After calculating the sample size needed to estimate a population proportion to within 0.05, you have been told that the maximum allowable error (E) must be reduced to just 0.025. If the original calculation led to a sample size of 1000, the sample size will now have to be

Answers

Answer 1

Answer:  40000

Step-by-step explanation:

The formula to find the sample size is given by :-

[tex]n=p(1-p)(\dfrac{z_{\alpha/2}}{E})^2[/tex], where p is the prior estimate of the population proportion.

Here we can see that the sample size is inversely proportion withe square of margin of error.

i.e. [tex]n\ \alpha\ \dfrac{1}{E^2}[/tex]

By the equation inverse variation, we have

[tex]n_1E_1^2=n_2E_2^2[/tex]

Given : [tex]E_1=0.05[/tex]   [tex]n_1=1000[/tex]

[tex]E_2=0.025[/tex]

Then, we have

[tex](1000)(0.05)^2=n_2(0.025)^2\\\\\Rightarrow\ 2.5=0.000625n_2\\\\\Rightarrow\ n_2=\dfrac{2.5}{0.000625}=4000[/tex]

Hence, the sample size will now have to be 4000.

Answer 2

The new sample size will have to be approximately 4000.

The formula to calculate the sample size (n) needed to estimate a population proportion with a given maximum allowable error (E) and confidence level (usually 95% or 1.96 standard deviations for a two-tailed test) is given by:

[tex]\[ n = \left(\frac{z \times \sigma}{E}\right)^2 \][/tex]

Given that the original maximum allowable error was 0.05 and the sample size calculated was 1000, we can set up the equation:

[tex]\[ 1000 = \left(\frac{1.96 \times 0.5}{0.05}\right)^2 \][/tex]

Now, we want to find the new sample size when the maximum allowable error is reduced to 0.025. The new sample size can be calculated by:

[tex]\[ n_{new} = \left(\frac{z \times \sigma}{E_{new}}\right)^2 \][/tex]

Since \( z \) and[tex]\( \sigma \)[/tex] remain constant, and only \( E \) changes, the relationship between the original sample size and the new sample size is inversely proportional to the square of the ratio of the original error to the new error:

[tex]\[ n_{new} = n_{old} \times \left(\frac{E_{old}}{E_{new}}\right)^2 \] \[ n_{new} = 1000 \times \left(\frac{0.05}{0.025}\right)^2 \] \[ n_{new} = 1000 \times \left(\frac{0.05}{0.025}\right)^2 \] \[ n_{new} = 1000 \times \left(2\right)^2 \] \[ n_{new} = 1000 \times 4 \] \[ n_{new} = 4000 \][/tex]

Therefore, the new sample size will have to be approximately 4000 to reduce the maximum allowable error to 0.025."


Related Questions

All the fourth-graders in a certain elementary school took a standardized test. A total of 81% of the students were found to be proficient in reading, 74% were found to be proficient in mathematics, and 64% were found to be proficient in both reading and mathematics. A student is chosen at random.(a) What is the probability that student is proficient in mathematics but not in reading?(b) What is the probability that student is proficient in reading but not in mathematics?

Answers

Answer:

The probability that a student is proficient in mathematics, but not in reading is, 0.10.

The probability that a student is proficient in reading, but not in mathematics is, 0.17

Step-by-step explanation:

Let's define the events:

L: The student is proficient in reading

M: The student is proficient in math

The probabilities are given by:

[tex]P (L) = 0.81\\P (M) = 0.74\\P (L\bigcap M) = 0.64[/tex]

[tex]P (M\bigcap L^c) = P (M) - P (M\bigcap L) = 0.74 - 0.64 = 0.1\\P (M^c\bigcap L) = P (L) - P (M\bigcap L) = 0.81 - 0.64 = 0.17[/tex]

The probability that a student is proficient in mathematics, but not in reading is, 0.10.

The probability that a student is proficient in reading, but not in mathematics is, 0.17

By vector methods, find the cosine of the angle between the lines (x - 1)/(3) = (y - 0.5)/(2) = z and x = y = z

Answers

Answer:

The angle between the lines [tex]\frac{x-1}{3}= \frac{y-0.5}{2}=\frac{z-0}{1}[/tex] and [tex]\frac{x-0}{1}= \frac{y-0}{1}=\frac{z-0}{1}[/tex] is [tex]\sqrt{\frac{6}{7}}[/tex]

Step-by-step explanation:

The equation of a line with direction vector [tex]\vec{d}=(l,m.n)[/tex] that passes through the point [tex](x_{1},y_{1},z_{1})[/tex] is given by the formula

[tex]\frac{x-x_{1}}{l}= \frac{y-x_{1}}{m}=\frac{z-z_{1}}{n},[/tex] where l,m, and n are non-zero real numbers.

This is called the symmetric equations of the line.

