A sample of 9 production managers with over 15 years of experience has an average salary of $71,000 and a sample standard deviation of $18,000. Assuming that s = 18,000 is a reasonable estimate for f$sigma f$ what sample size would be needed to ensure that we could estimate the true mean salary of all production managers with more than 15 years experience within $4200 if we wish to be 95% confident? Place your answer, as a whole number, in the blank. Do not use a dollar sign, a comma, or any other stray mark. For examples, 34 would be a legitimate entry.

Answers

Answer 1

Answer:

The sample size to meet the 95% confidence and a maximum error of 4200 in the salary estimate, is 71

Step-by-step explanation:

You want to estimate the average salary of production managers with more than 15 years of experience, for this you will use a 95% confidence interval with a maximum estimation error of 4200.

[tex]\bar X = 71000\\\\\alpha = 0.05\\\\Z_{\frac{\alpha}{2}}=1.95996\\\\\sigma = 18000\\\\\epsilon=4200[/tex]

The expression for the calculation of the sample size is given by:

[tex]n= (\frac{\sigma Z_{\frac{\alpha}{2}}}{\epsilon})^2=(\frac{18000*1.95996}{4200})^2=70.5571[/tex]

Answer 2

You can use the margin of error formula to get  the needed sample size.

The needed sample size for the given condition is 71

What is the margin of error for large samples?

Suppose that we have:

Sample size n > 30Sample standard deviation = [tex]s[/tex]Population standard deviation = [tex]\sigma[/tex]Level of significance = [tex]\alpha[/tex]

Then the margin of error(MOE) is obtained as

Case 1: Population standard deviation is known

[tex]MOE = Z_{\alpha /2}\dfrac{\sigma}{\sqrt{n}}[/tex]

Case 2: Population standard deviation is unknown.

[tex]MOE = Z_{\alpha /2}\dfrac{s}{\sqrt{n}}[/tex]

where [tex]Z_{\alpha/2}[/tex] is critical value of the test statistic at level of significance  [tex]\alpha[/tex]

Using the above formula, we get the sample size needed as

Since the limit of error is $4200, thus,

MOE = $4200

The level of significance is [tex]\alpha[/tex] = 100 - 95% = 5% = 0.05

Critical value  [tex]Z_{\alpha/2}[/tex] at 0.05 level of significance for two tailed test is 1.96

The standard deviation estimate(sample standard deviation) is s= $18000, thus, we have:

[tex]MOE = Z_{\alpha /2}\dfrac{s}{\sqrt{n}}[/tex]

[tex]4200 = 1.96 \times \dfrac{18000}{\sqrt{n}}\\\\n = (\dfrac{35280}{4200})^2 = (8.4)^2 = 70.56[/tex]

Since MOE is inversely proportional to root of n, thus, we will take sample as 71 which will make MOE to be less than (or say within, as asked in problem) $4200.

Thus,

The needed sample size for the given condition is 71

Learn more about margin or error here:

https://brainly.com/question/13990500


Related Questions

A patient is ordered 60 mg/kg/day of an antibiotic to be divided in 3 doses per day. The patient weighs 60 kg. How many mg of drug should they receive per dose and how many mg of drug should they receive per day Round answers to the nearest tenth and DO NOT include units

Answers

Answer:

3600 mg of drug per day.

[tex]\text{The amount of drug per dosage}=\text{1200 mg}[/tex]

Step-by-step explanation:

We have been given that a patient is ordered 60 mg/kg/day of an antibiotic.

Since the weight of the patient is 60 kg, so the dosage of drug per day would be 60 mg times 60.

[tex]\text{The dosage of drug per day}=\frac{\text{60 mg}}{\text{ kg}}\times 60\text{ kg}[/tex]

[tex]\text{The dosage of drug per day}=\text{60 mg}\times 60[/tex]

[tex]\text{The dosage of drug per day}=\text{3600 mg}[/tex]

Therefore, the patient should receive 3600 mg of drug per day.

Since the patient gets 3 doses per day, so dosage of drug per dosage would be amount of drug per day divided by 3.

[tex]\text{The amount of drug per dosage}=\frac{\text{3600 mg}}{3}[/tex]

[tex]\text{The amount of drug per dosage}=\text{1200 mg}[/tex]

Therefore, the amount of drug per dosage would be 1200 mg.

Find all values of m so that the function y = xm is a solution of the given differential equation. (Enter your answers as a comma-separated list.)

x^2y'' − 14xy' + 54y = 0

m =

Answers

Answer:

m = 6,9  

Step-by-step explanation:

We are given that [tex]y = x^m[/tex] is a solution to given differential equation.

[tex]x^2y'' - 14xy' + 54y = 0[/tex]  

First we 3evaluate the value of:

[tex]y'' = m(m-1)x^{(m-2)}[/tex]

[tex]y' = mx^{(m-1)}[/tex]

Putting these value in the above differential equation, we get,

[tex]x^2m(m-1)x^{(m-2)} + 14xmx^{(m-1)} + 54x^m = 0[/tex]

[tex]x^m[m(m-1) -14m + 54] = 0[/tex]

[tex]x^m(m^2 - 15m + 54) = 0[/tex]

[tex](m^2 - 15m + 54) = 0[/tex]

[tex](m-9)(m-6) = 0[/tex]

[tex]m = 9,6[/tex]

Thus, for m = 9,6 , the function [tex]y = x^m[/tex] is a solution of given differential equation.

Values of m so that the function [tex]y = x^m[/tex] is a solution of the given differential equation are 6 and 9 and this can be determined by differentiating the [tex]y = x^m[/tex].

Given :

[tex]y = x^m[/tex][tex]x^2y"-14xy'+54y = 0[/tex]   ------ (1)

The following calculations can be used to determine the value of 'm':

[tex]y = x^m[/tex]  ---- (2)

Now, differentiate the above equation with respect to 'x'.

[tex]\dfrac{dy}{dx}=\dfrac{d}{dx}(x^m)[/tex]

[tex]y' = mx^{m-1}[/tex]   ----- (3)

Now, differentiate equation (2) with respect to 'x'.

[tex]\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}(mx^{m-1})[/tex]

[tex]y" = m(m-1)x^{m-2}[/tex]    ----- (4)

Now, put the values of y, y', and y" in equation (1).

