A particle of mass 4.0 kg is constrained to move along the x-axis under a single force F(x) = −cx3 , where c = 8.0 N/m3 . The particle’s speed at A, where xA = 1.0 m, is 6.0 m/s. What is its speed at B, where xB = −2.0 m?

Answers

Answer 1

Answer:4.58 m/s

Explanation:

Given

mass of Particle [tex]m=4 kg[/tex]

[tex]F=-cx^3[/tex]

[tex]a=\frac{F}{m}[/tex]

[tex]a=-\frac{cx^3}{m}[/tex]

[tex]a=-\frac{8x^3}{4}[/tex]

[tex]a=-2x^3[/tex]

[tex]v\frac{\mathrm{d} v}{\mathrm{d} x}=-2x^3[/tex]

[tex]vdv=-2x^3dx[/tex]

integrating

[tex]\int_{6}^{v_b}vdv=\int_{1}^{-2}-2x^3dx[/tex]

[tex]\frac{v_b^2-6^2}{2}=-\frac{1}{2}\left [ \left ( -2\right )^4-\left ( 1\right )^4\right ][/tex]

[tex]\frac{v_b^2-36}{2}=-0.5\times 15[/tex]

[tex]v_b^2=36-15[/tex]

[tex]v_b=\sqrt{21}[/tex]

[tex]v_b=4.58 m/s[/tex]

Answer 2

A particle of mass 4.0 kg is constrained to move along the x-axis under a single force F(x) = −cx³ The speed of the particle at point B is 5.3 m/s.

The potential energy at any point x is given by:

F(x) = -cx³

U(x) = -∫F(x) dx

U(x)= ∫cx³dx

U(x) = c/4 × x⁴ + C

The total mechanical energy E remains constant:

E = K + U

E_A = K(A) + U(A)

E_A = (1/2)mv(A)²+ c÷4 × x(A)⁴ + C

At point B, the potential energy U(B) is:

U(B) = c/4 × x(B)⁴ + C

The total mechanical energy at point B is:

E(B) = K(B) + U(B)

Since the total mechanical energy is conserved, we have:

E(A) = E(B)

(1/2)mv(A)² + c÷4 × x(A)⁴ + C = (1/2)mv(B)² + c÷4 × x(B)⁴ + C

(1/2)(4.0)(6.0)² + ((8.0) ÷ 4) × (1.0)⁴ = (1/2)(4.0)v(B)² + ((8.0) ÷ 4) × (-2.0)⁴

72.0 + 2.0= 2.0 × v(B)² + 16.0

56.0 J = 2.0× v(B)²

v(B)² = 28.0

v(B) = ±5.3 m/s

Since speed cannot be negative, the speed of the particle at point B is 5.3 m/s.

To know more about the speed:

https://brainly.com/question/30462853

#SPJ6


Related Questions

Which of the following would constitute evidence against Turcotte's model?
A) the success of gradualist models explaining the surface of Mars
B) an even more detailed map of the surface of Venus
C) an even longer river of lava on Io, a moon of Jupiter
D) a few active volcanoes on Ishtar Terra, a continent on Venus
E) a volcano on Earth releasing a massive burst of thermal energy all at once

Answers

Answer: answer is option A

Explanation: gradually model ascertained the features of the surface of mass is explaining it as gradual incremental changes continuously over a long period of time which negates the catastrophic model nature of turtles model

Each of 100 identical blocks sitting on a frictionless surface is connected to the next block by a massless string. The first block is pulled with a force of 100 N. What is the tension in the string connecting block 100 to block 99? What is the tension in the string connecting block 50 to block 51?

Answers

Answer:

The tension in the string connecting block 50 to block 51 is 50 N.

Explanation:

Given that,

Number of block = 100

Force = 100 N

let m be the mass of each block.

We need to calculate the net force acting on the 100th block

Using second law of newton

[tex]F=ma[/tex]

[tex]100=100m\times a[/tex]

[tex]ma=1\ N[/tex]

We need to calculate the tension in the string between blocks 99 and 100

Using formula of force

[tex]F_{100-99}=ma[/tex]

[tex]F_{100-99}=1[/tex]

We need to calculate the total number of masses attached to the string

Using formula for mass

[tex]m'=(100-50)m[/tex]

[tex]m'=50m[/tex]

We need to calculate the tension in the string connecting block 50 to block 51

Using formula of tension

[tex]F_{50}=m'a[/tex]

Put the value into the formula

[tex]F_{50}=50m\times a[/tex]

[tex]F_{50}=50\times1[/tex]

[tex]F_{50}=50\ N[/tex]

Hence, The tension in the string connecting block 50 to block 51 is 50 N.

We have that for the Question "What is the tension in the string connecting block 100 to block 99? What is the tension in the string connecting block 50 to block 51?"

it can be said that

The tension in the string connecting block 100 to block 99 = [tex]1N[/tex]The tension in the string connecting block 50 to block 51 = [tex]50N[/tex]

From the question we are told

Each of 100 identical blocks sitting on a frictionless surface is connected to the next block by a massless string. The first block is pulled with a force of 100 N.

Assuming mass of each block is 1 kg

The equation for the force is given as

[tex]F = ma\\\\a = \frac{F}{m}\\\\ = \frac{100}{100*1}\\\\ = 1 m/s^2[/tex]

Now, between block 100 and 99,

[tex]F = ma\\\\F = 1*1 \\\\= 1 N[/tex]

Now between block 50 and 51. There are 50 blocks behind 51 st block,  so,

[tex]m = 50 Kg\\\\a = 1 m/s2 (assuming all blocks accelerate at same rate)\\\\F = 50 * 1\\\\F= 50 N[/tex]

For more information on this visit

https://brainly.com/question/23379286

What can turn a natural hazard into a natural disaster?

Answers

Answer: A hazard is a condition that has the potential to cause harm.

A natural hazard is a potentially harmful situation, where a person places himself in a naturally unsafe zone.

A natural disaster is a large scale destruction of life and properties by the forces of nature.

A natural hazard can become a natural disaster in some cases where the natural harmful situation a person places himself in, is acted upon by the forces of nature on a large scale.