The angle between two lines [tex]\frac{x-x_{1}}{l_{1} }= \frac{y-y_{1}}{m_{1} }=\frac{z-z_{1}}{n_{1}}[/tex] and [tex]\frac{x-x_{2}}{l_{2} }= \frac{y-y_{2}}{m_{2} }=\frac{z-z_{2}}{n_{2}}[/tex] equal the angle subtended by direction vectors, [tex]d_{1}[/tex] and [tex]d_{2}[/tex] of the lines

[tex]cos (\theta)=\frac{\vec{d_{1}}\cdot\vec{d_{2}}}{|\vec{d_{1}}|\cdot|\vec{d_{2}}|}=\frac{l_{1} \cdot\l_{2}+m_{1} \cdot\ m_{2}+n_{1} \cdot\ n_{2}}{\sqrt{l_{1}^{2}+m_{1}^{2}+n_{1}^{2}} \cdot \sqrt{l_{2}^{2}+m_{2}^{2}+n_{2}^{2}}}[/tex]

Given that

[tex]\frac{x-1}{3}= \frac{y-0.5}{2}=\frac{z-0}{1}[/tex] and [tex]\frac{x-0}{1}= \frac{y-0}{1}=\frac{z-0}{1}[/tex]

[tex]l_{1}=3, m_{1}=2,n_{1}=1\\ l_{2}=1, m_{2}=1,n_{2}=1[/tex]

We can use the formula above to find the cosine of the angle between the lines

[tex]cos(\theta)=\frac{3 \cdot 1+2 \cdot 1 +1 \cdot 1}{\sqrt{3^{2}+2^{2}+1^{2}} \cdot \sqrt{1^{2}+1^{2}+1^{2}}} = \sqrt{\frac{6}{7}}[/tex]

In the equation g = 312 ÷ α , the variable g can be described best as the 1. number of degrees that a skateboarder turns when making α rotations. 2. total number of groups, g, with α students each that can be made if there are 312 students to be grouped. 3. weight of a bag containing α grapefruits if each piece of fruit weighs 312 grams. 4. total number of goats that can graze on 312 acres if each acre can feed α goats. 5. number of grams of fuel, g, needed to raise the temperature of a solution, α, to a temperature of 312◦F.

Answers

Answer:

5) True. G is the Number of grams of fuel, g, needed to raise the temperature of a solution, α, to a temperature of 312◦F.

Step-by-step explanation:

Hi!

Let's examine better this equation: [tex]g=\frac{312}{a}[/tex]

What we have here 312 is a dependent variable, and it is inversely proportional to a. The more a increases the more g decreases.

1) Number of degrees that a skateboarder turns when making "α" rotations

[tex]g=\frac{312}{a}[/tex]

1 rotation ----------- 312°

2 rotation ----------- 156°

Here we have a problem. The skateboarder must necessarily and randomly turn 312°, and its fractions. But in a circle, the rotation cannot follow this pattern.

False

2) The total number of groups, g, with "α" students each that can be made if there are 312 students to be grouped.

[tex]g=\frac{312}{a}[/tex]

1 group --------------- 312 students

2 groups ------------ 156 students

5 groups -------------62.4 students

Even though 312 is divisible for 1,2,3,4 it is not for 5,7,9, and the group is a countable, natural category.

False

3) Weight of a bag containing "α" grapefruits if each piece of fruit weighs 312 grams

[tex]g=\frac{312}{a}[/tex]

g=1 bag with 1 grapefruit-------------- 312 g

g=1 bag with 2 grapefruits ---------- 156 g

That doesn't make sense, since for this description. The best should be g=312a and not g=312/a.

False

4) The total number of goats that can graze on 312 acres if each acre can feed "α" goats.

Since there's a relation

1 acre can feed ----------------- 1 goat

312 acres can feed ----------------g

g= 312/1 = 312 acres can feed 1 goat (1 acre for 1 goat)

g=312/2= since 312 acres can feed 156 goats (1 acre for 2 goats)

g =312/3 = 312 acres can feed 104 (1 acre for 3 goats)

Clearly, this function g=312/a does not describe this since the ratio is not the same, as long as we bring more goats to graze on those 312 acres.

False

5) Number of grams of fuel, g, needed to raise the temperature of a solution, α, to a temperature of 312◦F

g= number of grams of a fuel

a= initial temperature of a solution

g=312/a

Let's pick a=100 F initial temperature

g=312/100

g=3.12 grams

Let's now pick 200F as our initial temperature.

g=312/200 g=1.56 grams of solution

The more heat needed to raise, the more fuel necessary. Then True

If the interest rate is 3% and a total of $4,370.91 will be paid to you at the end of 3 years, what is the present value of the sum

Answers

Answer:

The present value (or initial investment) is $4000.00

Step-by-step explanation:

I'm going to assume that the correct formula here is

[tex]A(t)=P(1+r)^t[/tex]

and we are looking to solve for P, the principle investment.  We know that A(t) is 4370.91; r is .03 and t is 3:

[tex]4370.91=P(1+.03)^3[/tex] and

[tex]4370.91=P(1.03)^3[/tex] and

4370.91 = 1.092727P so

P = 4000.00


precalc question: a warhead fired from an enemy ship in the persian gulf is a dud and only travels 100 meters before it hits the water. If it had an initial velocity of 489 meters per second, find the time from the initial launch of the warhead to impact

a)0.2 s

b)30.8 s

c)100 s

d) 0.31 s

Answers

Answer:

0.2s is the time from the initial launch of the warhead to impact.

Step-by-step explanation:

This is a rule of three problem

In a rule of three problem, the first step is identifying the measures and how they are related, if their relationship is direct of inverse.