[tex]x^2\times m(m-1)x^{m-2}-14x(mx^{m-1})+54x^m=0[/tex]

[tex]x^m(m(m-1)-14m+54)=0[/tex]

[tex]x^m(m^2-15m+54)=0[/tex]

(m - 9)(m - 6) = 0

m = 9 , 6

For more information, refer to the link given below:

https://brainly.com/question/13077606

The slope f′(x) at each point (x,y) on a curve y=f(x) is given, along with a point (a,b) on the curve. Use this information to find f(x). f′(x) = 4x/(1 + 7x^2) (0,10) NOTE: OF absolute value symbols, | | , are needed for the answer, then use abs(expression). For example, ln|x| must be entered as ln(abs(x))

Answers

[tex]f'(x)=\dfrac{4x}{1+7x^2}[/tex]

Integrating gives

[tex]f(x)=\displaystyle\int\frac{4x}{1+7x^2}\,\mathrm dx[/tex]

To compute the integral, substitute [tex]u=1+7x^2[/tex], so that [tex]\frac27\,\mathrm du=4x\,\mathrm dx[/tex]. Then

[tex]f(x)=\displaystyle\frac27\int\frac{\mathrm du}u=\frac27\ln|u|+C[/tex]

Since [tex]u=1+7x^2>0[/tex] for all [tex]x[/tex], we can drop the absolute value, so we end up with

[tex]f(x)=\dfrac27\ln(1+7x^2)+C[/tex]

Given that [tex]f(0)=10[/tex], we have

[tex]10=\dfrac27\ln1+C\implies C=10[/tex]

so that

[tex]\boxed{f(x)=\dfrac27\ln(1+7x^2)+10}[/tex]


Find an equation of a line with the x- and y-intercepts below. Use exact fractions when necessary.

x-intercept 7; y-intercept -5

Answers

Answer:

The line with the x- and y-intercepts below has the following equation:

[tex]f(x) = \frac{5x}{7} - 5[/tex]

Step-by-step explanation:

The equation of the line has the following format:

[tex]f(x) = ax + b[/tex]

We are given two points, we are going to substitute them into the above equation, and find the equation of the line given the conditions.

Solution

Starting from the y-intercept makes the solution easier, since the term a is multiplied by 0

y-intercept -5

This means that when [tex]x = 0, y = f(x) = -5[/tex], so:

[tex]f(x) = ax + b[/tex]

[tex]-5 = a(0) + b[/tex]

[tex]b = -5[/tex]

For now, the line has the following equation:

[tex]f(x) = ax - 5[/tex]

x-intercept 7

This means that when [tex]y = f(x) = 0,x = 7[/tex], so:

[tex]f(x) = ax - 5[/tex]

[tex]0 = 7(a) - 5[/tex]

[tex]7a = 5[/tex]

[tex]a = \frac{5}{7}[/tex]

So, the line with the x- and y-intercepts below has the following equation:

[tex]f(x) = \frac{5x}{7} - 5[/tex]

Rewrite using necessary or sufficient condition, as appropriate: "if the oven is hot then you may put the cake in."

Answers

Answer:

Answered

Step-by-step explanation:

"if the oven is hot then you may put the cake in". This the premise.

Now, The necessary condition will be "If the oven is hot" meaning the cake can be put inside the oven only when the oven is hot and not otherwise. So, here the hotness of the oven becomes the necessary condition.

"Oven is hot" is the necessary condition "to put the cake in"

A number multiplied by a negative three is 12.
(Can somebody please help me write this into an expression??) :(

Answers

In order to find the answer to this question you will have to find the missing number in the given numbers we have then fill in the blank to make your expression and your answer.

[tex]-3 = 12[/tex]

[tex]-4 \times -3 = 12[/tex]

[tex]= -4[/tex]

Therefore your answer is "-4 * -3 = 12."

Hope this helps.

One milligram of streptomycin sulfate contains the antibiotic activity of 650 μg of streptomycin base. How many grams streptomycin sulfate would be the equivalent of 1 g of streptomycin base?

Answers

Answer:

1.538 g of streptomycin sulfate

Step-by-step explanation:

As we know, we have 650 μg of streptomycin base in 1 milligram of streptomycin sulfate.

If we convert everithing to grams:

650 μg= 0.00065 g of Streptomycin base for every 0.001 grams of Streptomycin Sulfate so we have :0.001 grs Streptomycin Sulfate/0.00065 gr Streptomycin base=1.538 gr Streptomycin Sulfate/Streptomycin base

Now if we want 1 gram of Streptomycin base we will need:

1 g of Streptomycin base*1.538 gr Streptomycin Sulfate/Streptomycin base= 1.538 gr Streptomycin Sulfate

Replacement times for CD players are normally distributed
with=5.5
years (66 months) and
= 1.5 years (18 months). Find the probabilitythat a randomly
selected CD player will have a replacement time orMORE THAN 7
YEARS.

Answers

Answer:

0.04

Step-by-step explanation:

X~N(μ=14.2; σ=0.9), a=7

[tex]P(X>7)=1-P(X\leq 7)[/tex]

[tex]P(0\leq X\leq a)=P(\frac{0-\mu}{\sigma} \leq \frac{X-\mu}{\sigma}\leq \frac{a-\mu}{\sigma}), Z= \frac{X-\mu}{\sigma}=P(0\leq X\leq a)=P(\frac{0-\mu}{\sigma} \leq \frac{X-\mu}{\sigma}\leq \frac{a-\mu}{\sigma}), Z= \frac{X-\mu}{\sigma}[/tex]

[tex]P(0\leq X\leq 7) = P(\frac{0-5.5}{1.5} \leq Z\leq \frac{7-5.5}{1.5}) = \Phi(1.66)-\Phi(-3.66) = \Phi(1.66) -(1-\Phi(3.66)) = 0.95-(1-0.99)=0.96[/tex]

P(X>7)=1-0.96=0.04

One side of a triangular lot is 150 ft and the angel oppiste this side is 55 degrees. Another angel is 63 degrees. Determine how much fencing is needed to enclose it.

Answers

Answer:

474.84 ft of fencing is needed

Step-by-step explanation:

We know that the angles of a triangle sum up 180º. We already know 2 of the triangle's angles (55º and 63º). Therefore the third angle measures:

180 - 55 - 63 = 62.

To know how much fencing is needed, we need the perimeter of the triangle, so we need to find out how much the other sides of the lot measure.

We will use law of sins to solve this problem.

First we solve for y:

[tex]\frac{150}{sin55}= \frac{y}{sin63}  \\y=150 (sin63)/(sin55)\\y=133.65/.8191\\y=163.16[/tex]

Now we solve for the other side of the lot, x:

[tex]\frac{150}{sin55}=\frac{x}{sin62}\\  x=150(sin62)/(sin55)\\x=150(.8829)/.8191\\x=132.435/.8191\\x=161.68[/tex]

Now that we have the measures of all the sides we sum them up

total fencing needed= 150 + 163.16 + 161.68 = 474.84

Suppose you pick 6 different numbers in [10]. Prove that 2 of the numbers are next to each other. (Hint: use the pigeonhole principle. What are the pigeons and what are the holes?)