A football player kicks a 0.41-kg football initially at rest; and the ball flies through the air. If the kicker's foot was in contact with the ball for 0.051 s and the ball's initial speed after the collision is 21 m/s, what was the magnitude of the average force on the football?

Answers

Answer:

Average force on the football = 168.82 N

Explanation:

Force = Mass x Acceleration

F = ma

Mass, m = 0.41 kg

We have equation of motion, v = u + at

Initial velocity, u = 0 m/s

Final velocity, v = 21 m/s

Time, t = 0.051 s

Substituting

                  21 = 0 + a x 0.051

                     a = 411.76 m/s²

Substituting in force equation,

                   F = ma = 0.41 x 411.76 = 168.82 N

Average force on the football = 168.82 N

A stone is launched vertically upward from a cliff 384 ft above the ground at a speed of 80 ft divided by s. Its height above the ground t seconds after the launch is given by s equals negative 16 t squared plus 80 t plus 384 for 0 less than or equals t less than or equals 8. When does the stone reach its maximum​ height?

Answers

Answer:

2.5 seconds

Explanation:

s(t) = -16t^2 + 80t + 384

for

0≤t≤8

First we differentiate s(t) to get s'(t)

s'(t) = -32t + 80

Let us then find the critical point; thus we will equate s'(t) to zero and then search for values where s'(t) is undefined

s'(t) = -32t + 80 = 0

t = 80/32

t = 2.5 sec

Let us evaluate s at the critical points and end points

s(0) = -16(0)^2 + 80(0) + 384 = 384

s(2.5) = -16(2.5)^2 + 80(2.5) + 384 = 684

s(8) = -16(8)^2 + 80(8) + 384 = 0

Thus, the stone attains it maximum height of 684ft at at t=2.5s

Waves on a swimming pool propagate at 0.720 m/s. You splash the water at one end of the pool and observe the wave go to the opposite end, reflect, and return in 31.0 s. How far away is the other end of the pool?

Answers

Answer:

11.16 m

Explanation:

total distance traveled by the wave = speed * time

                                                            = 0.720 m/s * 31.0 s

                                                            = 22.32 m

Since this is an echo back to the starting point then the length of the swimming pool must be half of the distance traveled.

length of swimming pool  =  22.32 m÷2 = 11.16 m

(a) How far must the spring be compressed for 3.20 J of potential energy to be stored in it? (b) You place the spring vertically with one end on the floor. You then drop a 1.20 kg book onto it from a height of 0.800 m above the top of the spring. Find the maximum distance the spring will be compressed.

Answers

Answer:

a= 0.063 m

b = 0.116 m

Explanation:

First of all, we need the spring constant in order to solve this problem. You are not giving that data, but I will tell you how to solve this assuming a value of k, In this case, let's assume the value of k is 1600 N/m. (I solved an exercise like this before, using this value).

Now, we need to use the expressions to calculate the distance of the spring.

The elastic potential energy (Uel) is given with the following formula:

Uel = 1/2 kx²

Solving for x:

x = √2*Uel/k

Replacing the data in the above formula (And using the value of k os 1,600):

x = √2 * 3.2 / 1600

x = 0.063 m

b) For this part, we need to apply the work energy theorem which is:

K1 + Ugrav1 + Uel1 + Uo = K2 + Ugrav2 + Uel2

Since in this part, the exercise states that the book is dropped, we can say that the innitial and the end is 0, therefore, K1 = K2 = 0.

The spring at first is not compressed, so Uel1 = 0, and Uo which is the potential energy of other factors, is also 0, because there are no other force or factor here. Therefore, our theorem is resumed like this:

Ugrav1 = Uel2

The potential energy from gravity is given by:

Ug = mgy

And as the spring is placed vertically, we know the height which the book is dropped, so the distance y is:

y = x + h

And this value of x, is the one we need to solve. Replacing this in the theorem we have:

mg(h+x) = 1/2kx²

g would be 9.8 m/s²

Now, replacing the data:

1.2*9.8(0.8 + x) = 1/2*1600x²

Rearranging and solving for x we have:

1.2*9.8*2(0.8 + x) = 1600x²

18.82 + 23.52x = 1600x²

1600x² - 23.52x - 18.82 = 0

Now we need to solve for x, using the general formula:

x = - (-23.52) ± √(-23.52)² - 4 * 1600 * (-18.82) / 2*1600

x = 23.52 ± √553.19 + 120,448 / 3200

x = 23.52 ± 347.85 / 3200

x1 = 23.52 + 347.85 / 3200 = 0.116 m

x2 = 23.52 - 347.85 / 3200 = -0.101 m

Using the positive value, we have that the distance is 0.116 m.

An empty rubber balloon has a mass of 12.5 g. The balloon is filled with helium at a density of 0.181 kg/m3. At this density the balloon has a radius of 0.498 m. If the filled balloon is fastened to a vertical line, what is the tension in the line? The density of air is 1.29 kg/m3.

Answers

Answer:

5.5 N

Explanation:

mass of balloon (m) = 12.5 g = 0.0125 kg

density of helium = 0.181 kg/m^{3}

radius of the baloon (r) = 0.498 m

density of air = 1.29 kg/m^{3}

acceleration due to gravity (g) = 1.29 m/s^{2}

find the tension in the line

the tension in the line is the sum of all forces acting on the line

Tension =buoyant force  + force by helium + force of weight of rubber

force = mass x acceleration

from density = \frac{mass}{volume} ,  mass = density x volume

buoyant force =  density x volume x acceleration

        where density is the density of air for the buoyant force

        buoyant force = 1.29 x (\frac{4]{3} x π x 0.498^{3}) x 9.8 = 6.54 N

force by helium =  density x volume x acceleration

        force by helium =  0.181 x (\frac{4]{3} x π x 0.498^{3}) x 9.8 = 0.917 N

force of its weight = mass of rubber x acceleration

        force of its weight = 0.0125 x 9.8 = 0.1225 N

Tension = buoyant force  + force by helium + force of weight of rubber

         the force  of weight of rubber and of helium act downwards, so they      

          carry a negative sign.

