Find all the roots of the given function. Use preliminary analysis and graphing to find good initial approximations. ​f(x)equals=cosine left parenthesis 3 x right parenthesis minus 7 x squared plus 4 xcos(3x)−7x2+4x

Answers

Answer 1

Answer:

The given function is

  f(x)=cos 3x-7 x²+ 4x

f'(x)=-3 sin 3 x-14 x+4

When you will draw the graph of the function , you will find that root of the function lie between (-1,0).

Consider initial root as,

 [tex]x_{0}=0[/tex]

Using Newton method to find the roots of the equation

 [tex]x_{n+1}=x_{n}-\frac{f{x_n}}{f'{x_{n}}}\\\\x_{1}=x_{0} - \frac{cos 3x_{0}-7 x_{0}^2+ 4x_{0}}{-3 sin 3 x_{0}-14 x_{0}+4}\\\\x_{1}=-\frac{\cos 0^{\circ}-0+0}{-3 \times 0-0+4}\\\\x_{1}=\frac{-1}{4}\\\\x_{1}= -0.25\\\\x_{2}=x_{1} - \frac{cos 3x_{1}-7 x_{1}^2+ 4x_{1}}{-3 sin 3 x_{1}-14 x_{1}+4}\\\\x_{2}=-0.25 -\frac{cos (-0.75)-7\times (0.0625)- 1}{-3 sin (-0.75)+3.50+4}\\\\x_{2}= -0.176054[/tex]

[tex]x_{3}=x_{2} - \frac{cos 3x_{2}-7 x_{2}^2+ 4x_{2}}{-3 sin 3 x_{2}-14 x_{2}+4}\\\\x_{3}=-0.176054 -\frac{cos (3\times -0.176054)-7\times (-0.176054)^2+4 \times -0.176054}{-3 sin (-0.176054)-14 \times (-0.176054)+4}\\\\x_{3}= -0.1689[/tex]

So, root of the equation is

         =0.1688878

       =0.1689(approx)

Find All The Roots Of The Given Function. Use Preliminary Analysis And Graphing To Find Good Initial

Related Questions

solve the system of equation by guess jordan method

2x1-6x2-2x3=14, 3x1+4x2-7x3= 16, 3x1-6x2+9x3=21

Answers

Answer with explanation:

The System of equations which we have to solve by Gauss Jordan Method:

  [tex]1.\rightarrow 2x_{1}-6x_{2}-2x_{3}=14, 2.\rightarrow 3x_{1}+4x_{2}-7x_{3}= 16, 3.\rightarrow 3x_{1}-6x_{2}+9x_{3}=21[/tex]

Writing it in the form of Augmented Matrix=3 Rows and 4 Columns:

  [tex]\left[\begin{array}{cccc}2&-6&-2&14\\3&4&-7&16\\3&-6&9&21\end{array}\right]\\\\R_{1}=\frac{R_{1}}{2},R_{3}=\frac{R_{3}}{3}\\\\ \left[\begin{array}{cccc}1&-3&-1&7\\3&4&-7&16\\1&-2&3&7\end{array}\right]\\\\R_{3}\rightarrow R_{3}-R_{1}\\\\\left[\begin{array}{cccc}1&-3&-1&7\\3&4&-7&16\\0&1&4&0\end{array}\right]\\\\R_{2}\rightarrow R_{2}-3R_{1}\\\\\left[\begin{array}{cccc}1&-3&-1&7\\0&13&-4&-5\\0&1&4&0\end{array}\right][/tex]

 [tex]R_{3}\rightarrow R_{2}+R_{3}\\\\\left[\begin{array}{cccc}1&-3&-1&7\\0&13&-4&-5\\0&14&0&-5\end{array}\right]\\\\\rightarrow14 x_{2}= -5\\\\x_{2}=\frac{-5}{14}\\\\\rightarrow 13 x_{2}-4x_{3}=-5\\\\ \frac{-65}{14}-4 x_{3}=-5\\\\-4x_{3}=-5+\frac{65}{14}\\\\x_{3}=\frac{5}{56}\\\\x_{1}-3x_{2}-x_{3}=7\\\\x_{1}+\frac{15}{14}-\frac{5}{56}=7\\\\x_{1}+\frac{55}{56}=7\\\\x_{1}=7-\frac{55}{56}\\\\x_{1}=\frac{337}{56}[/tex]

Solution set

  [tex]=(\frac{337}{56},\frac{-5}{14},\frac{5}{56})[/tex]

If possible, find a matrix B such that AB = A2 + 2A.

Answers

Answer:

[tex]\large\boxed{B=A+2I}[/tex]

Step-by-step explanation:

It's possible if dimensions of a matrix A and matrix B are n × n

[tex]AB=A^2+2A\qquad\text{multiply both sides on the left by}\ A^{-1}\\\\A^{-1}AB=A^{-1}A^2+A^{-1}(2A)\qquad\text{we know}\ A^{-1}A=I\\\\IB=A^{-1}A\cdot A+2A^{-1}A\\\\IB=IA+2I\qquad\text{we know}\ IA=A\\\\B=A+2I[/tex]

Matrices is an array of numbers, usually 2 dimensional, but can be single dimensional too.

A matrix B such that [tex]AB = A^2 + 2A[/tex] is given as

[tex]B = A + 2I = \left[\begin{array}{cc}4&0\\0&4\end{array}\right][/tex]

(Assuming A is left invertible and  [tex]A = \left[\begin{array}{cc}2&0\\0&2\end{array}\right][/tex])

When can we cancel out matrix multiplied on both sides of an equation?

Suppose that there is an equation

[tex]AB = AC[/tex]

We cannot always say that [tex]B = C[/tex]

If we assume that A is left invertible, then only we can surely say that we have got [tex]B = C[/tex]

Similarly, for [tex]BA = CA[/tex] to imply  [tex]B = C[/tex], we need A to be right invertible.