Answers

Step-by-step explanation:

We are picking 6 numbers from the numbers 1,2,3,4,5,6,7,8,9,10. Since we care about numbers being next to each other, we might think of the 10 numbers as being distributed in 5 boxes (which you can think of as the holes):

|   1 2   |   3 4   |   5 6   |   7 8   |   9 10  |

So on the first box we have the numbers 1 and 2, on the second box we have the numbers 3 and 4, and so on. Since we are picking 6 numbers from those 10 numbers, that means we'll have to pick 6 boxes (and inside each box we pick a number), but we only have 5 available boxes, so by the pigeonhole principle, we'll have to pick 1 same box at least two times. Since on each picked box we'll need to pick a number, on this box which was picked two times, we will have to pick both of its numbers. And so those 2 numbers inside that box will be next to each other (meaning they're consecutive numbers).

A vial contains 80 mg of drug in 2 mL of injection. How many milliliters of the injection should be administered to obtain 0.02 g of the drug?

Answers

Answer:

0.5mL of the injection should be administered to obtain 0.02 g of the drug.

Step-by-step explanation:

First step: The first step of this problem is the conversion of 0.02g to mg.

Each gram has 1000 miligrams. So:

1g - 1000mg

0.02g - xmg

x = 1000*0.02

x = 20mg

Final step:

A vial contains 80 mg of drug in 2 mL of injection. How many mL should be administered to obtain 0.02 g = 20mg of the drug.

This can be solved as a rule of three problem.

In a rule of three problem, the first step is identifying the measures and how they are related, if their relationship is direct of inverse.

When the relationship between the measures is direct, as the value of one measure increases, the value of the other measure is going to increase too.

When the relationship between the measures is inverse, as the value of one measure increases, the value of the other measure will decrease.

In this step, as the dose of the injection increases, so the quantity of the drug. So the relationship between the measures is direct. So:

80 mg - 2mL

20 mg - xmL

80x = 40

[tex]x = \frac{40}{80}[/tex]

x = 0.5mL

0.5mL of the injection should be administered to obtain 0.02 g of the drug.

Final answer:

To obtain 0.02 grams of the drug, the required volume to administer from the vial containing 80 mg in 2 mL is 0.5 mL.

Explanation:

To solve this problem, we need to determine how many milliliters contain 0.02 grams of the drug. First, convert the amount we want from grams to milligrams since our given concentration is in milligrams: 0.02 grams is equal to 20 milligrams.

Given that the vial contains 80 mg of drug in 2 mL, we can calculate the volume required for 20 mg. The formula we will use is:

(desired dose / concentration of vial) × volume of vial = required volume

(20 mg / 80 mg) × 2 mL = 0.5 mL

Therefore, to obtain 0.02 grams (20 mg) of the drug, the required volume to administer would be 0.5 mL.

Assistance in understanding and solving this example on Elementary Number Theory with the details of the solution to better understand, thanks.

a) Find all solutions to 3x+4y=60 in positive integers.

b) A roadside stand bought 11 large baskets of eggs from a farmer and sold 39 small baskets of eggs, which hold fewer than a dozen. There were 19 eggs left over. How many eggs does a large basket hold?

Answers

Answer:

a)

x  |  y

==========

16  |  3

12  |  6

8   |  9

4   |  12

b) A large basket contains 23 eggs

Step-by-step explanation:

a) Isolating 3x, we get

3x = 60-4y

This means that 60-4y is a multiple of 3.

Besides, as x is a positive integer, then x = 60-4y has to be greater than zero

60-4y>0

Solving the inequality for y

60>4y

60/4 > y

15>y (or y<15, which is the same)

The multiples of 3 which are smaller than 15 are 3,6,9 and 12

Now we draw a table for these values of y and found the value of x by replacing in the equation 3x = 60-4y---> x = (60-4y)/3

x  |  y

=======

16  |  3

12  |  6

8   |  9

4   |  12

And these are all the solutions in positive integers.

b) This problem is pretty much like problem a)

Let's call x the number of eggs contained in the large baskets and y the number of eggs contained in the small baskets.

Then

Number of eggs bought - number of eggs sold = number of eggs left over.

In this case

11x-39y = 19

But we also know that 0<y<12 because the small baskets hols fewer than a dozen.

Isolating x in the equation 11x-39y + 19, we get

x=(19+39y)/11

Now we make a table with these values of x and y remembering that y is a positive integer smaller than 12

x   | y

=======

5.2  | 1

8.8  | 2

12.4 | 3

15.9 | 4

19.5 | 5

23   | 6

26.6 | 7

30.1 | 8

33.6 | 9

37.2 |10

40.7 |11

From this table we see that the only integer solution for x is 23, so a large basket contains 23 eggs.

If P and Q are predicates over some domain, and if it is true that Vx(P(x)V Q(x)), must VxP(x) v VæQ(x) also be true? Explain.

Answers

Answer:

It is not true

Step-by-step explanation:

Suppose your domain is the integer numbers. Define

P(x)="x is even"

Q(x)="x is odd"

So we have that the predicate [tex]\forall x(P(x) \vee Q(x))[/tex] is always true because the integers are always even or odd. But the predicate [tex]\forall x P(x) \vee \forall x Q(x)[/tex] means that all the integer numbers are even or all the integer numbers are odd, which is false. So we can't deduce [tex]\forall x P(x) \vee \forall x Q(x)[/tex] from [tex]\forall x(P(x) \vee Q(x))[/tex].

Solve the following circle graph problems.

If savings are represented by 45° on a circle graph showing all expenses, and the total expenses are $1440, how much go into savings?

Select one:

a. $240

b. $120

c. $180

d. $300

Answers

Answer:

$180 go into savings

Step-by-step explanation:

Given : Savings are represented by 45° on a circle graph showing all expenses.

Total expenses are $1440

To Find : How much go into savings?

Solution:

Total angle of expense = 360°

Savings = [tex]\frac{\text{Saving angle}}{\text{Total angle}} \times 1440[/tex]

            = [tex]\frac{45}{360} \times 1440[/tex]

            = [tex]180[/tex]

Hence $180 go into savings

You are asked to bake muffins for a breakfast meeting. Just as you are about to start making them, you get a call saying that the number of people coming to the meeting has doubled! Your original recipe called for three eggs. How many eggs do you need to make twice as many muffins?