Tension = 6.54 - 0.917 - 0.1225 = 5.5 N
Final answer:

Calculating the tension on a string tied to a helium-filled balloon involves principles of buoyancy and weight. The difference between the buoyant force exerted by the displaced air and the sum of the weight of the empty balloon and weight of the helium gives the tension on the line.

Explanation:

The tension on the vertical line tied to the helium-filled balloon can be found using Archimedes' Principle and Buoyancy. First, the volume (V) of the helium-filled balloon can be calculated using the formula for the volume of a sphere; V = 4/3 x π x (0.498 m)³ = ~0.516 m³. The mass (m) of the helium in the balloon is calculated by multiplying this volume by the density of helium, which is m = 0.516 m³ x 0.181 kg/m³ = ~0.093 kg.

 

Next, the weight (w) of air displaced by the balloon is calculated. This weight is equal to the product of the volume of the balloon, the density of the air, and gravitational acceleration; w = 0.516 m³ x 1.29 kg/m³ x 9.8 m/s² = ~6.5 N. This is the buoyant force that lifts the balloon.

The weight (W) of the filled balloon is the sum of the weight of the empty balloon and the helium; W = (0.0125 kg + 0.093 kg) x 9.8 m/s² = ~1.03 N. The tension (T) in the line is then the difference between the buoyant force and this weight (i.e., T = 6.5 N - 1.03 N =  ~5.47 N).

Learn more about Tension Calculation here:

https://brainly.com/question/33877601

#SPJ3

A cabin has a 0.159-m thick wooden floor [k = 0.141 W/(m · C°)] with an area of 13.4 m2. A roaring fire keeps the interior of the cabin at a comfortable 18.0 °C while the air temperature in the crawl space below the cabin is –16.4°C. What is the rate of heat conduction through the wooden floor?

Answers

Answer:

[/tex] 408.8[/tex]

Explanation:

[tex]t[/tex] = thickness of the floor = 0.159 m

[tex]k[/tex] = thermal conductivity of wooden floor = 0.141 Wm⁻¹ ⁰C⁻¹

[tex]T_{i}[/tex] = Temperature of the interior of the cabin = 18.0 ⁰C

[tex]T_{o}[/tex] = Temperature of the air below the cabin = - 16.4 ⁰C

Difference in temperature is given as

[tex]\Delta T[/tex] = Difference in temperature = [tex]T_{i} - T_{o} = 18 - (- 16.4) = 34.4[/tex]⁰C

[tex]A[/tex] = Area of the floor = 13.4 m²

[tex]Q[/tex] = Rate of heat conduction

Rate of heat conduction is given as

[tex]Q = \frac{kA \Delta T}{t}[/tex]

[tex]Q = \frac{(0.141) (13.4) (34.4)}{0.159}\\Q = 408.8[/tex] W

What is evaporation? Condensation? Drag the terms on the left to the appropriate blanks on the right to complete the sentences. ResetHelp liquid gaseous solid Evaporation is the physical change in which a substance converts from its state to its state. Condensation is the physical change in which a substance converts from its state to its state.

Answers

Answer:

Evaporation is the physical change in which a substance converts from its liquid state to its gaseous state. Condensation is the physical change in which a substance converts from its gaseous state to its liquid state.

Explanation:

Evaporation and condensation are opposite processes to each other. Evaporation changes a liquid to a gas and condensation is the reverse.

In a college homecoming competition, eighteen students lift a sports car. While holding the car off the ground, each student exerts an upward force of 400 N. (a) What is the mass of the car in kilograms? (b) What is its weight in pounds?

Answers

Answer:

Explanation:

Given

Each student exert a force of [tex]F=400 N[/tex]

Let mass of car be m

there are 18 students who lifts the car

Total force by 18 students [tex]F=18\times 400=7200 N[/tex]

therefore weight of car [tex]W=7200[/tex]

mass of car [tex]m=\frac{W}{g}[/tex]

[tex]m=\frac{7200}{9.8}=734.69 kg[/tex]

(b)[tex]7200 N \approx 1618.624\ Pound-force[/tex]

[tex]734.69 kg\approx 1619.71 Pounds[/tex]                  

The mass of the car lifted by eighteen students is 734.69 kg, and its weight is approximately 1620.29 pounds.

To determine the mass of the car that eighteen students lift in a college homecoming competition, given that each student exerts an upward force of 400 N, first calculate the total force exerted by the students: 18 students × 400 N per student = 7200 N.

Next, we use the equation for weight (W = mg) to find the mass (m), where W is the weight, m is the mass, and g is the acceleration due to gravity (9.8 m/s²). Thus, the mass of the car is m = W/g = 7200 N / 9.8 m/s² ≈ 734.69 kg.

To find the weight in pounds, we can use the conversion factor 1 kg ≈ 2.20462 lbs. Therefore, the weight of the car in pounds is approximately 734.69 kg × 2.20462 lbs/kg ≈ 1620.29 lbs.

Point P is on the rim of a wheel of radius 2.0 m. At time t = 0, the wheel is at rest, and P is on the x-axis. The wheel undergoes a uniform angular acceleration of 0.01 rad/s2 about the center O. In the figure, the magnitude of the linear acceleration of P, when it reaches the y-axis, is closest to:
a..063
b..075
c..072
d..069
e..066

Answers

Answer:

e). [tex]a = 0.066 m/s^2[/tex]

Explanation:

As we know that wheel is turned by 90 degree angle

so the angular speed of the wheel is given as

[tex]\omega_f^2 - \omega_i^2 = 2\alpha \theta[/tex]

now we have

[tex]\omega_f^2 - 0 = 2(0.01)(\frac{\pi}{2})[/tex]

[tex]\omega = 0.177 rad/s[/tex]

now the centripetal acceleration of the point P is given as

[tex]a_c = \omega^2 R[/tex]

[tex]a_c = (0.177)^2(2)[/tex]

[tex]a_c = 0.063 m/s^2[/tex]

tangential acceleration is given as

[tex]a_t = R\alpha[/tex]

[tex]a_t = 2(0.01)[/tex]

[tex]a_t = 0.02 m/s^2[/tex]

now net acceleration is given as

[tex]a = \sqrt{a_t^2 + a_c^2}[/tex]

[tex]a = \sqrt{0.02^2 + 0.063^2}[/tex]

[tex]a = 0.066 m/s^2[/tex]

Final answer:

The question involves the calculation of linear acceleration of a point on a wheel undergoing angular acceleration. The linear acceleration involves both tangential and radial components, and these are combined to provide the total acceleration. The closest answer is 0.066 m/s^2.