Assuming that we have A as a left invertible matrix, say

[tex]A = \left[\begin{array}{cc}2&0\\0&2\end{array}\right][/tex]

and [tex]L_A[/tex] be its left inverse, then [tex]L_A A = I[/tex] ([tex]I[/tex] is identity matrix)

Then,

[tex]AB = A^2 + 2A\\A(B) = A(A + 2I_2)\\\\\Multiplying L_{A}\text{ on left side of both terms,}\\\\L_{A} AB = L_{A}A(A + 2I_2)\\B = A + 2I_2\\\\B = \left[\begin{array}{cc}2&0\\0&2\end{array}\right] + \left[\begin{array}{cc}2&0\\0&2\end{array}\right] = \left[\begin{array}{cc}4&0\\0&4\end{array}\right] = 4I_2\\\\B = 4I_2[/tex]

Thus, i

A matrix B such that [tex]AB = A^2 + 2A[/tex] is given as

[tex]B = \left[\begin{array}{cc}4&0\\0&4\end{array}\right][/tex]

(Assuming A is left invertible and  [tex]A = \left[\begin{array}{cc}2&0\\0&2\end{array}\right][/tex])

Learn more about invertible matrices here:

https://brainly.com/question/17027442

a. draw the correct graph that identifies the feasible region for the following set of constraints.

2 A + 0.5 B ≥ 90
0.75 A + 5 B ≥ 200
0.75 A + 1.5 B ≤ 150
A, B ≥ 0

Answers

Answer:

Step-by-step explanation:

Assuming A as x axis and B as y axis the equations are

[tex]2x+0.5y\geq 90\quad \left(1\right)\\0.75x+5y\geq 200\quad \left(2\right)\\0.75x+1.5y\leq 150\quad \left(3\right)\\x,y\geq 0\quad \left(4\right)[/tex]

Solving equations (2) and (3) we get

x=171.429 y=14.286

Solving equations (1) and (3) we get

x=22.857 y=88.571

Solving equations (1) and (2) we get

x=36.364 y=34.545

The area enclosing the above three points is the feasible region.

A medical laboratory tested 8 samples of human blood for acidity on the pH​ scale, with the results below. 7.1 7.5 7.6 7.4 7.3 7.3 7.3 7.5 a. Find the mean and standard deviation. b. What percentage of the data is within 2 standard deviations of the​ mean?

Answers

Answer:

Mean = 7.38

SD = 0.148

b. 95%

Step-by-step explanation:

Given data is:

7.1 7.5 7.6 7.4 7.3 7.3 7.3 7.5

Mean:

Mean = Sum/No. of values

= (7.1+7.5+7.6+7.4+7.3+7.3+7.3+7.5)/8

=59/8

=7.38

Standard Deviation:

x                  x-x'           (x-x')^2

7.1               -0.28           0.0784

7.5              0.12            0.0144

7.6              0.22           0.0484

7.4              0.02           0.0004

7.3             -0.08           0.0064

7.3             -0.08            0.0064

7.3              -0.08            0.0064

7.5              0.12              0.0144

                      Total :     0.1752

Variance = Sum of squares/No of items

= 0.1752/8 = 0.0219

SD =√0.0219 = 0.148

b. What percentage of the data is within 2 standard deviations of the​ mean?

95% of data is within two standard deviations of mean in a standard normal distribution ..

Final answer:

The mean of the pH test results is 7.375, and the standard deviation is approximately 0.086.

Explanation:

To find the mean and standard deviation of the pH test results, we can use the following formulas:

Mean: Add up all the pH values and divide by the total number of samples (in this case, 8). So, (7.1 + 7.5 + 7.6 + 7.4 + 7.3 + 7.3 + 7.3 + 7.5) / 8 = 7.375.

Standard Deviation: Calculate the difference between each pH value and the mean, square each difference, calculate the mean of those squared differences, and then take the square root. Let's break it down into steps: Subtract the mean from each pH value: (7.1 - 7.375), (7.5 - 7.375), (7.6 - 7.375), (7.4 - 7.375), (7.3 - 7.375), (7.3 - 7.375), (7.3 - 7.375), (7.5 - 7.375). Square each difference: (0.0425)^2, (0.125)^2, (0.225)^2, (0.025)^2, (-0.075)^2, (-0.075)^2, (-0.075)^2, (0.125)^2. Calculate the mean of the squared differences: (0.0018 + 0.0156 + 0.0506 + 0.000625 + 0.005625 + 0.005625 + 0.005625 + 0.0156) / 8 = 0.0074. Take the square root of the mean: √0.0074 ≈ 0.086.

Learn more about pH test results here:

https://brainly.com/question/28198477

#SPJ3

Buses headed to Longmont arrive in downtown Boulder every 30 minutes starting at 8:37am, whereas buses heading to Denver arrive 15 minutes starting at 8:31am. (a) If a passenger arrives at the station uniformly between 8:30am and 9:30am and then gets onto the first bus that arrives, what is the probability she goes to Longmont? (b) What is the passenger arrives uniformly between 8:45am and 9:45am?

Answers

Answer:

  (a)  20% to Longmont; 80% to Denver

  (b)  20% to Longmont; 80% to Denver

Step-by-step explanation:

(a) The bus to Longmont is the first bus to arrive, only between 8:31 and 8:37, and again between 9:01 and 9:07. That is, for a total of 12 minutes every hour, the Longmont bus is the first to arrive. The probability of going to Longmont is 12/60 = 1/5 = 20%.

__

(b) Same as for (a). As long as passenger arrival times are uniform within an hour, the probability is the same.

describe two reason why cadaver stories are so important to students.

Answers

Answer:

1) So the students do not make the same mistakes

2) So the students can see the importance of their jobs, to save lives

Find the least squares approximation of the the data (0, 1), (1, 2), (2, 1/2) (3, 3) using the quadratic function p(x) = a_0 + a_1 x + a_2 x^2. Plot p(x) along with the data to compare.

Answers

Answer:

The required function is [tex]p\left(x\right)=1.325-0.675x+0.375x^2[/tex].

Step-by-step explanation:

The given data points are (0, 1), (1, 2), (2, 1/2) and (3, 3).

Let the quadratic function is defined as

[tex]p(x)=a_0+a_1x+a_2x^2[/tex]              .... (1)

Using graphing calculator, we get

[tex]a_0=1.325[/tex]

[tex]a_1=-0.675[/tex]

[tex]a_2=0.375[/tex]

Substitute [tex]a_0=1.325[/tex], [tex]a_1=-0.675[/tex] and [tex]a_2=0.375[/tex] in function (1), to find the quadratic function.

