{2} (20)(1)^2[/tex

10 = u +10

gives u =0

therefore initial velocity is zero.

Write and equation that represents the distance traveled by a person who can bike at a rate of 8 miles per hour. Can someone help me with this?

Answers

Answer:

  d = 8t

Step-by-step explanation:

A lot of math is about matching patterns. Here, the pattern you can match is given in the problem statement:

  d = 6t  . . . . . equation for distance traveled at 6 miles per hour

You are asked to write an equation for distance traveled at 8 miles per hour. You can see the number 6 in the above equation matches the "miles per hour" of the traveler. This should give you a clue that when the "miles per hour" changes from 6 to 8, the number in the equation will do likewise.

The equation you want is ...

  d = 8t . . . . . equation for distance traveled at 8 miles per hour

Final answer:

The distance traveled by a person biking at 8 miles per hour is represented by the equation d = 8t, where d is the distance, and t is the time in hours. For example, if they bike for 2 hours, they will have traveled 16 miles.

Explanation:

The question is about calculating the distance traveled by a person who can bike at a rate of 8 miles per hour. This can be represented by the equation d = rt, where d is the distance, r is the rate, and t is the time.

In this case, the rate (r) is 8 miles per hour. Therefore, the equation becomes: d = 8t, meaning the distance travelled is equal to 8 times the amount of time spent biking.

For example, if the person bikes for 2 hours, we would substitute 2 for t in the equation, which would look like this: d = 8 * 2. The resulting distance (d) is 16 miles.

Learn more about Distance Calculation here:

https://brainly.com/question/34212393

#SPJ2

You are riding the bus to school and you realize it is taking longer because of all the stops you are making. The time it takes to get to school, measured in minutes, is modeled using the function g(x) = x4 − 3x2 + 4x − 5, where x is the number of stops the bus makes. If the bus makes 2 stops after you board, how long does it take you to get to school?

Answers

Answer:

7 minutes

Step-by-step explanation:

start with formula

g(x) = x^4 - 3x^2 + 4x - 5

substitute x with number of stops (2)

g(2) = 2^4 - 3(2^2) + 4(2) - 5

simplify using p.e.m.d.a.s: start with exponents

g(2) = 16 - 3(4) + 4(2) - 5

multiply

g(2) = 16 - 12 + 8 - 5

subtract/add

16 - 12 = 4

4 + 8 = 12

12 - 5 = 7

input: 2

output: 7

ordered pair: (2,7)

By modeled function, the time taken to reach the school is 7 minutes.

What is modeled function ?

A function which depicts the variation of a given dependent parameter represented by the variable in the function is known as a modeled function. For modeled function, we input the value of the dependent parameter in place of the given variable and the solution of function gives us the result of dependency.

How to calculate the time taken to reach the school ?

Given that the time it takes to get to school, measured in minutes, is modeled using the function g(x) = [tex]x^{4} - 3x^{2} + 4x - 5[/tex] , where x is the number of stops the bus makes.

Also said that the bus makes 2 stops after we board.

Thus the dependent parameter is stop which is represented by the variable x in the modeled function g(x) and the solution of g(x) gives us the time period. We will get the time period by putting x = 2 in the modeled function.

Putting x = 2 in g(x), we get -

⇒ g(x) = [tex]2^{4} - 3*2^{2} + 4*2 - 5[/tex]

⇒ g(x) = 16 - 12 + 8 - 5

∴  g(x) = 7

Thus the time period is 7 units.

Therefore, by modeled function, the time taken to reach the school is 7 minutes.

To learn more about modeled function, refer -

https://brainly.com/question/11938014

#SPJ2

Jessica has three sports cards, one for football (F), one for baseball (B), and one for soccer (S). She picks one card, replaces it, and then picks another card. The sample space for this compound event is listed.

Answers

Answer:

The answer is 9

Answer:

Step-by-step explanation:

9

Five consecutive multiples of 3 yield a sum that is equal to the product of 7 and 15. What are these multiples?

Answers

Answer:

15, 18, 21, 24, 27

Step-by-step explanation:

Five multiples of 3 means we have 5 terms we are adding together to = 105.

For the sake of having something to base each one of these terms on, let's say that the first term is 3.  It's not, but 3 is a multiple of 3 and we have to start somewhere.  These terms go up by the next number that is divisible by 3.  After 3, the next number that is divisible by 3 is 6.  The next one is 9, the next is 12, the last would be 15.