Explanation:

The subject of this question is physics, specifically the concepts of angular acceleration and linear acceleration. Given an angular acceleration, we can find the linear acceleration by using the formula a = rα, where a is linear acceleration, r is the radius, and α is angular acceleration. Substituting the given values, we get a = 2.0 m * 0.01 rad/s2 = 0.02 m/s2. This value is the tangential acceleration of point P.

Since the point P is on the y-axis, the linear acceleration, a, is given by the radial acceleration which is equal to ω2r, where ω is the angular velocity and r is the radius of the circle. But we also have ω2 = 2αr, where ρ is the angular acceleration and r is the radius. So, the radial acceleration is (2αr)2r = 4α2r3. Substituting for α and r we get: 4*(0.01 rad/s2)2*(2.0 m)3 = 0.0016 m/s2.

The total linear acceleration is the vector sum of the radial and tangential accelerations. Since these vectors are perpendicular, we calculate their resultant by Pythagoras' theorem: √(at2 + ar2) = √(0.022 m/s2 + 0.00162 m/s2) = 0.02016 m/s2. Hence, the choice that's closest is (a) 0.066 m/s2.

Learn more about Angular Acceleration here:

https://brainly.com/question/32293403

#SPJ11

A 2.35 kg ball is attached to a ceiling by a3.53 m long string. The height of the room is5.03 m .The acceleration of gravity is 9.8 m/s2.
What is the gravitational potential energyassociated with the ball relative to the ceiling?Answer in units of J.

Answers

Answer:-81.29 J

Explanation:

Given

mass of ball [tex]m=2.35 kg[/tex]

Length of string [tex]L=3.53 m[/tex]

height of Room [tex]h=5.03 m[/tex]

Gravitational Potential Energy is given by

[tex]P.E.=mgh[/tex]

where h=distance between datum and object

here Reference is ceiling

therefore [tex]h=-3.53 m[/tex]

Potential Energy of ball w.r.t ceiling

[tex]P.E.=2.35\times 9.8\times (-3.53)=-81.29 J[/tex]

i.e. 81.29 J of Energy is required to lift a ball of mass 2.35 kg to the ceiling    

A vertical spring withk= 245N/m oscillates with an amplitude of 19.2cm when 0.457kg hangs from it. The mass posses through the equilibrium point (y= 0) with a negative velocity at t= 0.Assume that downward is the positive direction of motion. What equation describes this motion as a function of time?

Answers

Answer:

 y = -19.2 sin (23.15t) cm

Explanation:

The spring mass system is an oscillatory movement that is described by the equation

      y = yo cos (wt + φ)

Let's look for the terms of this equation the amplitude I

     y₀ = 19.2 cm

Angular velocity is

     w = √ (k / m)

     w = √ (245 / 0.457

     w = 23.15 rad / s

The φ phase is determined for the initial condition   t = 0 s ,  the velocity is negative v (0) = -vo

The speed of the equation is obtained by the derivative with respect to time

     v = dy / dt

     v = - y₀ w sin (wt + φ)

For t = 0

     -vo = -yo w sin φ

The angular and linear velocity are related v = w r

      v₀ = w r₀

      v₀ = v₀ sinφ

      sinφ = 1

      φ = sin⁻¹ 1

      φ = π / 4    rad

Let's build the equation

      y = 19.2 cos (23.15 t + π/ 4)

Let's use the trigonometric ratio π/ 4 = 90º

      Cos (a +90) = cos a cos90 - sin a sin sin 90 = 0 - sin a

       y = -19.2 sin (23.15t) cm

The Earth and the moon are attracted to each other by gravitational force. The more massive Earth attract the less massive moon with a force that is (greater than, less than, the same as) the force with which the moon attracts the Earth.

Answers

Answer:

Earth attract the less massive moon with a force that is the same as the force with which the moon attracts the Earth.

Explanation:

This can be explained by Newton's third law:

[tex]F_{12}=-F_{21}[/tex]

The force exerted by body 1 on body 2 is the same as that exerted by body 2 on body 1, only with the opposite sign.

In this case that force is the gravitational force, but the law still applies.

So the moon and the earth are attracted with the same magnitude of force.

Approximately how long does it take the sun to orbit the milky way galaxy?

Answers

Answer:

it takes the sun about 230 million years to orbit the milky way.

Explanation:

we're moving at an average velocity of 828,000 km/hr but it still takes us a long time to orbit the milky way.

You have been hired to check the technical correctness of an upcoming made-for-TV murder mystery that takes place in a space shuttle. In one scene, an astronaut's safety line is cut while on a spacewalk. The astronaut, who is 200 meters from the shuttle and not moving with respect to it, finds that the suit's thruster pack has also been damaged and no longer works and that only 4 minutes of air remains. To get back to the shuttle, the astronaut unstraps a 10-kg tool kit and throws it away with a speed of 8 m/s. In the script, the astronaut, who has a mass of 80 kg without the toolkit, survives, but is this correct?

Answers

Answer:

The astronaut who has a mass of 80 kg without the toolkit do survive with 40 seconds of remaining air

Explanation:

Due the astronaut throws the 10-kg tool kit away with a speed of 8 m/s, it gives a momentum equivalent but in the other direction, so [tex]I=mv=(10Kg)(8m/s)=80kg*m/s[/tex], then we can find the speed that the astronaut reaches due to its weight we get, [tex]v=\frac{I}{m} =\frac{80kg*m/s}{80Kg} =1m/s[/tex].

Finally, as the distance to the space shuttle is 200m, the time taken to the astronaut to reach it at the given speed will be [tex]t=\frac{d}{v}=\frac{200m}{1m/s}=200s[/tex], as the remaining air time is 4 min or 240 seconds, The astronaut who has a mass of 80 kg without the toolkit do survive with 40 seconds of remaining air.