Answers

Answer:  6

Step-by-step explanation:

Given : The number of eggs required to make the current muffin receipe = 3

If the number of people coming to the meeting has doubled, then we need twice of as many eggs .

i.e. the number of eggs required to make twice of muffin =[tex]2\times3=6[/tex]

Hence, the number of people coming to the meeting has doubled = 6

Calculate the potential energy associated with 1 m^3 of water at 607 feet tall taking the mass of 1 m^3 of water to be 1000 kg

Answers

Answer:

The potential energy associated with the given mass equals 1814.98 kilo Joules.

Step-by-step explanation:

We know that for a object of mass 'm' standing at a height of 'h' meters above the surface of earth the potential energy associated with the object is given by

[tex]P.E=mass\times g\times h[/tex]

where

'g' is acceleration due to gravity.

Since it is given that mass of 1 cubic meter of water is 1000 kilograms that the mass associated with given quantity of water is also 1000 kilograms since the volume is 1 cubic meter.

The height is given as 607 feet = [tex]{607}\times 0.3048=185.0136[/tex]meters

Applying the values in the above equation we get

[tex]P.E=1000\times 9.81\times 185.0136=1814.98kJ[/tex]  

John sells hot dogs from a cart outside an office building 5 days a week. If the price of a hot dog is $3, what is John’s weekly revenue from hot dogs if he sells 47 each day.

Answers

Answer:

John’s weekly revenue from hot dogs = [tex]\$705[/tex]

Step-by-step explanation:

John  sells hot dogs from a cart outside an office building 5 days a week .

Price of a hot dog = [tex]\$3[/tex]

Number of hot dogs sold each day = 47

So, total number of hot dogs sold on 5 days = 5 × Number of hot dogs sold each day = 5 × 47 = [tex]235[/tex]

We need to find John’s weekly revenue from hot dogs if he sells 47 each day.

John’s weekly revenue from hot dogs = Price of a hot dog × total number of hot dogs sold on 5 days = 3 × 235 = [tex]\$705[/tex]

In 1912, the RMS Titanic, a British passenger ship, sank in the North Atlantic Ocean after colliding with an iceberg. Historians do not know the exact passenger list, so the death toll is estimated. Here is data from the 2201 passengers on board, by cabin class. First Class Second Class Third Class Crew Row Totals Died 122 167 528 673 1490 Survived 203 118 178 212 711 Col Totals 325 285 706 885 2201 Source: Wikipedia, RMS Titanic (2015) If we randomly select a passenger who survived the Titanic, what is the probability that this passenger is in a second class cabin?

Answers

Final answer:

The probability that a randomly selected survivor was in second class is calculated by dividing the number of second class passengers who survived (118) by the total number of survivors (711), resulting in a probability of 16.6%.

Explanation:

The subject of this question is probability. To calculate the probability that a randomly selected survival was in the second class cabin, we need to consider the number of second class passengers who survived compared to the total number of survivors. From the data provided, we can see that 118 passengers in second class survived the incident. The total number of survivors is 711.

Therefore, the probability (P) is calculated as follows:
P = Number of successful outcomes / Total number of outcomes.
Hence, P = 118 / 711 = 0.166.

This means that there is a 16.6% chance that a passenger who survived was from the second-class cabin.

Learn more about Probability here:

https://brainly.com/question/22962752

#SPJ12

Final answer:

The probability that a randomly selected survivor is from the second-class cabin is approximately 0.166, or 17% when rounded to the nearest percent.

Explanation:

Any calculation of probability involves dividing the number of favorable outcomes by the total number of outcomes. In this case, you want to find the probability that a randomly selected passenger who survived the Titanic was in a second-class cabin.

From the chart, we can see that 118 second-class passengers survived. The total number of survivors is 711. Hence, the probability of a survivor being from the second-class cabin is given by the formula:

Probability = favorable outcomes / total outcomes = number of second class survivors / total number of survivors.

Substituting these values into the formula we get: Probability = 118 / 711 = 0.166, or around 17% when rounded to the nearest percent.

So, if we randomly select a passenger who survived the Titanic, there is a 17% probability that this passenger is in a second-class cabin.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ2

State whether the following statement is true or​ false, and explain why. If the statement is​ false, state the true change. A high school reports that its​ students' SAT scores were down by 12​% in one year. The next​ year, however, the test scores rose by 20​%. The high school principal​ announces, "Overall, test scores have improved by 8​% over the past two​ years."

Answers

False. The high school principal's claim of an overall improvement of 8% is incorrect; the actual improvement is 5.6% over the two years.

Initial SAT scores were down by 12%.

Next year, the scores rose by 20%.

Let's assume the initial SAT score was 100 (just for simplicity):

After the 12% decrease: 100 - 12% of 100

= 88.

After the 20% increase on 88:

88 + 20% of 88

= 105.6.

So, in this scenario, the scores have actually increased from 100 to 105.6, which is an increase of 5.6%, not 8%.

Hence, the high school principal's claim of an overall improvement of 8% is incorrect. The true change is an increase of 5.6% over the two years.

To learn more on Percentage click:

https://brainly.com/question/24159063

#SPJ12

Final answer:

The principal's statement is false because percentage change does not simply add and subtract, but rather it compounds. After the changes, the scores have increased by 5.6% of the original scores, not 8%.

Explanation:

The statement given by the principal is false. It's a common misconception that you can add and subtract percentages like usual numbers.

Let's say the original score was 100%. A 12% decrease would leave the scores at 88% of their original. The next year, when the scores rose by 20%, it didn't rise by 20% of the original 100%, but 20% of the new 88%, that is, 17.6%, making the new score 105.6% of the original scores.

So, over the two years, the scores did not increase by 8%, but rather, they increased by 5.6% of the original scores. The principal does not correctly understand the mathematical concept of percentage change.

Learn more about Percentage Change here:

https://brainly.com/question/35855541

#SPJ11


Assume that 155 students are surveyed and every student takes at least one of the following languages. The results of the survey are as follows:

90 take French.

83 take German.

42 take French and German.

41 take German and Russian.

22 take French as their only foreign language.

22 take French, Russian, and German.

(1) How many take Russian?

(2) How many take French and Russian but not German?

Answers

Answer:

91 people take Russian

26 people take French and Russian but not German

Step-by-step explanation:

To solve this problem, we must build the Venn's Diagram of this set.

I am going to say that:

-The set A represents the students that take French.

-The set B represents the students that take German

-The set C represents the students that take Russian.

We have that:

[tex]A = a + (A \cap B) + (A \cap C) + (A \cap B \cap C)[/tex]

In which a is the number of students that take only Franch, A \cap B is the number of students that take both French and German , A \cap C is the number of students that take both French and Russian and A \cap B \cap C is the number of students that take French, German and Russian.