When the relationship between the measures is direct, as the value of one measure increases, the value of the other measure is going to increase too. In this case, the rule of three is a cross multiplication.

When the relationship between the measures is inverse, as the value of one measure increases, the value of the other measure will decrease. In this case, the rule of three is a line multiplication.

In this problem, our measures have a direct relationship.

The problem states that in a second, the warhead travels 489 meters. How long it takes to travel 100 meters? So

1s - 489m

xs - 100m

489x = 100

[tex]x = \frac{100}{489}[/tex]

x = 0.2s.

0.2s is the time from the initial launch of the warhead to impact.

Convert 120 kW to W? MW?

Answers

Answer: 120000 W and 0.12 MW

Step-by-step explanation:

The expression 120 kW uses a metric prefix "k" (kilo) which is the same as multiply by 1000. So you can replace k by 1000 to convert the expression to the unit W.

120 kW= 120(1000) W= 120000 W.

To convert 120kW to MW, where the prefix M (mega) is equivalent to 1000000, you can use a conversion factor like (1 MW / 1000 kW) and multiply the expression by it.

Notice that (1 MW / 1000 kW) = 1, so the expression remains unaltered.

Then,

120 kW (1 MW / 1000 kW) = 0.12 MW

Show that Z2[i] = {a + bi | a,b € Z2} is not a field

Answers

Step-by-step explanation:

On a field every element different from 0 should have a multiplicative inverse. Let's check that in Z2[i] not ALL nonzero elements have multiplicative inverses.

Z2 is made of two elements: 0 and 1, and so Z2[i] is made of four elements: 0+0i,0+1i, 1+0i, 1+1i (which we can simplify from now on as 0, i, 1, 1+i respectively). Now, let's check that the element 1+i doesn't have a multiplicative inverse (we can do this by showing that no matter what we multiply it by, we're not getting 1, which is the multiplicative identity)

[tex](1+i)\cdot 0 = 0[/tex] (which is NOT 1)

[tex](1+i)\cdot i = i+i^2=i-1=1+i[/tex] (which is NOT 1) (remember -1 and 1 are the same in Z2)

[tex](1+i)\cdot 1 = 1+i[/tex] (which is NOT 1)

[tex](1+i)\cdot (1+i) = 1+i+i+i^2=1+2i-1=0+0i=0[/tex] (which is NOT 1) (remember 2 is the same as 0 in Z2)

Therefore the element 1+i doesn't have a multiplicative inverse, and so Z2[i] cannot be a field.

Company A charges $331.35 per week for a compact car with unlimited miles. Company B charges $175 per week plus $0.53 per mile, for the same car. How many miles must be driven in a week so that company A is a better deal than company B?

Answers

Answer:

Company A is a better deal than Company B for the number of miles greater than 295 miles

Step-by-step explanation:

Let

y ----> the charge per week in dollars

x ----> the number of miles

we have

Company A

[tex]y=331.35[/tex] -----> equation A

Company B

[tex]y=0.53x+175[/tex] -----> equation B

Solve the system by substitution

Equate equation A and equation B and solve for x

[tex]331.35=0.53x+175[/tex]

[tex]0.53x=331.35-175\\0.53x=156.35\\x=295\ mi[/tex]

For x=295 miles the charge in Company A and Company B is the same

therefore

Company A is a better deal than Company B for the number of miles greater than 295 miles

Find an equation of a line passing through the point (8,9) and parallel to the line joining the points (2,7) and (1,5).

Answers

Answer:

2x - y - 7 = 0

Step-by-step explanation:

Since the slope of parallel line are same.

So, we can easily use formula,

y - y₁ = m ( x ₋ x₁)

where, (x₁, y₁) = (8, 9)

and m is a slope of line passing through (x₁, y₁).

and since the slope of parallel lines are same, so here we use slope of parallel line for calculation.

and, Slope = m = [tex]\dfrac{y_{b}-y_{a}}{x_{b}-x_{a}}[/tex]

here, (xₐ, yₐ) = (2, 7)

and, [tex](y_{a},y_{b}) = (1, 5 )[/tex]

⇒ m = [tex]\dfrac{5-7}{1-2}[/tex]

⇒ m = 2

Putting all values above formula. We get,

y - 9 = 2 ( x ₋ 8)

⇒ y - 9 = 2x - 16

⇒ 2x - y - 7 = 0

which is required equation.

Answer:

y=2x-8

Step-by-step explanation:

In order to solve this you first have to calculate the slope of the parallel line, since that would be equal to the slope of our line:

[tex]Slope=\frac{y2-y1}{x2-x1}[/tex]

Now we insert the values into the formula:

[tex]Slope=\frac{y2-y1}{x2-x1}\\Slope=\frac{5-7}{1-2}\\Slope= \frac{-2}{-1}\\ Slope:2[/tex]

And remember that the formula for general line is:

[tex]Y-y1= M(x-x1)\\y-9=2(x-8=\\y=2x-16+9\\y=2x-7[/tex]

So the equation for the line passing through point 8,9 and parallel to the line joining 2,7 and 1,5 would be y=2x-7

Larry Calanan has earnings of S518 in a week. He is single and claims 2 withholding allowances. His deductions include FICA, Medicare, federal withholding, state disability insurance, state withholding, union dues of $15, and charitable contributions of $21. Find his net pay.