Let's then say that 3 is the first term, and we are going to say that is x.

To get from 3 to 6, we add 3.  Therefore, the second term is x + 3.

To get from 3 to 9, we add 6.  Therefore, the third term is x + 6.

To get from 3 to 12, we add 9.  Therefore, the fourth term is x + 9.

To get from 3 to 15, the last term, we add 12.  Therefore, the last term is x + 12.

The sum of these terms will then be set to equal 105:

x + (x + 3) + ( x + 6) + ( x + 9) + ( x + 12) = 105

We don't need the parenthesis to simplify so we add like terms to get

5x + 30 = 105.  Subtract 30 from both sides to get

5x = 75 so

x = 15

That means that 15 is the first multiple of 3.  

The next one is found by adding 3 to the first:  so 18

The next one is found by adding 6 to the first:  so 21

The next one is found by adding 9 to the first:  so 24

The last one is found by adding 12 to the first:  so 27

15 + 18 + 21 + 24 + 27 = 105

Notice that all the numbers are, in fact, consecutive multiples of 3 as the instructions stated.

Final answer:

The five consecutive multiples of 3 that sum up to 105 are 15, 18, 21, 24, and 27.

Explanation:

The question posed is regarding five consecutive multiples of 3. The sum of these multiples equals 7x15 (or 105). Let's call the first multiple of 3 as '3x'. Therefore, the five consecutive multiples can be represented as 3x, 3x+3, 3x+6, 3x+9, 3x+12.

The sum of the five consecutive multiples then is 15x + 30 (comprising 5 times 'x', plus 30 from the sum of 3, 6, 9, and 12). We know that this sum equals 105, so we can set up the following equation:
15x + 30 = 105.

Solving this equation for 'x' gives:
x = 5. This means the first multiple is 3x, or 3x5 = 15. The next multiples are therefore 15+3 (18), 18+3 (21), 21+3 (24) and 24+3 (27).

So, the five multiples of 3 that yield a sum of 105 are 15, 18, 21, 24, and 27.

Learn more about multiples and sums here:

https://brainly.com/question/35903460

#SPJ11

Chester used the regression equation of the weight loss plan to make a prediction within the given data range. Complete his work to calculate the number of weekly hours of aerobic activity needed for a monthly weight loss of 3 pounds. Round to the nearest hundredth.



Interpolated Data



About


hours of weekly aerobic activity will result in 3 pounds of monthly weight loss.

Answers

Answer:

The answer is 1.94

You need to have 1.94 hours a week to loose a monthly weight of 3 pounds

An inlet pipe on a swimming pool can be used to fill the pool in 40 hours. The drain pipe can be used to empty the pool in 42 hours. If the pool is 23 filled and then the inlet pipe and drain pipe are opened, how long from that time will it take to fill the pool?

Answers

Answer:

Pool will be filled in 280 hours

Step-by-step explanation:

Inlet pipe fills in  40 hours = 1 pool

Inlet pipe fills in 1 hours = [tex]\frac{1}{40}[/tex]

Drain pipe empty in 42 hours = 1 pool

Drain pipe empty in 1 hour =  [tex]\frac{1}{42}[/tex]

If both pipes are opened together

 then in pool fills in 1 hour =  [tex]\frac{1}{40}[/tex] -  [tex]\frac{1}{42}[/tex]

      on simplifying the right side ,we get  [tex]\frac{42-40}{(40)(42)}[/tex]

                                                                 =      [tex]\frac{2}{(40)(42)}[/tex]

                                                                 =     [tex]\frac{1}{840}[/tex]

      [tex]\frac{1}{840}[/tex]  pool fills in 1 hour

                       1 pool will be filled in 840 hours

    [tex]\frac{2}{3}[/tex]     pool is filled

empty pool =  1 - [tex]\frac{2}{3}[/tex] =  [tex]\frac{1}{3}[/tex]

therfore  [tex]\frac{1}{3}[/tex] pool will be filled in     [tex]\frac{1}{3}[/tex]X 840 =

                                                                                           = 280 hours

The  calculations indicate that 280 hours is the  time required to fill 2/3 of the pool with both pipes open.

Inlet Pipe Rate:

The inlet pipe can fill the pool in 40 hours.