By the same logic, we have:

[tex]B = b + (B \cap C) + (A \cap B) + (A \cap B \cap C)[/tex]

[tex]C = c + (A \cap C) + (B \cap C) + (A \cap B \cap C)[/tex]

This diagram has the following subsets:

[tex]a,b,c,(A \cap B), (A \cap C), (B \cap C), (A \cap B \cap C)[/tex]

There are 155 people in my school. This means that:

[tex]a + b + c + (A \cap B) + (A \cap C) + (B \cap C) + (A \cap B \cap C) = 155[/tex]

The problem states that:

90 take Franch, so:

[tex]A = 90[/tex]

83 take German, so:

[tex]B = 83[/tex]

22 take French, Russian, and German, so:

[tex]A \cap B \cap C = 22[/tex]

42 take French and German, so:

[tex]A \cap B = 42 - (A \cap B \cap C) = 42 - 22 = 20[/tex]

41 take German and Russian, so:

[tex]B \cap C = 41 - (A \cap B \cap C) = 41 - 22 = 19[/tex]

22 take French as their only foreign language, so:

[tex]a = 22[/tex]

Solution:

(1) How many take Russian?

[tex]C = c + (A \cap C) + (B \cap C) + (A \cap B \cap C)[/tex]

[tex]C = c + (A \cap C) + 19 + 22[/tex]

[tex]C = c + (A \cap C) + 41[/tex]

First we need to find [tex]A \cap C[/tex], that is the number of students that take French and Russian but not German. For this, we have to go to the following equation:

[tex]A = a + (A \cap B) + (A \cap C) + (A \cap B \cap C)[/tex]

[tex]90 = 22 + 20 + (A \cap C) + 22[/tex]

[tex](A \cap C) + 64 = 90[/tex].

[tex](A \cap C) = 26[/tex]

----------------------------

The number of students that take Russian is:

[tex]C = c + 26 + 41[/tex]

[tex]C = c + 67[/tex]

------------------------------

Now we have to find c, that we can find in the equation that sums all the subsets:

[tex]a + b + c + (A \cap B) + (A \cap C) + (B \cap C) + (A \cap B \cap C) = 155[/tex]

[tex]22 + b + c + 20 + 26 + 19 + 22 = 155[/tex]

[tex]b + c + 109= 155[/tex]

[tex]b + c = 46[/tex]

For this, we have to find b, that is the number of students that take only German. Then we go to this eqaution:

[tex]B = b + (B \cap C) + (A \cap B) + (A \cap B \cap C)[/tex]

[tex]B = b + 19 + 20 + 22[/tex]

[tex]B = b + 61[/tex]

[tex]b + 61 = 83[/tex]

[tex]b = 22[/tex]

-------

[tex]b + c = 46[/tex]

[tex]c = 46 - b[/tex]

[tex]c = 24[/tex]

The number of people that take Russian is:

[tex]C = c + 67[/tex]

[tex]C = 24 + 67[/tex]

[tex]C = 91[/tex]

91 people take Russian

(2) How many take French and Russian but not German?

[tex](A \cap C) = 26[/tex]

26 people take French and Russian but not German

How many grams are 2.7x10-^4 grams

Answers

Answer:

0,00027 grams!

Step-by-step explanation:

This is a scientific notation problem.

When a number is followed by a [tex]10^{-1}[/tex], it means that said number has one zero at the beginning.

In this case, the number is followed by [tex]10^{-4}[/tex], so that means that 2.7 has four zeros at the beginning. So, 2.7x[tex]10^{-4}[/tex] grams is equal to 0,00027 grams! (always the comma goes after the first zero).

The expression "2.7x10^-4 grams" is already given in grams, using scientific notation, and does not require a unit conversion since it is already in the unit we are interested in (grams). To understand what this quantity represents in standard decimal form, let's break down the scientific notation:

Scientific notation is a way of expressing very large or very small numbers in a compact form. The notation "2.7x10^-4" means that you take the number 2.7 and multiply it by 10 raised to the power of -4.

The term "10^-4" means "1 divided by 10 to the 4th power," which is the same as 0.0001 (1 followed by 4 zeros in the denominator).

To convert "2.7x10^-4" to its decimal form, you would perform the multiplication:

2.7 × 0.0001 = 0.00027

So, "2.7x10^-4 grams" is equal to 0.00027 grams in standard decimal notation.

Keith has 40-pound bags of mulch in his truck that weigh a total of 3600 pounds. His Owner’s Manual lists the truck’s capacity as at most 3000 pounds. How many bags does Keith need to remove in order to meet the weight requirements?
Please show step by step explanation

Answers

Final answer:

Keith is 600 pounds over the weight limit of his truck. Given that each bag of mulch weighs 40 pounds, Keith needs to remove 15 bags of mulch to be within the truck's weight capacity.

Explanation:

This is a straightforward math problem involving subtraction and division. First, let's find out how much weight is over the truck's capacity. Keith's truck is currently carrying 3600 pounds of mulch, but his truck's capacity is only 3000 pounds. So, he is over by 3600 - 3000 = 600 pounds.

Each bag of mulch weighs 40 pounds, so to find out how many bags Keith needs to remove, we simply divide the total excess weight by the weight of each bag: 600 / 40 = 15 bags. Therefore, Keith needs to remove 15 bags of mulch from his truck to meet the weight requirements.

Learn more about Subtraction and Division here:

https://brainly.com/question/1292482

#SPJ12

Final answer:

Keith needs to remove 15 bags of mulch to meet the weight requirements.

Explanation:

To find out how many bags Keith needs to remove, we need to determine the weight of one bag of mulch. If he has 40-pound bags and a total weight of 3600 pounds, we can divide the total weight by the weight of one bag:

Number of bags = Total weight / weight of one bag = 3600 pounds / 40 pounds = 90 bags

Since the truck's capacity is at most 3000 pounds, Keith needs to remove the excess weight:

Excess weight = Total weight - Truck's capacity = 3600 pounds - 3000 pounds = 600 pounds

Now, we can calculate how many bags he needs to remove using the weight of one bag:

Bags to remove = Excess weight / weight of one bag = 600 pounds / 40 pounds = 15 bags

Learn more about Mulch bags here:

https://brainly.com/question/15368655

#SPJ12

Use Gaussian Elimination to find an equation of a polynomial that passes through points A(-5,-3), B(-2,3). C(3,3), D(6,19). Indicates row operations with the R notation. Leave coefficients in fraction form, do not report in decimals.

Answers

Answer:

The polynomial equation that passes through the points is [tex]2-\frac{2}{3}x+\frac{1}{12}x^{2}+\frac{1}{12}x^{3}[/tex]

Step-by-step explanation:

Suppose you have a function y = f(x) which goes through these points

A(-5,-3), B(-2,3). C(3,3), D(6,19)

there is a polynomial P(x) of degree 3 which goes through these point.