[tex]p\left(x\right)=1.325-0.675x+0.375x^2[/tex]

Therefore the required function is [tex]p\left(x\right)=1.325-0.675x+0.375x^2[/tex].

The graph of data points and quadratic function is shown below.

Evaluate the given integral by changing to polar coordinates. sin(x2 + y2) dA R , where R is the region in the first quadrant between the circles with center the origin and radii 2 and 3

Answers

Set

[tex]\begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}\implies\mathrm dA=r\,\mathrm dr\,\mathrm d\theta[/tex]

The region [tex]R[/tex] is given in polar coordinates by the set

[tex]R=\left\{(r,\theta)\mid2\le r\le3,0\le\theta\le\dfrac\pi2\right\}[/tex]

So we have

[tex]\displaystyle\iint_R\sin(x^2+y^2)\,\mathrm dA=\int_0^{\pi/2}\int_2^3r\sin(r^2)\,\mathrm dr\,\mathrm d\theta=\boxed{\frac\pi4(\cos4-\cos9)}[/tex]

Final answer:

The Cartesian coordinates are converted into polar coordinates so that the integral sin(x2 + y2) dA R becomes the integral sin(r2) r dr dθ. But this specific integral can't be solved analytically, yet using polar coordinates can simplify other integration issues related to circular regions or distances from the origin.

Explanation:

To evaluate the given integral using polar coordinates, one must firstly translate the Cartesian coordinates (x,y) into polar coordinates (r,θ), so that x is replaced with rcosθ and y with rsinθ. Consequently, the integral sin(x2 + y2) dA R becomes the integral sin(r2) r dr dθ, with r varying from 2 to 3, and θ from 0 to π/2 (since we are only dealing with the first quadrant).

However, this integral becomes very complex and is not feasible to solve analytically. You would need to use a numeric method to get an approximate answer. In the context of other problems, switching to polar coordinates can simplify the integration, especially when dealing with circular regions or equations related to distances from the origin.

Learn more about Polar Coordinates here:

https://brainly.com/question/33601587

#SPJ6

In a survey, 169 respondents say that they never use a credit card, 12527 say that they use it sometimes, and 2834 say that they use it frequently. Find the probability that a randomly selected person uses a credit card frequently (Round to 4 decimals) then take that result and decide whether it is Likely or Unlikely (ONLY TYPE IN THE WORD!) for someone to use a credit card frequently.

Answers

Answer:

Probability: 0.1825 or 18.25%  .......  Unlikely

Step-by-step explanation:

Hello, great question. These types are questions are the beginning steps for learning more advanced Probability problems.

To start of we need to calculate the total amount of respondents that took the survey. We do this by adding all the answers together.

169 + 12,527 + 2,834 = 15,530 total people

Now that we know the total amount of people we can calculate the probability of each response by dividing the amount of people that had that response by the total amount of people that took the survey.

Never Used: [tex]\frac{169}{15,530} = 0.0109 = 1.09%[/tex]

Sometimes Used: [tex]\frac{12,527}{15,530} = 0.8066 = 80.66%[/tex]

Frequently used: [tex]\frac{2834}{15,530} = 0.1825 = 18.25%[/tex]

So we can see that the probability of a randomly selected person using a credit card frequently is 0.1825 or 18.25%

Unlikely

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

Final answer:

The probability that a randomly selected person uses a credit card frequently is calculated as 2834 divided by the total of 15530, resulting in 0.1825 (rounded to four decimal places). Since this is less than 20%, it is considered 'Unlikely' for someone to frequently use a credit card.

Explanation:

To calculate the probability that a randomly selected person uses a credit card frequently, we need to use the basic probability formula, which is the number of favorable outcomes divided by the total number of outcomes. In this case, the number of people who use a credit card frequently is the favorable outcome, and the total number of respondents is the sum of all categories of credit card usage.

Number of people who use a credit card frequently: 2834

Total number of respondents: 169 (never) + 12527 (sometimes) + 2834 (frequently) = 15530

Probability of frequent use: 2834 / 15530 = 0.1825 (rounded to 4 decimal places)

Now, let's interpret the result. A probability of 0.1825, when rounded, is about 18.25%. This number is less than 20%, which is generally considered the benchmark for something to be considered "likely". Therefore, it is Unlikely for someone to use a credit card frequently.

A chef is going to use a mixture of two brands of Italian dressing. The first brand contains 7% vinegar, and the second brand contains 12% vinegar. The chef wants to make 270 milliliters of a dressing that is 9% vinegar. How much of each brand should she use?

Answers

Answer: There is 162 ml of first brand and 108 ml of second brand.

Step-by-step explanation:

Since we have given that

Percentage of vinegar that the first brand contains = 7%

Percentage of vinegar that the second brand contains = 12%

Percentage of vinegar in mixture = 9%

Total amount of dressing = 270 ml

We will use "Mixture and Allegation":

First brand                  Second brand

     7%                                12%

                       9%

--------------------------------------------------------

12%-9%             :                9%-7%

 3%                   :                    2%

So, ratio of first brand to second brand in a mixture is 3:2.

So, Amount of first brand she should use is given by

[tex]\dfrac{3}{5}\times 270\\\\=162\ ml[/tex]

Amount of second brand she should use is given by

[tex]\dfrac{2}{5}\times 270\\\\=108\ ml[/tex]

Hence, there is 162 ml of first brand and 108 ml of second brand.

.Given: F(x) = 3x2+ 1, G(x) = 2x - 3, H(x) = x


G-1(x) =

a. -2x + 3

b. (x + 3)/2

c. 2(x + 3)


F(x) + G(x) =

a. 3x^2 + 2x - 2

b. 5x^3 - 2

c. 3x^2 + 2x + 4


F(-2) =

a. -11

b. 13

c. 37


F(3) + G(4) - 2H(5) =

a. 13

b. 23

c. 33

Answers

For this case we have the following functions:

[tex]F (x) = 3x ^ 2 +1\\G (x) = 2x-3\\H (x) = x[/tex]

We have to:

[tex]G (x) * - 1[/tex] is given by:

[tex](2x-3) * - 1 = -2x +3[/tex]

Thus, the correct option is the option is A.