Answers

Answer:

$482

Step-by-step explanation:

Data provided:

Total earning per week = $518

Medicare, federal withholding, state disability insurance, state withholding, union dues = $15

charitable contributions = $21

Now,

The total deductions = $15 + $21 = $36

also,

Net pay = Total income - Total deductions

thus,

Net pay = $518 - $36

or

Net Pat = $482

what is the area,in square centimeters,of a circle that has a circumference of 16 centimeters?

Answers

Answer: [tex]20.38\ cm^2[/tex]

Step-by-step explanation:

We know that the circumference of a circle is given by :-

[tex]C=2\pi r[/tex], where r is the radius of the circle .

Given : Circumference of circle = 16 cm

Then, [tex]16=2\pi r[/tex]

i.e [tex]r=\dfrac{16}{2\pi}=\dfrac{8}{\pi}[/tex]          (1)

We know that the area of circle is given by :-

[tex]A=\pi r^2[/tex]

i.e. [tex]A=\pi (\dfrac{8}{\pi})^2[/tex]                    [From (1)]

i.e. [tex]A=\pi (\dfrac{64}{\pi^2})[/tex]

i.e. [tex]A=\dfrac{64}{\pi}[/tex]

Put [tex]\pi=3.14[/tex]

[tex]A=\dfrac{64}{3.14}=20.3821656051approx20.38\ cm^2[/tex]

Hence, area of circle = [tex]20.38\ cm^2[/tex]

Find the arc length of the given curve on the specified interval.

(6 cos(t), 6 sin(t), t), for 0 ≤ t ≤ 2π

Answers

Answer:

Step-by-step explanation:

Given that

[tex]r(t) = (6cost, 6sint, t), 0\leq t\leq 2\pi\\r'(t) = (-6sint, 6cost, 1),\\||r'(t)||=\sqrt{(-6sint)^2 +(6cost)^2+1} =\sqrt{37}[/tex]

Hence arc length = [tex]\int\limits^a_b {||r'(t)||} \, dt[/tex]

Here a = 0 b = 2pi and r'(t) = sqrt 37

Hence integrate to get

[tex]\int\limits^{2\pi}  _0  {\sqrt{37} } \, dt\\ =\sqrt{37} (t)\\=2\pi\sqrt{37}[/tex]

Write a differential equation whose only solution is the trivial solution y = 0. Explain your reasoning

Answers

Answer:

[tex]2e^{y'}y=0[/tex]

Step-by-step explanation:

The solution for this differential equation [tex]2e^{y'}y=0[/tex] have to be the trivial solution y=0. Because the function [tex]e^{x}[/tex] always have values different of zero, then the only option is the trivial solution y=0.

For which equations below is x = -3 a possible solution? Select three options.
x = 3
x = -3
|-x1 = 3
|-x) = -3
-la = -3

Answers

Answer:

x=-3

|-x| = 3

|x| = 3

Step-by-step explanation:

we know that

If a number is a solution of a equation, then the number must satisfy the equation

Verify each case

case 1) we have

x=3

substitute the value of x=-3

-3=3 -----> is not true

therefore

x=-3 is not a solution of the given equation

case 2) we have

x=-3

substitute the value of x=-3

-3=-3 -----> is true

therefore

x=-3 is  a solution of the given equation

case 3) we have

|-x| = 3

substitute the value of x=-3

|-(-3)| = 3

|3| = 3

3=3-----> is true

therefore

x=-3 is a solution of the given equation

case 4) we have

|x| = 3

substitute the value of x=-3

|(-3)| = 3

3=3-----> is true

therefore

x=-3 is a solution of the given equation

case 5) we have

-|x| = 3

substitute the value of x=-3

-|(-3)| = 3

-3=3-----> is not true

therefore

x=-3 is not a solution of the given equation

Is it possible for a simple, connected graph that has n vertices all of different degrees? Explain why or why not.

Answers

Answer:

It isn't possible.

Step-by-step explanation:

Let G be a graph with n vertices. There are n possible degrees: 0,1,...,n-1.

Observe that a graph can not contain a vertice with degree n-1 and a vertice with degree 0 because if one of the vertices has degree n-1 means that this vertice is adjacent to all others vertices, then the other vertices has at least degree 1.

Then there are n vertices and n-1 possible degrees. By the pigeon principle there are two vertices that have the same degree.


Let P(x) denote the statement "2x+5 > 10." Which of the following is true?

P(0)

P(3)

P(2)

P(1)

Answers

Answer: P(3) is True

Step-by-step explanation:

The given statement is an inequality denoted as P(x). To find out which of the options is true you have to evaluate each given value of X in the inequality and perform the arithmetic operations, then you have to see if the expression makes sense.