1. The ___________ was used to find a Jupiter-sized planet through careful measurements of the changing position of a star in the sky.2. Discovering planets through the __________ requires obtaining and studying many spectra of the same star.3. The________________ successfully discovered thousands of extrasolar planets with a spacecraft that searched for transits among some 100,000 stars.4. The ____________ is used to find extrasolar planets by carefully monitoring changes in a star's brightness with time.5. Compared to the planets of our solar system, the composition of a _________________ most resembles the compositions of Uranus and Neptune.6. Observations indicating that other planetary systems often have jovian planets orbiting close to their stars are best explained by what we call______.7. An extrasolar planet that is rocky and larger than Earth is often called a_____.

Answers

Answer:

(1) The ____astrometric method_______ was used to find a Jupiter-sized planet through careful measurements of the changing position of a star in the sky.

(2) Discovering planets through the ____doppler method ______ requires obtaining and studying many spectra of the same star.

(3) The____kepler mission ____________ successfully discovered thousands of extrasolar planets with a spacecraft that searched for transits among some 100,000 stars.

(4) The ___transit method_________ is used to find extrasolar planets by carefully monitoring changes in a star's brightness with time.

(5) Compared to the planets of our solar system, the composition of a ____water world _____________ most resembles the compositions of Uranus and Neptune.

(6) Observations indicating that other planetary systems often have jovian planets orbiting close to their stars are best explained by what we call__migration ____.

(7) An extrasolar planet that is rocky and larger than Earth is often called a__super-Earth ___.

Final answer:

The Doppler technique and transit technique are used to discover extrasolar planets such as Jupiter-sized ones and those larger than Earth respectively. The Kepler mission has been successful in identifying thousands of these. The composition of extrasolar planets can differ, some resembling Uranus and Neptune, while the concept of 'planet migration' explains the closeness of large planets to their stars.

Explanation:

1. The Doppler technique was used to find a Jupiter-sized planet through careful measurements of the changing position of a star in the sky.

2. Discovering planets through the spectroscopy requires obtaining and studying many spectra of the same star.

3. The Kepler mission successfully discovered thousands of extrasolar planets with a spacecraft that searched for transits among some 100,000 stars.

4. The transit technique is used to find extrasolar planets by carefully monitoring changes in a star's brightness with time.

5. Compared to the planets of our solar system, the composition of a mini-Neptune most resembles the compositions of Uranus and Neptune.

6. Observations indicating that other planetary systems often have jovian planets orbiting close to their stars are best explained by what we call planet migration.

7. An extrasolar planet that is rocky and larger than Earth is often called a super-Earth.

Learn more about Extrasolar Planets here:

https://brainly.com/question/32889401

#SPJ12

A heavy steel ball is hung from a cord to make a pendulum. The ball is pulled to the side so that the cord makes a 5 ∘ angle with the vertical. Holding the ball in place takes a force of 40 N . If the ball is pulled farther to the side so that the cord makes a 8 ∘ angle, what force is required to hold the ball?

Answers

Answer:

f = 63.8 N

Explanation:

initial angle to the vertical = 5 degrees

initial holding force = 40 N

final angle to the vertical = 8 degrees

final holding force = ?

find the final holding force

force = mgSinθ

        m = mass  and  g = acceleration due to gravity

for the initial holding force:

        40 = mgSin5

        mg = [tex]\frac{40}{sin5}[/tex] ....equation 1

for the final holding force:

        f = mgSin8  ......equation 2

   substituting the value of mg from equation 1 (where mg = [tex]\frac{40}{sin5}[/tex] ) into equation 2

    f = mgSin8 = [tex]\frac{40}{sin5}[/tex] x Sin8

   f = 63.8 N

       

Answer:

64 N

Explanation:

Given that the angles are very small, the following approximation can be made:

F ≈ m*g*α

where F is the force needed to hold the ball, m is the ball mass, g is the acceleration of gravity and α is the angle between the cord and the vertical.

Let's call F1 the force needed to hold the ball at 5° (α1) and F2 the force needed to hold the ball at 8° (α2).

F1 ≈ m*g*α1

F2 ≈ m*g*α2

Dividing the equations:

F1/F2 = α1/α2

F2 = (α2/α1)*F1

F2 = (8/5)*40

F2 = 64 N

The intensity of a sunspot is found to be 3 times smaller than the intensity emitted by the solar surface. What is the approximate temperature of this sunspot if the temperature of the solar surface is 5800 K?

Answers

Answer:

4400 K approximately

Explanation:

Stefan-Boltzmann law establish that the power radiated from a black body in terms of its temperature which is proportional to [tex]T^4[/tex]

[tex]i = aT^4[/tex]  with a Stefan-Boltzmann constant

Also we know that [tex]i_{sunspot}[/tex] is three times [tex]i_{sun}[/tex]

[tex]i_{sun}=3i_{sunspot}[/tex] or [tex]\frac{i_{sun}}{i_{sunspot}} = 3[/tex]

Using the Stefan-Boltzmann we can write

[tex]\frac{i_{sun}}{i_{sunspot}} = 3 = \frac{aT_{sun}^4}{aT_{sunspot}^4}[/tex]

solving for [tex]T_{sunspot}[/tex]

[tex]T_{sunspot} = \left(\frac{T_{sun}^4}{3}\right)^{1/4}[/tex]

Replacing the value of [tex]T_{sun}[/tex] (5800 K) it is obtained that [tex]T_{sunspot}[/tex] is 4407.05

To calculate current flow through any branch of a circuit by substituting the values of IX and RX for the branch
values when total circuit current and the resistance are known, use the _______________ formula.

A. reciprocal
B. current divider

Answers

Answer:

Current divider

Explanation:

To calculate current flow through any branch of a circuit by substituting the values of [tex]I_X\ and\ R_X[/tex] for the branch  values when total circuit current and the resistance are known, use the current divider formula.

A current divider is a circuit that produces output current as a function of input current. It is a rule to find the splitting of the current in all branches of the circuit. Hence, the correct option is (B).  

Final answer:

The formula to calculate the current flow through any branch of a circuit when the total circuit current and resistance are known is the current divider formula.

Explanation:

To calculate the current flow through any branch of a circuit by substituting the values of IX and RX for the branch values when total circuit current and the resistance are known, use the current divider formula. The current divider rule is particularly useful in parallel resistor circuits and it allows for the easy calculation of the current flowing through a resistor in parallel.