Therefore, the rate of the inlet pipe is 1/40 pool per hour.

Drain Pipe Rate:

The drain pipe can empty the pool in 42 hours.

Therefore, the rate of the drain pipe is 1/42 pool per hour.

Combined Rate when both pipes are open:

The net rate when both pipes are open is the difference between their individual rates:

Net rate = (1/40) - (1/42)

Simplify the Net Rate:

Find a common denominator for 40 and 42, which is 840:

Net rate = (42 - 40) / 840 = 2/840 = 1/420

Time to Fill 2/3 of the Pool:

Set up the equation: Net rate * Time = 2/3

Substitute the net rate: (1/420) * Time = 2/3

Cross-multiply to solve for time: Time = (2/3) * (420/1) = 280

Therefore, it takes 280 hours to fill 2/3 of the pool when both the inlet and drain pipes are open.

To learn more about Time

https://brainly.com/question/479532

#SPJ3

help pleaseeeeeeeeeeee

Answers

Answer:

Step-by-step explanation:

The temperature at a given altitude is

y = 36 - 3x

The temperature on the surface of the planet is the point (0,t) where t is the temperature for the given height.

y = 36 - 3*0

y = 36

So at the surface of the planet is 36 degrees C.

======================

Effectively it is the slope of the equation which is - 3

So ever km going up will mean a loss of 3 degrees. I think they want you to write -3

Other Questions
Find the final amount for a $750 investment at 5.25% interest compound semiannually for 25 years 3[tex]( - x + 12) - ( - 4x + 2)[/tex] Solve: ( Brainliest ) -- TIME LIMIT: 8:00 minutes2/3z=10/9Answer in proper and improper Describe harmful effect associated with extraction of Aluminum, Gold and Copper. Discuss each individually. The Articles of Confederation did not fully reflect the principle of "republicanism" becauseit stated one political party should maintain most of the powervoters had no say in who represented them in federal governmentstate governments were inferior to the national governmentrepresentatives from each state government were elected by the peoplevoters had no say in who represented them in federal government a^3b^-2c^-1d if a=2 b=4 c=10 d=15 express as a reduced fraction Which equation shows the variable terms isolated on one side and the constant terms isolated on the other side for the equation 3x-5=-2+10 what is a poem meter Determine if parallel, perpendicular, or neither. 3y+4x=12 -6y=8x+1 Jamie and Imani each play softball. Imani has won 5 fewer games than Jamie. Is it possible for Jamie to have won 11 games if the sum of the games Imani and Jamie have won together is 30?A.) Yes; Jamie could have won 11 games because 2x 5 = 30.B.) Yes; Jamie could have won 11 games because 11 5 is less than 30.C.) No; Jamie could not have won 11 games because 2x 5 30.D.) No; Jamie could not have won 11 games because 2x 11 30. A uniform disk of mass 20.0 kg and radius 20.0 cm has an additional rim of mass 20.0 kg as well as four symmetrically placed masses, each of mass 1/4th of the mass of the disk, fastened at positions having position vectors (10.0 i + 10.0 j) cm, (10.0 i - 10.0 j) cm, (-10.0i - 10.0 j cm, (-10.0 i + 10.0 j) cm (with respect to the center of the disk). What is the moment of inertia of the whole unit about an axis perpendicular to the disk and passing through its center? A local variable that is declared as ____ causes the program to keep the variable and its latest value even when the function that declared it is through executing.A) autoB) staticC) externD) register You toss a basketball toward the basket. At the highest point of its arc,a. The horizontal component of the velocity is zero.b. The vertical component of the velocity is zero.c. Both the horizontal and vertical components of the velocity are zero. sin y +cos y + tan y sin y = sec y +cos y tan y. Verify the Identity. Show all Steps! Which numbers are irrational? Check all that apply rectangle with a side length of 11" and a diagonal of 14" what is the perimeter SOMEONE PLEASE HELP ME FIND THE ANSWER Cleavage in minerals refers to ________. a. a tendency to break in an irregular pattern b. a tendency to break along planes of weakness c. the sharpness of edges between crystal faces d. the development of well-formed crystal faces What is the solution to the system of equations graphed below?.(6, 0)B.(1, 5).(0.3)D.(0,6) classify XYZ.A. Scalene triangle B. Right triangle C. Isosceles triangle D. Equilateral triangle