For P(0): Replace X=0 in 2x+5>10

2(0)+5>10

0+5>10

5>10 is false because 5 is not greater than 10

For P(3): Replace X=3 in 2x+5>10

2(3)+5>10

6+5>10

11>10 is true because 11 is greater than 10

For P(2): Replace X=2 in 2x+5>10

2(2)+5>10

4+5>10

9>10 is false

For P(1): Replace X=1 in 2x+5>10

2(1)+5>10

2+5>10

7>10 is false

Vanessa walks from her house to a bus stop that is 400 yards away. If Vanessa is 22 yards from her house, how far is she from the bus stop? yards Preview 400 − 22 = 400-22= 378. If Vanessa is 163.4 yards from her house, how far is she from the bus stop? yards Preview 400 − 163.4 = 400-163.4= 236.6. Let the variable x x represent Vanessa's varying distance from her house (in yards). As Vanessa walks from her house to the bus stop, the value of x x varies from to . How many values does the variable x x assume as Vanessa walks from her house to the bus stop? Preview

Answers

Answer:

[tex]0\le x\le 400[/tex]

x can take infinitely many values

Step-by-step explanation:

Vanessa walks from her house to a bus stop that is 400 yards away.

If Vanessa is 22 yards from her house, how far is she from the bus stop?  Preview: 400 − 22 = 400 - 22 = 378 yards. If Vanessa is 163.4 yards from her house, how far is she from the bus stop? Preview: 400 − 163.4 = 400 - 163.4 = 236.6 yards.

Let the variable x represent Vanessa's varying distance from her house (in yards). Then 400 - x yards is how far Vanessa is from the bus stop.

The variable x can take any value from 0 to 400 (0 when Vanessa is at home and 400 when Vanessa is at bus station), so

[tex]0\le x\le 400[/tex]

x can take infinitely many values, because there are infinitely many real numbers between 0 and 400.

Final answer:

Vanessa is 378 yards from the bus stop when she is 22 yards from her house and 236.6 yards away when she is 163.4 yards from her house. The variable x denoting Vanessa's distance from home assumes infinitely many values as she walks to the bus stop.

Explanation:

When Vanessa is 22 yards from her house, the distance remaining to reach the bus stop is simply the total distance to the bus stop minus her current position from the house. So, it's 400 yards - 22 yards = 378 yards. Similarly, if Vanessa is 163.4 yards from her house, the remaining distance to the bus stop is 400 yards - 163.4 yards = 236.6 yards.

As Vanessa walks from her house to the bus stop, variable x represents her varying distance from her house. The value of x starts at 0 when she is at her house and increases up to 400 yards as she reaches the bus stop. The variable x can assume infinitely many values, as it can represent any real number between 0 and 400, indicating her position at any given moment along her path.

-1.8-3.9=

A. -2.1
B.5.7
C.2.1
D.-5.7

Answers

In order to get the answer to this question you will have to use KCC (Keep, Change, Change) and then solve.

[tex]-1.8 - 3.9=[/tex]

Using KCC:

[tex]-1.8-3.9=-1.8+-3.9[/tex]

[tex]-1.8 + -3.9 = -5.7[/tex]

[tex]= -5.7[/tex]

Therefore your answer is option D "-5.7."

Hope this helps.

Answer:

D "-5.7."

Step-by-step explanation:

Experience raising New Jersey Red chickens revealed the mean weight of the chickens at
five months is 4.35 pounds. The weights follow the normal distribution. In an effort to increase
their weight, a special additive is added to the chicken feed. The subsequent
weights of a sample of five-month-old chickens were (in pounds):
4.41 4.37 4.33 4.35 4.30 4.39 4.36 4.38 4.40 4.39
At the .01 level, has the special additive increased the mean weight of the chickens? Estimate
the p-value.

Answers

Answer:

p-value = 0.1277

Step-by-step explanation:

p-value is the probability value tell us how likely it is to get a result like this if the Null Hypothesis is true.

Firstly we find the mean and standard deviation of the given data set.

⇒ Mean = [tex]\frac{4.41 +4.37+ 4.33+ 4.35 +4.30 +4.39 +4.36+ 4.38+ 4.40+ 4.39}{10}[/tex]

Mean = 4.368

[tex]Standard deviation(\sigma) = \sqrt{\frac{1}{n}\sum_{i=1}^{n}{(x_{i}-\bar{x})^{2}} }[/tex]

where, [tex]\bar{x}[/tex] is mean of the distribution.

Standard Deviation = 0.034

Applying t- test:

Let out hypothesis is:

H₀: μ = 4.35

H₁: μ ≠ 4.35

Now,

Here, μ = Population Mean = 4.35

[tex]\bar{x}[/tex]= Sample Mean = 4.368

σ = Standard Deviation = 0.034

n = 10

[tex]t=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}} }[/tex]

Putting all values we get, t = 1.6777 with (10 -1) = 9 degree of freedom.

Then the p-value at 99% level of significance.

p-value = 0.1277

Final answer:

To test whether the special additive has increased the mean weight of the chickens, we can use a t-test. We will calculate the t-value and the p-value and compare the p-value with the significance level of 0.01.

Explanation:

To test whether the special additive has increased the mean weight of the chickens, we can use a t-test. We can set up the null hypothesis as follows:

H0: μ = 4.35

And the alternative hypothesis as:

H1: μ > 4.35

We will calculate the t-value and the p-value.

t-value = (mean of the sample - mean of the population) / (standard deviation of the sample / sqrt(sample size))

p-value = P(T > t)

In this case, we have to compare the p-value with the significance level of 0.01.

If the p-value is less than 0.01, we reject the null hypothesis and conclude that the special additive has increased the mean weight of the chickens.