In a parallel circuit, the voltage across each branch is the same, but the current through each branch can be different, depending on the resistance of that branch. The current divider rule states that the current through a branch is the ratio of the total parallel resistance to the branch resistance, times the total current entering the parallel combination.

For example, if we want the current through resistor R1 (I1), and we know the total current (Itot) and the total parallel resistance (Rp), as well as the resistance of R1 (R1), we can use the formula:

I1 = Itot * (Rp / R1)

By knowing the total resistance and the total current, one can deduce the individual branch currents using Ohm's Law and the principles of parallel circuits.

Learn more about current divider formula here:

https://brainly.com/question/30637028

#SPJ3

Termination of translation requires a termination signal, RNA polymerase, and a release factor. a release factor, initiator tRNA, and ribosomes. initiation factors, the small subunit of the ribosome, and mRNA. elongation factors and charged tRNAs.

Answers

termination signala release factor

Termination of translation requires a termination signal, and a release factor

Explanation:

There are 3 stops codons of the 64 possible codons. These are UAA, UAG, or UGA. These do not code for amino acids and are therefore not recognized by any anticodons for any of the ‘charged’ tRNA. These codons, are recognized by release factors that ‘knock off’ the newly synthesized peptide from the ribosome through peptidyl-tRNA hydrolysis. There are several release factors (RF1 and RF2) in bacteria but in eukaryotes only one RF has been discovered to recognize the 3 stop codons.

Learn More:

For more on translation termination check out;

https://brainly.com/question/13868473

https://brainly.com/question/273550

https://brainly.com/question/2273699

#LearnWithBrainly

Final answer:

Translation termination is signaled by a stop codon and facilitated by release factors and ribosomes, which lead to the release of the newly synthesized protein and the disassembly of the ribosomal complex.

Explanation:

Termination of translation requires a termination signal, which is a stop codon (UAA, UAG, or UGA) that doesn't code for an amino acid but rather signals the end of the translation process. During this stage, release factors recognize the stop codon and prompt the addition of a water molecule to the carboxyl end of the peptidyl-tRNA in the P site. This action leads to the release of the newly synthesized polypeptide chain. Ribosomes, which consist of a large and a small subunit, dissociate from the mRNA and from each other upon the completion of translation.

Ribosomes, release factors, and the mRNA template are the key participants in the termination process. Initiator tRNA and elongation factors with charged tRNAs are involved in the initiation and elongation stages of translation, but not in termination.

Most of the water vapor and carbon dioxide in earth's atmosphere is found A. In the upper part of the atmosphere. B.In the thin layer right in the middle of the atmosphere C.In the lower part of the atmosphere. D.In the thick layer right in the middle of the atmosphere

Answers

Answer:

C] In the lower part of atmosphere

As the gases ( O₂ & CO₂ ) are most abundant here and supports life.

Hope it helps!

Happy Learning!!

:D

Standing at a crosswalk, you hear a frequency of 540 Hz from the siren of an approaching ambulance. After the ambulance passes, the observed frequency of the siren is 446 Hz. Determine the ambulance's speed from these observations. (Take the speed of sound to be 343 m/s.)

Answers

Answer:

Speed of the ambulance is 32.7 metres per second.

Explanation:

Let the actual frequency of the siren be [tex]f_{0}[/tex].

Frequency observed by me when ambulance is approaching = 540 Hz

Frequency observed by me when ambulance is moving away = 446 Hz

Let [tex]v_{s}[/tex] be the speed of sound and [tex]v_{a}[/tex] be the speed of ambulance.Then according to Doppler effect:

When source is moving towards observer,frequency observed is given as

[tex]f_{0} \times \frac{v_{s} }{v_{s} - v_{a} }[/tex] = 540 Hz    

When source is moving away from observer,frequency observed is given as

[tex]f_{0} \times \frac{v_{s} }{v_{s} + v_{a} }[/tex] = 446 Hz    

Taking [tex]v_{s} = 343 \frac{m}{s}[/tex] and solving the above two equations by eliminating [tex]f_{0}[/tex],

we get [tex]v_{a} = 32.7 \frac{m}{s}[/tex]

Based on discoveries to date, which of the following conclusions is justified?a) Most stars have one or more terrestrial planets orbiting within their habitable zones.b) Planets are common, but planets as small as Earth are extremely rare.c) Planetary systems are common and planets similar in size to Earth are also common.d) Although planetary systems are common, few resemble ours with terrestrial planets near the Sun and jovian planets far from the Sun.

Answers

Based on discoveries to date, the conclusion as “Planetary systems are common and planets similar in size to Earth are also common” is justified.

Answer: Option C

Explanation:

Some studies show that on average, each star has at least single planet. This means that most stars, such as the Solar System, possess planets (otherwise exoplanets). It is known that small planets (more or less Earthly or slightly larger) are more common than giant planets. The mediocrity principles state that planet like Earth should be universal in the universe, while the rare earth hypothesis says they are extremely rare.

Size is often considered an important factor, because planets the size of the Earth are probably more terrestrial and can hold the earth's atmosphere. The planetary system is a series of gravitational celestial objects orbiting a star or galaxy. Generally, planetary systems describe systems with one or more planets, although such systems may also consist of bodies such as dwarf planets, asteroids and the like.

Suppose that she pushes on the sphere tangent to its surface with a steady force of F = 75 N and that the pressured water provides a frictionless support. How long will it take her to rotate the sphere one time, starting from rest?

Answers

Answer:

The time taken to rotate the sphere one time is,  t = 22 s

Explanation:

Given data,

The mass of the sphere, m = 8200 kg

The radius of the sphere, r = 90 cm

                                             = .9 m

The force applied by the girl, F = 75 N

The moment of inertia of the sphere is,

                            I = 2/5 mr²

                              = (2/5) 8200 x (.9)²

                              = 2657 kg·m²

The torque,

                            τ = I α

                             75 x 0.9 = 2657 x α

                              α = 0.0254 rad/s²

The angular displacement,

                            θ = ½αt²

                             2π =  ½ x 0.0254 rad/s² x t²

                                t = 22 s

Hence, the time taken to rotate the sphere one time is,  t = 22 s

A new gel is being developed to use inside padding and helmets to cushion the body from impacts. The gel is stored in a 4.1 m^3 cylindrical tank with a diameter of 2 m. The tank is pressurized to 1.3 atm of surface pressure to prevent evaporation. A total pressure probe located at the bottom of the tank reads 60 ft of water. What is the specific gravity of the gel contained in the tank?