On the other hand,

[tex]F (x) +G (x) = 3x ^ 2 +1 +(2x - 3) = 3x ^ 2+ 1+ 2x-3 = 3x ^ 2 +2x-2[/tex]

Thus, the correct option is the option is A.

We also have:

[tex]F (-2) = 3 (-2) ^ 2+ 1 = 3 (4)+ 1 = 12+ 1 = 13[/tex]

Thus, the correct option is the option is B.

Last we have:

[tex]F (3)+G (4) -2H (5) = (3 (3) ^ 2+ 1)+ (2 (4) -3) -2 (5) = (3 (9)+ 1) - (8-3) 10 = 28+ 5-10 = 33[/tex]

Thus, the correct option is the option is C.

ANswer:

Option A, A, B, C

Answer:

G-1(x)= -2x+3

F(x)+G(x)=3x^2+2x-2

F(-2)=13

F(3)+G(4)-2H(5)=33

A,A,B,C are the answers to the equations

Critical Thinking and Statistics The average test score of the class was an 80 and the standard deviation was 2. About 68 % of the class would score between what 2 values? 80 and 82 78 and 82 76 and 84 74 and 86

Answers

Answer:

B. 78 and 82.

Step-by-step explanation:

We have been given that the average test score of the class was an 80 and the standard deviation was 2. We are asked to find two values between which 68% of class will score.

We know that in a normal distribution approximately 68% of the data falls within one standard deviation of the mean.

So 68% scores will lie within one standard deviation below and above mean that is:

[tex](\mu-\sigma,\mu+\sigma)[/tex]

Upon substituting our given values, we will get:

[tex](80-2,80+2)[/tex]

[tex](78,82)[/tex]

Therefore, about 68% of the class would score between 78 and 81 and option B is the correct choice.


Show that the differential equation (on the left) is a solution of the function (on the right)

d^2u/dt^2 = a^2 * (d^2u/dx^2) u(x,t) = f(x-at) + g(x+at)

Answers

We have to show that

[tex]\frac{\partial ^{2}u}{\partial t^{2}}=a^{2}\frac{\partial ^{2}u}{\partial x^{2}}[/tex]

for [tex]\frac{\partial ^{2}u}{\partial t^{2}}[/tex] we have

[tex]\frac{\partial ^{2}u}{\partial t^{2}}=a^{2}\frac{\partial ^{2}u}{\partial x^{2}}[/tex]

[tex]\frac{\partial ^{2}u}{\partial t^{2}}=\frac{\partial ^{2}[f(x-at)+g(x+at)]}{\partial t^{2}}[/tex]

[tex]=\frac{\partial }{\partial t}[\frac{\partial[f(x-at)+g(x+at)] }{\partial t}][/tex]

[tex]\frac{\partial }{\partial t}[-a\cdot f'(x-at)+a\cdot g'(x+at)][/tex]

[tex]=a^{2}f''(x-at)+a^{2}g''(x+at)[/tex]

[tex]=a^{2}[f''(x-at)+g''(x+at)].............(i)[/tex]

similarly,

[tex]\frac{\partial ^{2}u}{\partial x^{2}}=\frac{\partial ^{2}[f(x-at)+g(x+at)]}{\partial x^{2}}[/tex]

[tex]=\frac{\partial }{\partial x}[\frac{\partial[f(x-at)+g(x+at)] }{\partial x}][/tex]

[tex]=\frac{\partial }{\partial x}[f'(x-at)+g'(x+at)][/tex]

[tex]=f''(x-at)+g''(x+at).......(ii)[/tex]  

Comparing i and ii we get  

[tex]a^{2}\frac{\partial ^{2}u}{\partial x^{2}}=\frac{\partial ^{2}u}{\partial t^{2}}[/tex]

Hence proved

Which director made the Beatles films, A Hard Day's Night and Help? a. Blake Edwards b. Stanley Kubrick c. Richard Lester d. Mike Nichols

Answers

Answer: Option(c) Richard Lester is correct.

Step-by-step explanation:

Both the films were directed by Richard Lester.

A Hard Day's night was a scripted comic farce and its main focus on  Beatlemania and the band's hectic touring lifestyle. It is a black and white movie.

Help! film also directed by Richard Lester. And this film was shot in various exotic locations. Help! was the first Beatles film that is filmed in colour.  

Real estate ads suggest that 58 % of homes for sale have​ garages, 39 % have swimming​ pools, and 6 % have both features. What is the probability that a home for sale has ​a) a pool or a​ garage? ​b) neither a pool nor a​ garage? ​c) a pool but no​ garage?

Answers

Final answer:

Using the given probabilities for each feature (garage and pool), we have found that a) the probability of a home having either a pool or garage is 91%, b) the probability of a home having neither a pool nor a garage is 9%, and c) the probability of a home having a pool but no garage is 33%.

Explanation:

The question is asking about the probability of certain features in homes for sale, namely garages and swimming pools. The given percentages represent independent probabilities for each attribute. Let's denote garage as 'G' and pool as 'P'. Then the probabilities given are P(G)=0.58, P(P)=0.39, and P(G and P)=0.06.

a) The probability a home has a pool or a garage: This is determined using the formula for the union of two events: P(G U P) = P(G) + P(P) - P(G and P) = 0.58+0.39-0.06 = 0.91 or 91% of homes for sale.

b) The probability a home has neither a pool nor a garage: This is the complement of the event in part a. So, P(Neither G nor P) = 1 - P(G U P) = 1 - 0.91 = 0.09 or 9% of homes for sale.

c) The probability a home has a pool but not a garage: This is determined using the formula for the difference of two events: P(P - G) = P(P) - P(G and P) = 0.39 - 0.06 = 0.33 or 33% of homes for sale.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

A researcher wishes to estimate the proportion of adults who have​ high-speed Internet access. What size sample should be obtained if she wishes the estimate to be within 0.04 with 90​% confidence if ​(a) she uses a previous estimate of 0.38​? ​(b) she does not use any prior​ estimates?