The width of a rectangle is 4 more than half the length.
If the perimeter of the rectangle is 74, what is the width?
Perimeter of rectangle: P = 2l + 2w

width =


length =

Answers

Answer:

Width = 15.

Length = 22.

Step-by-step explanation:

If the length is L then the width W =  1/2L + 4.

The perimeter = 2L + 2W, so

2L + 2(1/2L + 4) = 74

2L + L + 8 = 74

3L = 66

L = 22.

So W = 1/2 *22 + 4 = 11 + 4

= 15.

A marketing research company desires to know the mean consumption of milk per week among males over age 32. A sample of 710 males over age 32 was drawn and the mean milk consumption was 4.6 liters. Assume that the population standard deviation is known to be 0.8 liters. Construct the 98% confidence interval for the mean consumption of milk among males over age 32. Round your answers to one decimal place.

Answers

Answer:

(4.5, 4.7)

Step-by-step explanation:

Hi!

Lets call X to the consumption of milk per week among males over age 32. X has a normal distribution with mean μ and standard deviation σ.

[tex]X \sim N(\mu, \sigma)[/tex]

When you know the population standard deviation σ of X  ,  and the sample mean is [tex]\hat X[/tex], the  variable q has distribution N(0,1):

[tex]q = \frac{\hat X - \mu}{\sigma} \sim N(0,1)[/tex]

Then you have:

[tex]P(-k < q <k ) = P(\hat X -\frac{\sigma}{\sqrt{N} }<\mu<\hat X +\frac{\sigma}{\sqrt{N} })=C[/tex]

This defines a C - level confidence interval. For each C the value of k is well known. In this case C = 0.98, then k = 2.326

Then the confidence interval is:

[tex](4.6 - 2.326*\frac{0.8}{\sqrt{710}}, 4.6 + 2.326*\frac{0.8}{\sqrt{710}})\\ (4.5, 4.7)[/tex]

use a ruler to draw a segment PQ that is 2 inches long then use your compass and straightedge to construct a segment MN with the same length as PQ

Answers

Answer:

Look to the attached figure

Step-by-step explanation:

* Lets revise the steps of constructing with the same length of a given

 segment

- Use a ruler to draw a segment PQ of length 2 inches long

- Mark a point M that will be one endpoint of the new line segment

- Set the compasses pin on the point P of the line segment PQ

- Open the compass to the point Q

- The compasses width is now equal to the length of the segment PQ

- Without changing the compasses width place the pin of the compass

 at point M and draw an arc where the other endpoint will be on it

- Pick a point N on the arc that will be the other endpoint of the new

 line segment

- Draw a line from M to N

- The length of MN = The length of PQ

- The attached figure for more understand

9x = 99y

y = 2
x = ?

Answers

Answer:

x = 22

Step-by-step explanation:

9x = 99y

y = 2

9x = 99 * 2

99 * 2 = 198

9x = 198

---     ----

9        9

x = 22

Hey!

------------------------------------------------

Solution:

9x = 99y

~Substitute

9x = 99(2)

~Simplify

9x = 198

~Divide 9 to both sides

9x/9 = 198/9

~Simplify

x = 22

------------------------------------------------

Answer:

x = 22

------------------------------------------------

Hope This Helped! Good Luck!

Your waiter at a restaurant suggests you leave a tip of $10 on a $50 bill. What percentage is that?

Answers

Answer:

20%

Step-by-step explanation:

To find what percentage is $10 out of $50, we divide 10 by 50:

[tex] \frac{10}{50}=0.2[/tex]

If we want to get the result in percentage form, we simply multiply it by 100%:

[tex]0.2\cdot 100\%=20\%[/tex]

So a tip of $10 on a $50 bill is a tip of 20%.

Input/Output Relationship: Assume that the amount of learning you acquire can be summarized by the following relationship (or equation) and that your motivation to learn and the quality of instruction are both rated on a scale from 1 to 10: Amount of learning acquired = 0.2(number of books read) + 0.25(hours spent studying) + 0.15(quality of instruction) + 0.4(motivation to learn). If your motivation to learn rises from 7 to 9, by how much will the amount of learning acquired rise as a result? Show your work.

Answers

Answer:

8%

Step-by-step explanation:

Motivation to learn represents a 40% of the learning acquired and its rated from 1 to 10. An increase from 7 to 9 represents an increase (of motivation to learn of 20%) But since this quality represent 40% of the total, the real increase in learning is 0.2*0.4=0.08 or 8%.

Suppose C is a 3 x 3 matrix such that det (C) = 4. Show that det (C+C) is equal to 32

Answers

Step-by-step explanation:

Let's consider C is a matrix given by

[tex]\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right][/tex]

them determinant of matrix C can be written as

[tex]\begin{vmatrix}a & b & c\\ d & e & f\\  g & h & i \end{vmatrix}\ =\ 4.....(1)[/tex]

Now,

[tex]det (C+C)\ =\ \begin{vmatrix}a & b & c\\ d & e & f\\  g & h & i \end{vmatrix}\ +\ \begin{vmatrix}a & b & c\\ d & e & f\\  g & h & i \end{vmatrix}[/tex]

                  [tex]=\ \begin{vmatrix}2a & 2b & 2c\\ 2d & 2e & 2f\\  2g & 2h & 2i \end{vmatrix}[/tex]

                   [tex]=\ 2\times 2\times 2\times \begin{vmatrix}a & b & c\\ d & e & f\\  g & h & i \end{vmatrix}[/tex]

                   [tex]=\ 8\times 4\ \ \ \ \ \ \ \         from\ eq.(1)[/tex]

                    = 32      

Hence, det (C+C) = 32

A test requires that you answer either part A or part B. Part A consists of 7 true-false questions, and part B consists of 5 multiple-choice questions with one correct answer out of five. How many different completed answer sheets are possible?