Answers

Answer:

[tex]SE_{gel} = 3.75[/tex]

Explanation:

First, we have to calculate the gel's column height using the cylinder's volume, as follows:

[tex]V=\pi\times r \times h\\h=\frac{V}{\pi \times r}\\h=\frac{4.1m^3}{\pi \times 1m}= 1.30 m[/tex]

Then, as the pressure given at the bottom of the tank is the sum of the surface pressure and the gel's column pressure, we need to calculate only the gel's column pressure:

ft of water is a unit of pressure, but we need to convert it to atm and then to Pa, in order to calculate our results in the correct units. Therefore, the conversion factor is:

1 ft of water (4°C) = 0.0295 atm

[tex]60 ft water \times \frac{0.0295 atm}{1 ft water}= 1.77  atm\\P_{bottom}=P_{surface}+P_{gel}\\P_{gel}=P_{bottom}-P_{surface}=1.77 atm - 1.3 atm\\P_{gel}= 0.47 atm\times \frac{101325Pa}{1 atm}=47622.75 Pa[/tex]

Now, to calculate the specific gravity, we need to find first the gel's density:

[tex]P_{gel} = \rho gh\\\rho = \frac{P_{gel}}{gh}=\frac{47622.75 Pa}{9.8 m/s^2 \times 1.30m}= 3738.04 \frac{kg}{m^3}[/tex]

[tex]SE_{gel} = \frac{\rho_{gel}}{\rho_{water}}= \frac{3738.04 kg/m^3}{997 kg/m^3} = 3.75\\SE_{gel} =3.75[/tex]

The specific gravity of the gel is 3.75.

Final answer:

To calculate the specific gravity of a gel, convert the pressure reading from feet of water to pascals, add the tank's pressurized atmosphere, then use the relation between pressure, density, gravity, and height to solve for the density of the gel, which is then compared to the density of water.

Explanation:

The question is asking to calculate the specific gravity of a gel based on the pressure reading from a probe at the bottom of a cylindrical tank. We are given the pressure as 60 ft of water. To convert this to a pressure that we can use to find density, we need to convert feet of water to pascals:

1 ft H2O = 2989.07 Pa

60 ft H2O = 60 * 2989.07 Pa = 179344.2 Pa

Since the tank is pressurized to 1.3 atmospheres at the surface, we must also consider this in our pressure calculation:

1 atm = 101325 Pa

1.3 atm = 1.3 * 101325 Pa = 131722.5 Pa

The total pressure at the bottom of the tank is the sum of the pressure due to the gel and the pressurized air:

Total pressure = 179344.2 Pa + 131722.5 Pa

Total pressure = 311066.7 Pa

To find the specific gravity, we use the following relation where the specific gravity is the ratio of the density of the gel (ρgel) to the density of water (ρH2O):

Specific gravity = ρgel / ρH2O

We know that pressure is also the product of density (ρ), gravity (g=9.81 m/s²), and height (h=60 ft * 0.3048 m/ft) for the fluid:

Pressure = ρgel * g * h

ρgel = Pressure / (g * h)

ρgel = 311066.7 Pa / (9.81 m/s² * 60 ft * 0.3048 m/ft)

After calculating ρgel, we divide that by the density of water (1000 kg/m³) to find the specific gravity.

A particular material has an index of refraction of 1.25. What percent of the speed of light in a vacuum is the speed of light in the material?

Answers

Answer:

80% (Eighty percent)

Explanation:

The material has a refractive index (n) of 1.25

Speed of light in a vacuum (c) is 2.99792458 x 10⁸  m/s

We can find the speed of light in the material (v) using the relationship

n = c/v, similarly

v = c/n

therefore v = 2.99792458 x 10⁸  m/s ÷ (1.25) = 239 833 966 m/s

v = 239 833 966 m/s

Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as

(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%

Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)

Answer:

The percentage of speed of light in vacuum to the speed of light in the said material is 80%

Explanation:

The common values of refractive index are between 1 and 2 since nothing can travel faster than the speed of light, therefore, no material has a refractive index lower than 1.

According to the formula [tex]n=\frac{c}{v}[/tex]

where [tex]n[/tex] is the index of refraction

[tex]c[/tex] is the speed of light in vacuum

and [tex]v[/tex] is the speed of light in the material, it can be seen that n and v are inversely proportional which means greater the refractive index lower is the speed  of light.

Since we know that speed of light in vacuum is 300,000 km/s using the formula we get,

[tex]v=\frac{c}n}[/tex]

[tex]v=\frac{300000}{1.25}=240,000  km/s[/tex]

for finding percentage,

[tex]=\frac{240000}{300000}*100 = 80[/tex] %

A steel cylinder at sea level contains air at a high pressure. Attached to the tank are two gauges, one that reads absolute pressure and one that reads gauge pressure. The tank is then brought to the top of a mountain.Which statement is true for the gauge that reads gauge pressure?

Select the correct answer

Both gauges will change by the same amount.

The pressure reading increases.

The pressure reading stays the same.

The pressure reading decreases.

Answers

Final answer:

The gauge pressure reading stays the same when a steel cylinder is moved to the top of a mountain because it measures pressure relative to the external atmospheric pressure, which does not influence the pressure inside the cylinder.

Explanation:

The correct statement for the gauge that reads gauge pressure when a steel cylinder is brought to the top of a mountain is that the pressure reading stays the same. Gauge pressure is the pressure relative to atmospheric pressure, which means it measures the excess pressure in the tank over the external atmospheric pressure. Since the pressure inside the steel cylinder is not dependent on external atmospheric pressure changes, the reading on the gauge pressure meter would remain constant, even if the cylinder is taken to a different altitude.