We use the fact that four distinct points will determine a cubic function.

P(x) is the degree 3 polynomial through the 4 points, a standard way to write it is

[tex]P(x) = a+bx+cx^2+dx^3[/tex]

Next replace the given points one by one, which leads to a system of 4 equations and 4 variables (namely a,b,c,d)

[tex]-3=a+b\cdot-5+c\cdot -5^2+d\cdot -5^3\\3=a+b\cdot-2+c\cdot -2^2+d\cdot -2^3\\3=a+b\cdot 3+c\cdot 3^2+d\cdot 3^3\\19=a+b\cdot 6+c\cdot 6^2+d\cdot 6^3[/tex]

We can rewrite this system as follows:

[tex]-3=a-5\cdot b+25\cdot c-125\cdot d\\3=a-2\cdot b+4\cdot c-8\cdot d\\3=a+3\cdot b+9\cdot c+27\cdot d\\19=a+6\cdot b+36\cdot c+216\cdot d[/tex]

To use the Gaussian Elimination we need to express the system of linear equations in matrix form (the matrix equation Ax=b).

The coefficient matrix (A) for the above system is

[tex]\left[\begin{array}{cccc}1&-5&25&-125\\1&-2&4&-8\\1&3&9&27\\1&6&36&216\end{array}\right][/tex]

the variable matrix (x) is

[tex]\left[\begin{array}{c}a&b&c&d\end{array}\right][/tex]

and the constant matrix (b) is

[tex]\left[\begin{array}{c}-3&3&3&19\end{array}\right][/tex]

We also need the augmented matrix, it is obtained by appending the columns of the coefficient matrix and the constant matrix.

[tex]\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\1&-2&4&-8&3\\1&3&9&27&3\\1&6&36&216&19\end{array}\right][/tex]

To transform the augmented matrix to the reduced row echelon form we need to follow these steps:

Subtract row 1 from row 2 [tex]\left(R_2=R_2-R_1\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&3&-21&117&6\\1&3&9&27&3\\1&6&36&216&19\end{array}\right][/tex]

Subtract row 1 from row 3 [tex]\left(R_3=R_3-R_1\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&3&-21&117&6\\0&8&-16&152&6\\1&6&36&216&19\end{array}\right][/tex]

Subtract row 1 from row 4 [tex]\left(R_4=R_4-R_1\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&3&-21&117&6\\0&8&-16&152&6\\0&11&11&341&22\end{array}\right][/tex]

Divide row 2 by 3 [tex]\left(R_2=\frac{R_2}{3}\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&-5&25&-125&-3\\0&1&-7&39&2\\0&8&-16&152&6\\0&11&11&341&22\end{array}\right][/tex]

Add row 2 multiplied by 5 to row 1 [tex]\left(R_1=R_1+\left(5\right)R_2\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&8&-16&152&6\\0&11&11&341&22\end{array}\right][/tex]

Subtract row 2 multiplied by 8 from row 3 [tex]\left(R_3=R_3-\left(8\right)R_2\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&0&40&-160&-10\\0&11&11&341&22\end{array}\right][/tex]

Subtract row 2 multiplied by 11 from row 4 [tex]\left(R_4=R_4-\left(11\right)R_2\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&0&40&-160&-10\\0&0&88&-88&0\end{array}\right][/tex]

Divide row 3 by 40 [tex]\left(R_3=\frac{R_3}{40}\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&-10&-70&7\\0&1&-7&39&2\\0&0&1&-4&-1/4\\0&0&88&-88&0\end{array}\right][/tex]

Add row 3 multiplied by 10 to row 1 [tex]\left(R_1=R_1+\left(10\right)R_3\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&-7&39&2\\0&0&1&-4&-1/4\\0&0&88&-88&0\end{array}\right][/tex]

Add row 3 multiplied by 7 to row 2 [tex]\left(R_2=R_2+\left(7\right)R_3\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&88&-88&0\end{array}\right][/tex]

Subtract row 3 multiplied by 88 from row 4 [tex]\left(R_4=R_4-\left(88\right)R_3\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&0&264&22\end{array}\right][/tex]

Divide row 4 by 264 [tex]\left(R_4=\frac{R_4}{264}\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&30&9/2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&0&1&1/12\end{array}\right][/tex]

Subtract row 4 multiplied by 30 from row 1 [tex]\left(R_1=R_1-\left(30\right)R_4\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&0&2\\0&1&0&11&1/4\\0&0&1&-4&-1/4\\0&0&0&1&1/12\end{array}\right][/tex]

Subtract row 4 multiplied by 11 from row 2 [tex]\left(R_2=R_2-\left(11\right)R_4\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&0&2\\0&1&0&0&-2/3\\0&0&1&-4&-1/4\\0&0&0&1&1/12\end{array}\right][/tex]

Add row 4 multiplied by 4 to row 3 [tex]\left(R_3=R_3+\left(4\right)R_4\right)[/tex]

[tex]\left[\begin{array}{cccc|c}1&0&0&0&2\\0&1&0&0&-2/3\\0&0&1&0&1/12\\0&0&0&1&1/12\end{array}\right][/tex]

From the reduced row-echelon form the solutions are:

[tex]\left[\begin{array}{c}a=2&b=-2/3&c=1/12&d=1/12\end{array}\right][/tex]

The polynomial P(x) is:

[tex]2-\frac{2}{3}x+\frac{1}{12}x^{2}+\frac{1}{12}x^{3}[/tex]

We can check our solution plotting the polynomial and checking that it passes through the points.

use completeling the square to solve for x in the equation (x-12)(x+4)=9

Answers

Answer:

x= [tex]4\pm \sqrt{73}[/tex]

Step-by-step explanation:

First step. Solve the binomial product from the left side of the equation:

[tex](x-12)(x+4)=9[/tex]

[tex]x^2+4x-12x-48=9[/tex]

Second step. Simplify and move independent terms to the right side of the equation:

[tex]x^2-8x=57[/tex]

Third step. Find a number that multiplied by two gives -8, then square this number and sum it on both sides of the equation:

[tex]x^2-8x+16=57+16[/tex]

Fourth step. Write the left side of the equation as a squared binomial:

[tex](x-4)^2=73[/tex]

Fifth step. First, take the square root and then add 4 to both sides of the equation to solve for x:

[tex](x-4)=\pm \sqrt{73}[/tex]

[tex]x= 4\pm \sqrt{73}[/tex]

Determine whether p ∧ (p → q) and p ∧ q are logically equivalent.