Answers

Answer:a-396

b-420

Step-by-step explanation:

[tex]\alpha[/tex] =0.1

Margin of Error=0.04

Level of significance is z[tex]\left ( 0.1\right )=1.64[/tex]

Previous estimate[tex]\left ( p\right ) =0.38[/tex]

sample size is given by:

n=[tex]\left (\frac{Z_{\frac{\alpha }{2}}}{E}\right )p\left ( 1-p\right )[/tex]

n=[tex]\frac{1.64}{0.04}^{2}0.38\left ( 1-0.38\right )=396.0436\approx 396[/tex]

[tex]\left ( b\right )[/tex]Does not use prior estimate

Assume

[tex]\alpha [/tex]=0.1

Margin of Error=0.04

Level of significance is z[tex]\left ( 0.1\right )=1.64[/tex]

Population proportion[tex]\left ( p\right )[/tex]=0.5

n=[tex]\left (\frac{Z_{\frac{\alpha }{2}}}{E}\right )p\left ( 1-p\right )[/tex]

n=[tex]\frac{1.64}{0.04}^{2}0.5\left ( 1-0.5\right )[/tex]

n=420.25[tex]\approx 420[/tex]

solve x^3+6x=2 using cardano's method

Answers

Answer:

The solution of the given equation is [tex]\sqrt[3]{4}-\sqrt[3]{2}[/tex].

Step-by-step explanation:

According to the cardano's method, the solution of the equation is x=u-v. If the equation is

[tex]x^3+px=q[/tex]

Where [tex]u^3-v^3=q[/tex]

[tex]3uv=p[/tex]

The given equation is

[tex]x^3+6x=2[/tex]

Here p=6 and q=2.

[tex]u^3-v^3=2[/tex]                 .... (1)

[tex]3uv=6[/tex]

[tex]uv=2[/tex]

Taking cube both the sides.

[tex]u^3v^3=8[/tex]

Multiply both sides by 4.

[tex]4u^3v^3=32[/tex]             .... (2)

Taking square both the sides of equation (1).

[tex](u^3-v^3)^2=2^2[/tex]

[tex](u^3)^2-2u^3v^3+(v^3)^2=4[/tex]       .... (3)

Add equation (2) and (3).

[tex](u^3)^2-2u^3v^3+(v^3)^2+4u^3v^3=4+32[/tex]

[tex](u^3+v^3)^2=36[/tex]

Taking square root both the sides.

[tex]u^3+v^3=6[/tex]             .... (4)

On adding equation (1) and (4), we get

[tex]2u^3=8[/tex]

[tex]u^3=4[/tex]

[tex]u=\sqrt[3]{4}[/tex]

On subtracting equation (1) and (4), we get

[tex]-2v^3=-4[/tex]

[tex]v^3=2[/tex]

[tex]v=\sqrt[3]{2}[/tex]

The solution of the equation is

[tex]x=u-v=\sqrt[3]{4}-\sqrt[3]{2}[/tex]

Therefore the solution of the given equation is [tex]\sqrt[3]{4}-\sqrt[3]{2}[/tex].

Final answer:

Solving x³+6x=2 using Cardano's method involves rewriting the equation to match the standard form of a depressed cubic equation, calculating the required constants, and finally, applying these constants to find the roots.

Explanation:

First, let's rewrite the equation x³+6x-2 = 0 as x³+6x = 2 to match the standard form of a depressed cubic equation which is x³ +px = q. Here, p = 6 and q = 2.

Next, we calculate the value t = sqrt[(q/2)² + (p/3)³]. So, t = sqrt[(1)² + (2)³] = sqrt[1 + 8] = 3.

Using these values, we can now calculate the roots. We know the roots are given by the formulaes u-v where u = cubicroot(q/2 + t) and v = cubicroot(q/2 - t). So, u = cubicroot(1 + 3) = 2, and v = cubicroot(1 - 3) = - root(2).

Therefore, the roots of the given polynomial equation are x = u - v = 2 - (- root(2)) = 2 + root(2).

Learn more about Cardano's Method here:

https://brainly.com/question/12909084

#SPJ12

The wildlife department has been feeding a special food to rainbow trout fingerlings in a pond. Based on a large number of observations, the distribution of trout weights is normally distributed with a mean of 402.7 grams and a standard deviation of 8.8 grams. What is the probability that the mean weight for a sample of 40 trout exceeds 405.5 grams?

Answers

Answer: 0.0222

Step-by-step explanation:

Given : The distribution of trout weights is normally distributed with

Mean : [tex]\mu=402.7\text{ grams}[/tex]

Standard deviation : [tex]\sigma=8.8\text{ grams}[/tex]

Sample size : [tex]n=40[/tex]

The formula to calculate the z-score is given by :-

[tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

Let x be the weight of randomly selected trout.

Then for x = 405.5  , we have

[tex]z=\dfrac{405.5 -402.7}{\dfrac{8.8}{\sqrt{40}}}\approx2.01[/tex]

The p-value : [tex]P(405.5<x)=P(2.01<z)[/tex]

[tex]1-P(2.01)=1-0.9777844=0.0222156\approx0.0222[/tex]

Thus,the probability that the mean weight for a sample of 40 trout exceeds 405.5 grams= 0.0222.

The probability that the mean weight for a sample of 40 trout exceeds 405.5 grams is  0.0222.

The distribution of trout weights is normally distributed with

We have given that

Mean=402.7 grams

Standard deviation =8.8  grams  

Sample size (n)=40

We have to calculate

The probability that the mean weight for a sample of 40 trout exceeds 405.5 grams

What is the to calculate the z-score?

Te formula of Z score is given by,

[tex]z=\frac{x-\mu }{\frac{\sigma }{\sqrt{n}}}[/tex]

n= the ample size

x=mean

sigma=standard deviation

So by using the formula we have,

Let x is  the weight of randomly selected trout.

Then for x = 405.5  

[tex]z=\frac{405.5-\402.7}{\frac{\8.8 }{\sqrt{40}}}\\\\\z=2.01[/tex]

we have

The p-value :(405.5<x)

(1-2.01)=1-0.97778

           =0.02221

           =0.0222

Therefore,the probability that the mean weight for a sample of 40 trout exceeds 405.5 grams= 0.0222.