Answers

Answer: 3253

Step-by-step explanation:

Given : A test requires that you answer either part A or part B.

Part A consists of 7 true-false questions.

i.e.  there are 2 choices to answer each question.

Now, the number of ways to answer Part A : [tex]2^7=128[/tex]    (1)

Part B consists of 5 multiple-choice questions with one correct answer out of five.

i.e.  there are 5 choices to answer each question.

Now, the number of ways to answer Part B : [tex]5^5=3125[/tex]                           (2)

Now, the number of  different ways to completed answer sheets are possible=  [tex]128+3125=3253[/tex]          [Add (1) and (2) ]

Final answer:

The number of different completed answer sheets possible is 400,000.

Explanation:

To find the number of different completed answer sheets, we need to determine the number of ways to choose either part A or part B, and then calculate the number of possible combinations for each part.

For part A, since there are 7 true-false questions, each with 2 choices (true or false), there are 2^7 = 128 possible answer combinations.

For part B, since there are 5 multiple-choice questions, each with 5 choices, there are 5^5 = 3125 possible answer combinations.

To calculate the total number of different completed answer sheets, we multiply the number of choices for part A (128) by the number of choices for part B (3125), giving us a total of 128 * 3125 = 400,000 possible answer sheets.

(a) Find all points where the function f(z) = (x^2+y^2-2y)+i(2x-2xy) is differentiable, and compute the derivative at those points.

Answers

Answer:

The given function is differentiable at y = 1.

At y = 1, f'(z)  = 0

Step-by-step explanation:

As per the given question,

[tex]f(z)\ = (x^{2}+y^{2}-2y)+i(2x - 2xy)[/tex]

Let z = x + i y

Suppose,

[tex]u(x,y) = x^{2}+y^{2}-2y[/tex]

[tex]v(x,y) = 2x - 2xy[/tex]

On computing the partial derivatives of u and v as:

[tex]u'_{x} =2x[/tex]

[tex]u'_{y}=2y -2[/tex]

And

[tex]v'_{x} =2-2y[/tex]

[tex]v'_{y}=-2x[/tex]

According to the Cauchy-Riemann equations

[tex]u'_{x} =v'_{y} \ \ \ \ \ \ \ and\ \ \ \ \ \ u'_{y} = -v'_{x}[/tex]

Now,

[tex](u'_{x} =2x) \neq (v'_{y}=-2x)[/tex]

[tex](u'_{y}=2y -2) \ = \ (- v'_{x} =-(2-2y) =2y-2)[/tex]

Therefore,

[tex]u'_{y}=- v'_{x}[/tex] holds only.

This means,

2y - 2 = 0

⇒ y = 1

Therefore f(z) has a chance of being differentiable only at y =1.

Now we can compute the derivative

[tex]f'(z)=\frac{1}{2}[(u'_{x}+iv'_{x})-i(u'_{y}+iv'_{y})][/tex]

[tex]f'(z) =\frac{1}{2}[(2x+i(2-2y))-i(2y-2+i(-2x))][/tex]

[tex]f'(z) = i(2-2y)[/tex]

At y = 1

f'(z) = 0

Hence, the required derivative at y = 1 ,  f'(z)  = 0

Find all relative extrema and inflection points for fx)=(2x+7)^4

Answers

Answer:

[tex]x=-\frac{7}{2}[/tex] Extrema point.

The function does not have inflection points.

Step-by-step explanation:

To find the extrema points we have:

[tex]f'(x)=0[/tex]

Then:

[tex]f(x)=(2x+7)^4[/tex]

[tex]f'(x)=4(2x+7)^3(2)[/tex]

[tex]f'(x)=8(2x+7)^3[/tex]

Now:

[tex]f'(x)=8(2x+7)^3=0[/tex]

[tex]8(2x+7)^3=0[/tex]

[tex](2x+7)^3=0[/tex]

[tex]2x+7=0[/tex]

[tex]2x=-7[/tex]

[tex]x=-\frac{7}{2}[/tex]

To find the inflection points we need to calculate [tex]f''(x)=0[/tex] but due to that que have just one extrema point, the function does not have inflection points.

8 BASIC LEVEL 1. On weekends, a movie ticket costs $10.50. Form an inequality and solve it to find the maximum number of tickets Kate can buy with $205

Answers

Answer:

10.50x ≤ 205

The maximum number of tickets, x, would be 19.

Step-by-step explanation:

Given,

The cost of one ticket = $ 10.50,

The cost of x tickets = 10.50x dollars,

Since,  the total cost can not exceed  $ 205,

10.50x ≤ 205

∵ 10.50 > 0 thus, when we multiply both sides by 1/10.50 the inequality sign will not change,

⇒ x ≤  [tex]\frac{205}{10.50}[/tex] ≈ 19.52

Hence, the maximum number of tickets would be 19.