Answers

Answer:

Yes they are logically equivalent

p∧(p→q)≡p∧q

Step-by-step explanation:

The statements are logically equivalent if they have the same truth tables. So let´s use truth tables in order to determine if they are logically equivalent or not:

The picture that I attached you shows the truth table for each case. As you can see, p∧(p→q) has exactly the same truth values as p∧q. So we can conclude that they are logically equivalent.

Suppose that Jane borrows $8400 from a bank on April 9 at an annual rate of 9.2% simple interest. How much does she owe on August 20 of the same year?

Answers

Answer:

274.576 + 8400 = $8674.576

Step-by-step explanation:

Here, Number of days = 21 + 31 +30 +31 +20 = 123

We know that,

[tex]Simple Interest = \frac{P\timesT\timesR}{100}[/tex]

where, P = Principle = 8400

T = time = 123 ÷ 365

R = Rate = 9.2

⇒ [tex]Simple Interest = \frac{8400\times123\times9.2}{365\times100}[/tex]

⇒ Simple Interest = 274.576

Thus, total amount Jane has on 20 August = 274.576 + 8400 = $8674.576

You have a large jar that initially contains 30 red marbles and 20 blue marbles. We also have a large supply of extra marbles of each color. Draw a marble out of the jar. If it's red, put it back in the jar, and add three red marbles to the jar from the supply of extras. If it's blue, put it back into the jar, and add five blue marbles to the jar from the supply of extras. Do this two more times. Now, pull a marble from the jar, at random. What's the probability that this last marble is red? What's the probability that we actually drew the same marble all four times?

Answers

Answer:

There is a 57.68% probability that this last marble is red.

There is a 20.78% probability that we actually drew the same marble all four times.

Step-by-step explanation:

Initially, there are 50 marbles, of which:

30 are red

20 are blue

Any time a red marble is drawn:

The marble is placed back, and another three red marbles are added

Any time a blue marble is drawn

The marble is placed back, and another five blue marbles are added.

The first three marbles can have the following combinations:

R - R - R

R - R - B

R - B - R

R - B - B

B - R - R

B - R - B

B - B - R

B - B - B

Now, for each case, we have to find the probability that the last marble is red. So

[tex]P = P_{1} + P_{2} + P_{3} + P_{4} + P_{5} + P_{6} + P_{7} + P_{8}[/tex]

[tex]P_{1}[/tex] is the probability that we go R - R - R - R

There are 50 marbles, of which 30 are red. So, the probability of the first marble sorted being red is [tex]\frac{30}{50} = \frac{3}{5}[/tex].

Now the red marble is returned to the bag, and another 3 red marbles are added.

Now there are 53 marbles, of which 33 are red. So, when the first marble sorted is red, the probability that the second is also red is [tex]\frac{33}{53}[/tex]

Again, the red marble is returned to the bag, and another 3 red marbles are added

Now there are 56 marbles, of which 36 are red. So, in this sequence, the probability of the third marble sorted being red is [tex]\frac{36}{56}[/tex]

Again, the red marble sorted is returned, and another 3 are added.

Now there are 59 marbles, of which 39 are red. So, in this sequence, the probability of the fourth marble sorted being red is [tex]\frac{39}{59}[/tex]. So

[tex]P_{1} = \frac{3}{5}*\frac{33}{53}*\frac{36}{56}*\frac{39}{59} = \frac{138996}{875560} = 0.1588[/tex]

[tex]P_{2}[/tex] is the probability that we go R - R - B - R

[tex]P_{2} = \frac{3}{5}*\frac{33}{53}*\frac{20}{56}*\frac{36}{61} = \frac{71280}{905240} = 0.0788[/tex]

[tex]P_{3}[/tex] is the probability that we go R - B - R - R

[tex]P_{3} = \frac{3}{5}*\frac{20}{53}*\frac{33}{58}*\frac{36}{61} = \frac{71280}{937570} = 0.076[/tex]

[tex]P_{4}[/tex] is the probability that we go R - B - B - R

[tex]P_{4} = \frac{3}{5}*\frac{20}{53}*\frac{25}{58}*\frac{33}{63} = \frac{49500}{968310} = 0.0511[/tex]

[tex]P_{5}[/tex] is the probability that we go B - R - R - R

[tex]P_{5} = \frac{2}{5}*\frac{30}{55}*\frac{33}{58}*\frac{36}{61} = \frac{71280}{972950} = 0.0733[/tex]

[tex]P_{6}[/tex] is the probability that we go B - R - B - R

[tex]P_{6} = \frac{2}{5}*\frac{30}{55}*\frac{25}{58}*\frac{33}{63} = \frac{49500}{1004850} = 0.0493[/tex]

[tex]P_{7}[/tex] is the probability that we go B - B - R - R

[tex]P_{7} = \frac{2}{5}*\frac{25}{55}*\frac{1}{2}*\frac{33}{63} = \frac{825}{17325} = 0.0476[/tex]

[tex]P_{8}[/tex] is the probability that we go B - B - B - R

[tex]P_{8} = \frac{2}{5}*\frac{25}{55}*\frac{1}{2}*\frac{30}{65} = \frac{750}{17875} = 0.0419[/tex]

So, the probability that this last marble is red is:

[tex]P = P_{1} + P_{2} + P_{3} + P_{4} + P_{5} + P_{6} + P_{7} + P_{8} = 0.1588 + 0.0788 + 0.076 + 0.0511 + 0.0733 + 0.0493 + 0.0476 + 0.0419 = 0.5768[/tex]

There is a 57.68% probability that this last marble is red.

What's the probability that we actually drew the same marble all four times?

[tex]P = P_{1} + P_{2}[/tex]

[tex]P_{1}[/tex] is the probability that we go R-R-R-R. It is the same [tex]P_{1}[/tex] from the previous item(the last marble being red). So [tex]P_{1} = 0.1588[/tex]

[tex]P_{2}[/tex] is the probability that we go B-B-B-B. It is almost the same as [tex]P_{8}[/tex] in the previous exercise. The lone difference is that for the last marble we want it to be blue. There are 65 marbles, 35 of which are blue.

[tex]P_{2} = \frac{2}{5}*\frac{25}{55}*\frac{1}{2}*\frac{35}{65} = \frac{875}{17875} = 0.0490[/tex]

[tex]P = P_{1} + P_{2} = 0.1588 + 0.0490 = 0.2078[/tex]

There is a 20.78% probability that we actually drew the same marble all four times

Use a proof by contradiction to prove that the sum of two odd integers is even CM

Answers

Answer:

The sum of two odd integers is even

Step-by-step explanation:

Proof by contradiction:

We are going to assume that the sum of two odd integers is odd.