To learn more about probability that the mean weight for a sample visit:

https://brainly.com/question/21852020

The weights of steers in a herd are distributed normally. The standard deviation is 300lbs and the mean steer weight is 1100lbs. Find the probability that the weight of a randomly selected steer is greater than 920lbs. Round your answer to four decimal places.

Answers

Answer: 0.7257

Step-by-step explanation:

Given : The weights of steers in a herd are distributed normally.

[tex]\mu= 1100\text{ lbs }[/tex]

Standard deviation : [tex]\sigma=300 \text{ lbs }[/tex]

Let x be the weight of the randomly selected steer .

Z-score : [tex]\dfrac{x-\mu}{\sigma}[/tex]

[tex]z=\dfrac{920-1100}{300}=-0.6[/tex]

The the probability that the weight of a randomly selected steer is greater than 920 lbs using standardized normal distribution table  :

[tex]P(x>920)=P(z>-0.6)=1-P(z<-0.6)\\\\=1-0.2742531=0.7257469\approx0.7257[/tex]    

Hence, the probability that the weight of a randomly selected steer is greater than 920lbs =0.7257

M1Q7.) Construct a box plot from the data below

Answers

There are 16 numbers.

The median is 92.5 ( find the middle two values and divide by 2).

Minumum is 81

Maximum is 109

First quartile is 88.25 (Find median of the lower half of numbers).

Third quartile is 97.75 (Find median of the upper half of numbers.)

The interquartile range is 9.5 ( Difference between the first and third quartile).

Plotting that data in a box plot, the correct one looks like #1

Find the median.

92 and 93 are both middle numbers so add and divide by two.

92 + 93 = 185

185 / 2 = 92.5

Minimum (smallest number): 81

Maximum (largest number): 109

Find the median of the lower values behind the median.

88.25

Find the mean of the higher values ahead of the median.

97.75

Subtract to find the interquartile range.

97.75 - 88.25 = 9.5

The only option with these characteristics is Option A.

Best of Luck!

A 20% TIP ON A MEAL THAT COSTS $29.17. CHOOSE THE CORRECT ESTIMATE BELOW. A.$ 58.00 B.$ 5.80 C.$ 0.58 D. $ 8.70

Answers

Answer:

$5.80 Option B.

Step-by-step explanation:

It is given that a 20% tip on a meal that costs $29.17.

The cost of the meal = $29.17

Tip on a meal = 20%

Therefore, 20% of $29.17

= [tex]\frac{20}{100}[/tex] × 29.17

= 0.20 × 29.17

= 5.834

= $5.80

The correct estimate would be $5.80 Option B.

Calculate the mean, median, and mode for each of the following populations of numbers: (a) 17, 23, 19, 20, 25, 18, 22, 15, 21, 20 N (Population) Mean Median Mode (b) 505, 497, 501, 500, 507, 510, 501 N (Population) Mean Median Mode

Answers

Answer: i dont now

Step-by-step explanation:

u have to add them togther i guess

Two functions f and g are given. Show that the growth rate of the linear function is constant and that the relative growth rate of the exponential function is constant. ​f(t)equals160plus8.5​t, ​g(t)equals160 e Superscript t divided by 8 What is the growth rate of the linear​ function

Answers

Answer:

  linear function growth rate: 8.5

Step-by-step explanation:

The growth rate of the linear function is the coefficient of t: 8.5. (It is a constant.)

__

The growth rate of g(t) is its derivative: g'(t) = (1/8)(160e^(t/8)) = 20e^(t/8). Then the relative growth rate is ...

  g'(t)/g(t) = (20e^(t/8))/(160e^(t/8)) = 20/160 = 1/8

It is a constant.

The formula P = 0.672x^2 - 0.046x+ 3 models the approximate population P, in thousands, for a species of frogs in a particular rain forest, x years after 1999. During what year will the population reach 182 frogs? a) 2015 b) 2018 c) 2017 d) 2016 e) none

Answers

Answer:

The correct option is d.

Step-by-step explanation:

The approximate population P, in thousands, for a species of frogs in a particular rain forest, x years after 1999 is given by the formula

[tex]P=0.672x^2-0.046x+3[/tex]

We need to find the year it which the population reach 182 frogs.

Substitute P=182 in the given formula.

[tex]182=0.672x^2-0.046x+3[/tex]

Subtract 182 from both the sides.

[tex]0=0.672x^2-0.046x+3-182[/tex]

[tex]0=0.672x^2-0.046x-179[/tex]

Multiply both sides by 1000 to remove decimals.

[tex]0=672x^2-46x-179000[/tex]

Quadratic formula:

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Substitute a=672, b=-46 and c=-179000 in the quadratic formula.

[tex]x=\frac{-\left(-46\right)\pm\sqrt{\left(-46\right)^2-4\cdot \:672\left(-179000\right)}}{2\cdot \:672}[/tex]

On simplification we get

[tex]x=\frac{-\left(-46\right)+\sqrt{\left(-46\right)^2-4\cdot \:672\left(-179000\right)}}{2\cdot \:672}\approx 16.355[/tex]

[tex]x=\frac{-\left(-46\right)-\sqrt{\left(-46\right)^2-4\cdot \:672\left(-179000\right)}}{2\cdot \:672}\approx -16.287[/tex]

The value of x can not be negative because x is number of years after 1999.

x=16.35 in means is 17th year after 1999 the population reach 182 frogs.

[tex]1999+17=2016[/tex]

The population reach 182 frogs in 2016. Therefore the correct option is d.

Pediatricians work an average of 48 h per week. The standard deviation is 12 hours. What percentage of pediatricians work more than 72 h per​ week

Answers

Final answer:

Approximately 2.28% of pediatricians work more than 72 hours per week according to the table.

Explanation:

To find the percentage of pediatricians who work more than 72 hours per week, we need to calculate the z-score for this value and then use a standard normal distribution table to find the corresponding percentage.

Calculate the z-score using the formula:

[tex]z = (x - u) / \alpha[/tex]

where x is the value (72 hours), u is the mean (48 hours), and a is the standard deviation (12 hours).