A cylinder is 0.10 m in radius and 0.20 in length. Its rotational inertia, about the cylinder axis on which it is mounted, is 0.020 kg  m2. A string is wound around the cylinder and pulled with a force of 1.0 N. The angular acceleration of the cylinder is:

Answers

Answer:[tex]5 rad/s^2[/tex]

Explanation:

Given

Radius of cylinder r=0.1 m

Length L=0.2 in.

Moment of inertia I=0.020 kg-m^2

Force F=1 N

We Know Torque is given by

[tex]Torque =I\alpha =F\cdot r[/tex]

where [tex]\alpha =angular\ acceleration[/tex]

[tex]I\alpha =F\cdot r[/tex]

[tex]0.02\cdot \alpha =1\cdot 0.1[/tex]

[tex]\alpha =5 rad/s^2[/tex]    

The angular acceleration of the cylinder is 5 rad/s².

To calculate the angular acceleration of the cylinder, we use the formula of torque below.

What is torque?

Torque is the force that causes a body to rotate about an axis.

Formula:

Iα = Fr........... Equation 1

Where:

I = rotational initialα = Angular accelerationr = Radius of the cylinderF = Forceθ = Angle.

Make α the subject of the equation

α  = RFsinθ/I............. Equation 2

From the question,

Given:

r = 0.1 mF = 1.0 NI = 0.020 kgm²θ = 90° ( Since the rope is tangental to the side of the cylinder).

Substitute these values into equation 2

α = (1.0×0.1×sin90°)/(0.02)α = 5 rad/s²

Hence, The angular acceleration of the cylinder is 5 rad/s².

Learn more about torque here: https://brainly.com/question/20691242

Other Questions
Which absolute value function, when graphed, representsthe parent function, f(x) = |xl, reflected over the x-axis andtranslated 1 unit to the right?5 -4 -3 -2 -112345f(x) = -1 | + 1f(x) = -x-11f(x) = |-*1 + 1f(x) = |-* - 11ancheSave and Exit The pressure of social roles and the presence of demands for obedience have been cited to explain events at Abu Ghraib prison in Iraq, where U.S. soldiers tortured and humiliated Iraqis in 2004. This explanation given by Americans for America's own failures reflects the? The lengths of the sides of a triangle are6, 8, 10. Can the triangle be a right triangle? On its 2011 balance sheet, Bank of America Corporation reports marketable debt securities of $311,416 million. The footnotes disclose that these securities have an amortized cost of $306,437 million. Which of the following is true?1) These are available-for-sale securities2) These are trading securities3) There are net unrealized gains of $4,979 on these securities4) Both A and C5) Both B and C "Tony is a chronic alcoholic with cirrhosis of the liver, a condition in which liver cells die and are replaced by connective tissue. Which of the following signs would you not expect to observe in Tony"A. jaundiceB. increased clotting timeC. decrease in plasma protein productionD. portal hypertension and ascitesE. All of the answers are correct. Brenda recorded a temperature of19C, and Cooper recorded a temperature17Chigher. What temperature did Cooper record? MathScience Social studies The diffusion constant for oxygen diffusing through tissue is 1.0 10-11 m2/s. In a certain sample oxygen flows through the tissue at 2.0 10-6 kg/s. If the thickness of the tissue is doubled, then what is the rate of oxygen flow through the tissue? Single-celled Paramecium live in pond water (a hypotonic environment relative to the cytosol). They have a structural feature, a contractile vacuole, which enables them to osmoregulate. If sucrose or saline was added to the pond water in different concentrations (in millimolars, mM), under which conditions would you expect the contractile vacuole to be most active? The pharmacology instructor is discussing the differences among the various diuretic agents. Which would the instructor cite as a difference between spironolactone and hydrochlorothiazide?a. potassium losses are greater with spironolactone than with hydrochlorothiazide.b. Potassium losses are greater with hydrochlorothiazide than with spironolactone.c. Spironolactone is more likely to be taken with a potassium supplement.d. The two diuretics act in different parts of the nephron In a report to a supervisor, a chemist described an experiment in the following way: "0.0800 mol of H2O2 decomposed into 0.0800 mol of H2O and 0.0400 mol of O2." Express the chemistry and stoichiometry of this reaction by a conventional chemical equation. Do not include physical states. Use the smallest possible whole number coefficients. An inorganic mineral is not composed of anything that was once _____.A.oxidizedB.aliveC.usedD.crystallizedE.reduced what is the answer because am stuck what do the similarities between the skeletal structures of these three species most likely indicate about their evolutionary history A 14 pound bag of dog food cost $16.24 and a 30 pound bag of dog food cost $33.30 which statement is true and can be used to determine the better buy?A.The unit rate per pound of a 14 pound bag $0.05 less than the unit rate of a 30 pound bag.B.The unit rate per pound of a 14 pound bag is $0.05 more than the unit rate of a 30 pound bag.C.The unit rate per pound of a 14 pound bag is $0.50 less than the unit rate of a 30 pound bag.D.The unit rate per pound of a 14 pound bag is $0.50 more than the unit rate of a 30 pound bag. Consider the following electron configurations to answer the question:(i) 1s2 2s2 2p6 3s1(ii) 1s2 2s2 2p6 3s2(iii) 1s2 2s2 2p6 3s2 3p1(iv) 1s2 2s2 2p6 3s2 3p4(v) 1s2 2s2 2p6 3s2 3p5The electron configuration of the atom that is expected to have a positive electron affinity is ________. 7.66 0.55 i need 20 charters to ask this Discrete MathA coin is flipped four times. For each of the events described below, express the event as a set in roster notation. Each outcome is written as a string of length 4 from {H, T}, such as HHTH. Assuming the coin is a fair coin, give the probability of each event.( a ) The first and last flips come up heads.( b ) There are at least two consecutive flips that come up heads.( c) There are at least two consecutive flips that are the same The rate of reaction for a hypothetical reaction was found to be 0.62 mol/L*s at 6C. What would be the rate at 46C? Cystic fibrosis affects the lungs, the pancreas, the digestive system, and other organs, resulting in symptoms ranging from breathing difficulties to recurrent infections. Which of the following terms best describes this expression of phenotypes a, incomplete dominance b.codominance c multiple alleles d epistasis e pleiotropy