An odd integer is written as 2p+1 where p is an integer and an even integer is written as 2p where p is an integer

So, if the sum of two odd integers is odd we would have

[tex](2k+1) + (2p+1) = 2r+1\\2k+1+2p+1=2r+1\\2k+2p+2=2r+1\\2(k+p+1)=2r+1[/tex]

The left side of the equation is clearly an even number while the right side of the equation is odd. Therefore, our hypothesis is wrong and we can conclude that the sum of two odd integers is even.

Evaluate 4P3

24

7

10

12

Answers

Answer:

  24

Step-by-step explanation:

4P3 = 4!/(4-3)! = 4·3·2 = 24

Consider the quadratic function f(x) = -x^2 + 1x + 12. Determine the following: (enter all numerical answers as integers, fractions, or decimals): The smallest -intercept is 2 = The largest x-intercept is z = The y-intercept is y = The vertex is ( The line of symmetry has the equation Preview

Answers

Answer and Explanation:

Given : The quadratic function [tex]f(x)=-x^2+x+12[/tex]

To find : Determine the following ?

Solution :

The x -intercept are where f(x)=0,

So, [tex]-x^2+x+12=0[/tex]

Applying middle term split,

[tex]-x^2+4x-3x+12=0[/tex]

[tex]-x(x-4)-3(x-4)=0[/tex]

[tex](x-4)(-x-3)=0[/tex]

[tex]x=4,-3[/tex]

The x-intercepts are (4,0) and (-3,0).

The smallest x-intercept is x=-3

The largest x-intercept is x=4

The y -intercept are where x=0,

So, [tex]f(0)=-(0)^2+0+12[/tex]

[tex]f(0)=12[/tex]

The y-intercept is y=12.

The quadratic function is in the form, [tex]y=ax^2+bx+c[/tex]

On comparing, a=-1 , b=1 and c=1 2

The vertex of the graph is denote by (h,k) and the formula to find the vertex is

For h, The x-coordinate of the vertex is given by,

[tex]h=-\frac{b}{2a}[/tex]

[tex]h=-\frac{1}{2(-1)}[/tex]

[tex]h=\frac{1}{2}[/tex]

For k, The y-coordinate of the vertex is given by,

[tex]k=f(h)[/tex]

[tex]k=-h^2+h+12[/tex]

[tex]k=-(\frac{1}{2})^2+\frac{1}{2}+12[/tex]

[tex]k=-\frac{1}{4}+\frac{1}{2}+12[/tex]

[tex]k=\frac{-1+2+48}{4}[/tex]

[tex]k=\frac{49}{4}[/tex]

The vertex of the function is [tex](h,k)=(\frac{1}{2},\frac{49}{4})[/tex]

The x-coordinate of the vertex i.e. [tex]x=-\frac{b}{2a}[/tex] is the axis of symmetry,

So, [tex]x=-\frac{b}{2a}=\frac{1}{2}[/tex] (solved above)

The axis of symmetry is [tex]x=\frac{1}{2}[/tex].

Other Questions
Calculate the acceleration of gravity on the surface of the following worlds. How much would you weigh, in pounds, on each of the following worlds? A. Mars (mass 0.11 M_Earth) (radius 0.53 R_Earth) B. Venus (mass 0.82 M_Earth) (radius 0.95 R_Earth) C. Jupiter (mass 317.8 M_Earth) (radius 11.2 R_Earth) For June, Gold Corp. estimated sales revenue at $400,000. It pays sales commissionsthat are 4% of sales. The sales manager's salary is $190,000, estimated shippingexpenses total 1% of sales, and miscellaneous selling expenses are $10,000. How muchare budgeted selling expenses for the month of July if sales are expected to be$360,000? What is 42% of 75?A. 315B. 105C. 31.5D. 10.5 A truck traveling at a constant speed of 28 m/s passes a more slowly moving car. The instant the truck passes the car, the car begins to accelerate at a constant rate of 1.2 m/s^2 and passes the truck 545 m farther down the road. What was the speed of the car (in meters/second) when it was first passed by the truck? -3(y+3)=2y+3whats the answerrr is there even a solution??? In comparison to other sign languages around the world, why is ASL considered a sophisticated and mature form of signlanguage? Define ""green chemistry"" and ""ecological footprints"". NEED ANSWER ASAP!!Which of the following is not an example of harassment? being polite even if you dont like a person calling someone names making jokes about a person threatening a person The winds in a microburst are _______. If a tornado causes considerable damage with wind speeds of 111 to 135 miles per hour, it is classified as _______ on the Enhanced Fujita Scale. This type of major storm is called a/an _______, and it is driven primarily by the Coriolis effect. The weather pattern that stays over one area for an extended period of time is known as _______. Respond to the following based on your reading. What are the two types of downbursts, and how are they different? How is a funnel cloud different from a tornado? List the various stages in the formation of a tropical cyclone or hurricane, in order. Why does a hurricane begin to dissipate after it makes landfall? Explain how the heat index and the wind chill index are similar and different. What type of severe weather prevents sweat from evaporating to cool down bodies? What is the thermodynamic equilibrium constant under standard conditions for the following balanced redox reaction? Zr(s) + O2(g) - ZrO2 (s) Een=2.463 V Cultural differences influence variations in parenting styles. Researchers who study parenting in cultures other than European American families find that warmth and control are not the only significant factors to consider. For example, researchers have found that Latino parenting adds the dimension of:a. levels of showing respect.b. levels of granting autonomy.c. levels of resolving conflict.d. levels of imposing punishment. Now that you have come up with an equation that describes the relationship between amounts of different nucleotide bases in DNA, can you use it to predict the amounts of all four nucleotide bases when you only know the amount of one type of base? Approximately 21% of the human genome is comprised of nucleotides containing C. Given this information, calculate the percentage of the human genome that is comprised of nucleotides containing G, T, and A. What is the distance between 178 and 313 on a number line some one help me use the digits 0-7 to create two 4 digit numbers whose sum is greater than 9999. Which angle is in standard position? Their results showed that White women can be threatened by racism, and men of color threatened by sexism, and that these perceptions made participants expect unfair treatment. In this study, ________ is a conceptual definition of one of their primary variables. d) Calculate the area of a circle with a circumference of 31.4 in. which region of the atmosphere is closest to Earth _______are a group of very small, pleomorphic bacteria without cell walls, previously thought to be viruses, because they are capable of crossing bacterial filters.A) MycoplasmaB) ClostridiaC) AnthraxD) Spirochetes Below is a graph of the Murphys' annual expenses. If the Murphys' gross annual household income is $85,420, how much will they pay in federal taxes?a. $3,559.17b. $8,542.00c. $20,500.80d. $29,897.00