Substitute the values into the formula: z = (72 - 48) / 12 = 2.

Using a standard normal distribution table, find the percentage of values that are greater than 2.

Based on the table, approximately 2.28% of pediatricians work more than 72 hours per week.

Learn more about Calculating percentage of pediatricians working more than 72 hours per week here:

https://brainly.com/question/12949191

#SPJ12

A pollster wants to construct a 95% confidence interval for the proportion of adults who believe that economic conditions are getting better. A Gallup poll taken in July 2010 estimates this proportion to be 0.33. Using this estimate, what sample size is needed so that the confidence interval will have a margin of error of 0.052 ?

Answers

Final answer:

To construct a 95% confidence interval with a margin of error of 0.052, a sample size of 300 is needed.

Explanation:

To determine the sample size needed for the 95% confidence interval with a margin of error of 0.052, we can use the formula:

n = (Z^2 * p * (1 - p)) / (E^2)

where n is the sample size, Z is the Z-score corresponding to the desired confidence level (in this case, 1.96), p is the estimated proportion (0.33), and E is the margin of error (0.052).

Substituting the given values into the formula:

n = (1.96^2 * 0.33 * (1 - 0.33)) / (0.052^2)

Simplifying the equation:

n = 299.5554

Rounding up to the nearest whole number, the sample size needed is 300.

Learn more about confidence interval here:

https://brainly.com/question/34700241

#SPJ3

To construct a 95% confidence interval for the proportion of adults who believe economic conditions are getting better with a margin of error of 0.052, the required sample size is approximately 577 participants.

To calculate the sample size needed to construct a 95% confidence interval for the proportion of adults who believe that economic conditions are getting better, with a Gallup poll estimate of 0.33 and a desired margin of error of 0.052, the formula for determining the sample size (n) is:

n = (Z^2*p*(1-p))/E^2,

where Z is the Z-score corresponding to the 95% confidence level, p is the estimated proportion (0.33) and E is the margin of error (0.052). The Z-score for a 95% confidence level is 1.96. Plugging in the values gives:

n = (1.96^2*0.33*(1-0.33))/(0.052^2),

Solving this, we find the sample size required:

n= 576.7.

Since we cannot have a fraction of a person, we round up to the next whole number. Therefore, the sample size needed is 577 participants.

Consider two functions f and g on [1, 8] such that integral^8_1 f(x) dx = 9, integral^8_1 g(x) dx = 5, integral^8_5 f(x) dx = 4, and integral^5_1 g (x) dx = 3. Evaluate the following integrals. a. integral^5_1 2f(x) dx = (Simplify your answer.) b. integral^8_1 (f(x) - g (x)) dx = (Simplify your answer.) c. integral^5_1 (f (x) - g (x)) dx = (Simplify your answer.) d. integral^8_5 (g(x) - f(x)) dx = (Simplify your answer.) e. integral^8_5 7g(x) dx = (Simplify your answer.) f. integral^1_5 3f(x) dx = (Simplify your answer.)

Answers

I'll abbreviate the definite integral with the notation,

[tex]I(f(x),a,b)=\int_a^bf(x)\,\mathrm dx[/tex]

We're given

[tex]I(f,1,8)=9[/tex][tex]I(g,1,8)=5[/tex][tex]I(f,5,8)=4[/tex][tex]I(g,1,5)=3[/tex]

Recall that the definite integral is additive on the interval [tex][a,b][/tex], meaning for some [tex]c\in[a,b][/tex] we have

[tex]I(f,a,b)=I(f,a,c)+I(f,c,b)[/tex]

The definite integral is also linear in the sense that

[tex]I(kf+\ell g,a,b)=kIf(a,b)+\ell I(g,a,b)[/tex]

for some constant scalars [tex]k,\ell[/tex].

Also, if [tex]a\ge b[/tex], then

[tex]I(f,a,b)=-I(f,b,a)[/tex]

a. [tex]I(2f,1,5)=2I(f,1,5)=2(I(f,1,8)-I(f,5,8))=2(9-4)=\boxed{10}[/tex]

b. [tex]I(f-g,1,8)=I(f,1,8)-I(g,1,8)=9-5=\boxed{4}[/tex]

c. [tex]I(f-g,1,5)=I(f,1,5)-I(g,1,5)=\dfrac{I(2f,1,5)}2-I(g,1,5)=10-3=\boxed{7}[/tex]

d. [tex]I(g-f,5,8)=I(g,5,8)-I(f,5,8)=(I(g,1,8)-I(g,1,5))-I(f,5,8)=(5-3)-4=\boxed{-2}[/tex]

e. [tex]I(7g,5,8)=7I(g,5,8)=7(5-3)=\boxed{14}[/tex]

f. [tex]I(3f,5,1)=3I(f,5,1)=-3I(f,1,5)=-\dfrac32I(2f,1,5)=-\dfrac32(10)=\boxed{-15}[/tex]

Final answer:

In this integral calculus problem, we leverage properties of definite integrals to compute the values of various expressions. Key steps usually involve substituting given integral values and multiplying by constant factors when required

Explanation:

To solve the problem, we first need to consider the properties of integral calculus, specifically those of definite integrals. A fundamental rule that is applicable here is that the product of a constant and an integral is the constant times the value of the integral.

So for problem a, integral^5_1 2f(x) dx = 2* integral^5_1 f(x) dx = 2 * 5 = 10.

Similarly, for problem b, integral^8_1 (f(x) - g (x)) dx = integral^8_1 f(x) dx - integral^8_1 g(x) dx = 9 - 5 = 4.

Following through similar steps of substitutions, we obtain the following solutions:

c. integral^5_1 (f (x) - g (x)) dx = 1d. integral^8_5 (g(x) - f(x)) dx = 1e. integral^8_5 7g(x) dx = 21 f. integral^1_5 3f(x) dx = 15

Learn more about Integral Calculus here:

https://brainly.com/question/34730103

#SPJ11

Dana leaves Las Vegas for LA at 2 p.m. driving at 55 mph. At 4 p.m. Lance leaves LA for Las Vegas driving at 45 mph along the same route. If the cities are 260 miles, what time do they meet?