Other Questions
At the end of its first month of operations, Michaels Consulting Services reported net income of $25,000. They also had account balances of: Cash, $18,000; Office Supplies, $2,000 and Accounts Receivable $10,000. The sole stockholders total investment in exchange for common stock for this first month was $5,000. There were no dividends in the first month. Calculate the amount of total equity to be reported on the balance sheet at the end of the month. Suppose that the universal set is U = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }. Express each of these sets with bit strings, where the ith bit in the string is 1 if i is in the set and 0 otherwise:a){ 3, 4, 5 }b){ 1, 3, 6, 10 }c){ 2, 3, 4, 7, 8, 9 } HELP NEEDED!!Solve Equation.2(x-3) +5=17A. x=9 or x=-3B. x=7 1/2 or x=-3C. x= 7 1/2 or x=9D. x= 7 1/2 or x= -9 1/2 Determine whether the description below corresponds to an observational study or an experiment. In a study sponsored by a company, 12,543 people were asked what contributes most to their happiness commahappiness, and 87% of the respondents said that it was their job.is the study described above an observational study or an experiment? (A) The study is an observational study because the responses of the survey subjects were observerd.(B) The study is an observational study because the survey subjects were not given any treatment (C) The study is an experiment because it was done with statistical methods.(D) The study is an experiment because the survey subjects were given a treatment. A uniform electric field of magnitude 4.9 10^4 N/C passes through the plane of a square sheet with sides 8.0 m long. Calculate the flux (in N m^2/C) through the sheet if the plane of the sheet is at an angle of 30 to the field. Find the flux for both directions of the unit normal to the sheet.1)unit normal with component parallel to electric field (N m^2/C)2)unit normal with component antiparallel to electric field (N m^2/C) Psychologists studying infant memory want to determine at what age babies can remember specific events. An experimenter uses several puppets to demonstrate a series of actions while the infant watches. After a delay, the experimenter records how many of the actions the child imitates when playing with the puppets. What is the independent variable? Henry Hacker, a professional golfer who was having trouble with his driver, decided to skip the next two tournaments on the PGA to work with his swing coach. He paid his coach $1,000 and used $1,000 worth of golf balls. As a result, his driving must have improved considerably because he now hits his tee shots longer and straighter. What type of cost are the earnings foregone by skipping the two tournaments on the PGA tour Tamarisk, Inc. sells merchandise on account for $2600 to Morton Company with credit terms of 2/7, n/30. Morton Company returns $1100 of merchandise that was damaged, along with a check to settle the account within the discount period. What entry does Tamarisk, Inc. make upon receipt of the check? What is a parable?A. A form of writing that criticizes something using indirect or disguised methodsB. A short story set firmly in reality told to illustrate a moral or religious lessonC. A story that uses animals to illustrate a general truth about human nature D. A work that intimates another work to comment upon or poke fun at it Consider a nuclear power plant that produces 1200 MW of power and has a conversion efficiency of 34 percent (that is, for each unit of fuel energy used, the plant produces 0.34 units of electrical energy. Assuming continuous operation, determine the amount of nuclear fuel consumed by the plant per year. You are the owner of a small bakery. This week the bakery has orders for 48 birthday cakes. Each cake sells for $52. Suppose you spend 1/4 of each cake's selling price for ingredients. How much will the ingredients cost for all of the birthday cake orders? Page 29 of 50(1 Point)Choose the phrase that best answers the question.Cmo eres?Eres baja y bonita.Estoy divertido.Es dbil y delgado.Soy alto y guapo. Sound vibrations are converted into nerve impulses in theA. auditory cortex.B. eardrum.C. ossicles.D. cochlea. 1.How much will $5,000 accumulate in 5 years if it earns 6% per annum for the first 3 years and then 8% per annum for the next 2 years? How much money should you invest in a savings account that pays 2.25% interest compounded quarterly to have a balance of $1,196.61 after 8 years A factory has a contract to produce small engines for lawn mowers. In order to find the greatest efficiencies possiblethroughout the process, you have conducted a time study. If you invite the workers to participate in analyzing the resultsand suggesting improvements, what type of methodology are you using?Six SigmaCellularMatrixWinslow FIRST RESPONSE GETS BRAINLIEST How did the civil war had to do with national supremacy? dy/dx = (sin x)/y , y(0) = 2 Which statements are generally true of local governments in Texas? Check all that apply. a. Municipalities in Texas are able to generate revenue through property taxes. b. Under the state constitution, special districts, including independent school districts, are restricted from raising revenue through taxation. c. Entities of local government are created by local voters and officials and, as such, are free from state control. d. Local governments receive funding from local sources, state sources, and the federal government. Meredith walks from her house to a bus stop that is 260 yards away. If Meredith is 29 yards from her house, how far is she from the bus stop? 231 Correct yards If Meredith is 204.8 yards from her house, how far is she from the bus stop? 55.2 Correct yards Let the variable x represent Meredith's varying distance from her house (in yards). As Meredith walks from her house to the bus stop, the value of x varies from 0 Correct to 260 Correct . How many values does the variable x assume as Meredith walks from her house to the bus stop? 3 Incorrect