Answers

Answer: They meet after 1 hour 42 minutes.

Step-by-step explanation:

Since we have given that

Dana leaves Las Vegas for LA at 2 p.m. driving at 55 mph.

Let the time taken by Dana be 't'.

Distance traveled by Dana would be 55t.

At 4 p.m. Lance leaves LA for Las Vegas driving at 45 mph along the same route.

It means after 2 hours Lance leave for LA.

So, time taken by Lance be 't-2'.

Distance traveled by Lance would be 45(t-2)

Total distance  = 260 miles

According to question, it becomes,

[tex]55t+45(t-2)=260\\\\55t+45t-90=260\\\\100t=260-90\\\\100t=170\\\\t=1.7\ hours=1\dfrac{7}{10}=1\ hour\ and\ \dfrac{7\times 60}{10}\ minutes=1\ hour\ 42\ minutes[/tex]

Hence, they meet after 1 hour 42 minutes.

Divide the following polynomials:

a) x^3-9/x^2 +1

b) x^5-13x^4-120x+80/x+3

I don't understand long division of polynominals. Ive looked up videos. It still doesn't make sense. Can you please show work?

Answers

Answer:

Step-by-step explanation:

See if the attachment below helps you with this.

The claim is that the proportion of peas with yellow pods is equal to 0.25​ (or 25%). The sample statistics from one experiment include 590 peas with 139 of them having yellow pods. Find the value of the test statistic.

Answers

Final answer:

The test statistic for the proportion of yellow pea pods being 25% is calculated using the sample proportion, hypothesized proportion, and sample size. Using the given data, the test statistic (Z-score) comes out to approximately -1.412.

Explanation:

To find the value of the test statistic for the claim that the proportion of peas with yellow pods is equal to 0.25 (25%), we use the sample statistics provided from the experiment. You mentioned that there were 590 peas in total, with 139 having yellow pods. First, we check if the conditions for the binomial distribution are met, which in this case they are as we are dealing with two outcomes (yellow pods and not yellow pods), a fixed number of trials (590 peas), and each pea is independent of the others.

The test statistic for a proportion is calculated using the formula:

Z = (p' - p) / (sqrt(p(1 - p) / n))

Where:

p' is the sample proportion (139 / 590 = 0.2356)p is the hypothesized population proportion (0.25)n is the sample size (590)

Now, we calculate the test statistic:

Z = (0.2356 - 0.25) / (sqrt(0.25 × (1 - 0.25) / 590))

Z ≈ -1.412

This Z-score tells us how many standard deviations the observed sample proportion (0.2356) is from the hypothesized proportion (0.25).

Other Questions
Olsen Company paid or collected during 2014 the following items: Insurance premiums paid $ 25,800 Interest collected 62,800 Salaries and wages paid 260,400 The following balances have been excerpted from Olsen's balance sheets: December 31, 2014 December 31, 2013 Prepaid insurance $ 2,400 $ 3,000 Interest receivable 7,400 5,800 Salaries and wages payable 24,600 21,200 Salaries and wages expense on the income statement for 2014 was _______. Patrick David's charge account statement shows an unpaid balance of $110. The monthly finance charge is2% of the unpaid balance. What is the new account balance? What stimulates the release of parathyroid hormone (PTH)? (A) low basal metabolic rate (B) hypocalcemia(C) cold temperatures(D) hypercalcemia Help me with this please The constraints of a problem are graphed below. What arevertices of the feasible region? Briefly describe the biogenic amine theory of depressin. How does current drug therapy to treat depression correlate with the biogenic amine theory? Belief systems in a specific culture can center aroundA.a GODB.natureC.harvest seasonD.all of the aboveI WILL GIVE YOU BRAINLIEST Find the tenth term of thegeometric sequence, given thefirst term and common ratio.a =4 and r=1/2 The graph shows the solution to a system of inequalities:Which of the following inequalities is modeled by the graph?A.[tex]4x + 3y \leqslant 12;x \geqslant 0[/tex]B.[tex]4x + 3y \geqslant 12;x \geqslant 0[/tex]C.[tex]4x - 3y \leqslant 12;x \geqslant 0[/tex]D.[tex] - 4x - 3y \leqslant 12;x \geqslant 0[/tex] Which statement bestconveys how Woolf achieves her purpose in thisexcerpt? PLEASE HELLPPPPPPPP A flexible container at an initial volume of 6.13 L contains 8.51 mol of gas. More gas is then added to the container until it reaches a final volume of 18.5 L. Assuming the pressure and temperature of the gas remain constant, calculate the number of moles of gas added to the container. Tina suffers from anorexia nervosa. She is depressed and lacks self-confidence. Though she is extremely thin, she continues to lose weight at a rapid rate. Based on this information, the most important FIRST step in treating Tina will be to: If a = m 2 + 2, what is the value of a when m = -3? -7 -4 8 11 What is the difference between pump and turbine? Write the first law of thermodynamics for both (pump & turbine)? The perimeter of a rectangle can be found using the equation P = 2L + 2W, where P is the perimeter, L is the length, and W is the width of the rectangle. Can the perimeter of the rectangle be 60 units when its width is 12 units and its length is 18 units?A)No. If the rectangle has L = 18 and W = 12, P would not equal 60.B) No. The rectangle cannot have P = 60 and L = 18 because L + W is less than 24.C) Yes. The rectangle can have P = 60 and L = 18 because 60 = 24 + 18.D)Yes. The rectangle can have P = 60 and L = 18 because P = 2(18) + 2(12) would equal 60. If the Zeros of a quadratic equation are seven and -4 what would be the x intercepts Solve 3x^2 + x + 10 = 0 round solutions to the nearest hundredth A. X= -2.83 and x=0.83B. No real solutions C. X= -2.01 and x= 1.67D. X= -1.67 and x=2.01 Complete the phylogenetic tree by matching each characteristic that arose during the evolution of animals to its correct position. ( Start from top to bottom boxes)OPTIONS:BackboneTissuesCoelomSegmentationEndoskeleton The celsius and Fahrenheit scales are related by the equation C=5/9(f-32). What temperature fahrenheit would give a temperature of 5C?