Pat needs to determine the height of a tree before cutting it down to be sure that it will not fall on a nearby fence. The angle of elevation of the tree from one position on a flat path from the tree is Upper H equals 60 degrees comma and from a second position Upper L equals 60 feet farther along this path it is Upper B equals 50 degrees . What is the height of the​ tree?

Answers

Answer 1

Answer:

229.23 feet.

Step-by-step explanation:

The pictorial representation of the problem is attached herewith.

Our goal is to determine the height, h of the tree in the right triangle given.

In Triangle BOH

[tex]Tan 60^0=\dfrac{h}{x}\\h=xTan 60^0[/tex]

Similarly, In Triangle BOL

[tex]Tan 50^0=\dfrac{h}{x+60}\\h=(x+60)Tan 50^0[/tex]

Equating the Value of h

[tex]xTan 60^0=(x+60)Tan 50^0\\xTan 60^0=xTan 50^0+60Tan 50^0\\xTan 60^0-xTan 50^0=60Tan 50^0\\x(Tan 60^0-Tan 50^0)=60Tan 50^0\\x=\dfrac{60Tan 50^0}{Tan 60^0-Tan 50^0} ft[/tex]

Since we have found the value of x, we can now determine the height, h of the tree.

[tex]h=\left(\dfrac{60Tan 50^0}{Tan 60^0-Tan 50^0}\right)\cdotTan 60^0\\h=229.23 feet[/tex]

The height of the tree is 229.23 feet.

Pat Needs To Determine The Height Of A Tree Before Cutting It Down To Be Sure That It Will Not Fall On

Related Questions

Suppose the selling price of homes is skewed right with a mean of 350,000 and a standard deviation of 160000 If we record the selling price of 40 randomly selected US homes what will be the shape of the distribution of sample means what will be the mean of this distribution what will be the standard deviation of this distribution

Answers

Answer:

The distribution will be approximately normal, with mean 350,000 and standard deviation 25,298.

Step-by-step explanation:

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

Population:

Suppose the selling price of homes is skewed right with a mean of 350,000 and a standard deviation of 160000

Sample of 40

Shape approximately normal

Mean 350000

Standard deviation [tex]s = \frac{160000}{\sqrt{40}} = 25298[/tex]

The distribution will be approximately normal, with mean 350,000 and standard deviation 25,298.

Answer:

From the central limit theorem we know that the distribution for the sample mean [tex]\bar X[/tex] is given by:

[tex]\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]

The mean would be:

[tex] \mu_{\bar X} =350000[/tex]

And the standard deviation would be:

[tex]\sigma_{\bar X} =\frac{160000}{\sqrt{40}}= 25298.221[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the selling price of a population, and for this case we know the following info

Where [tex]\mu=350000[/tex] and [tex]\sigma=160000[/tex]

The central limit theorem states that "if we have a population with mean μ and standard deviation σ and take sufficiently large random samples from the population with replacement, then the distribution of the sample means will be approximately normally distributed. This will hold true regardless of whether the source population is normal or skewed, provided the sample size is sufficiently large".

From the central limit theorem we know that the distribution for the sample mean [tex]\bar X[/tex] is given by:

[tex]\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]

The mean would be:

[tex] \mu_{\bar X} =350000[/tex]

And the standard deviation would be:

[tex]\sigma_{\bar X} =\frac{160000}{\sqrt{40}}= 25298.221[/tex]

Cuál es el valor de la expresión -2+3(8+-13)? ​

Answers

Answer:

-17

Step-by-step explanation:

-2+3(8+-13)

-2+3(8-13)

-2+3(-5)

-2-15

-17

[tex]\text{Solve:}\\\\-2+3(8+-13)\\\\\text{Solve the variables inside of the parenthesis}\\\\-2+3(-5)\\\\-2-15\\\\\boxed{-17}[/tex]

You are a personnel director and are interested in predicting the Number of Shares of Company Stock (Y) using the Number of Years Employed with the Company (X). You randomly selected 8 employees and found that the average number of shares is 525 and the average number of years employed is 22.5. If the slope (b1) is 20.0, what is the least squares estimate of the intercept (b0)

Answers

Answer:

intercept=b0=75

Step-by-step explanation:

The least squares estimate of the intercept b0 can be computed as

b0=ybar-b1*xbar.

ybar=average number of shares of company stock=525.

xbar= average number of years employed=22.5.

slope=b1=20.

Thus,

intercept=b0=ybar-b1*xbar

intercept=b0=525-20*22.5

intercept=b0=525-450

intercept=b0=75.

Thus, the estimate of intercept b0=75.

The trucking company has a policy that any truck with a mileage more than 2.5 standard deviations above the mean should be removed from the road and inspected. What is the probability that a randomly selected truck from the fleet will have to be inspected? ROUND YOUR ANSWER TO 4 DECIMAL PLACES

Answers

Answer:

0.0062 = 0.62% probability that a randomly selected truck from the fleet will have to be inspected

Step-by-step explanation:

Z-score

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

What is the probability that a randomly selected truck from the fleet will have to be inspected?

Values of Z above 2.5. So this probability is 1 subtracted by the pvalue of Z = 2.5.

Z = 2.5 has a pvalue of 0.9938

1 - 0.9938 = 0.0062

0.0062 = 0.62% probability that a randomly selected truck from the fleet will have to be inspected

Answer:

For this case we want this probability:

[tex] P(X > \mu +2.5 \sigma) [/tex]

And we can use the z score formula given by:

[tex] z = \frac{ X -\mu}{\sigma}[/tex]

And replacing we got:

[tex] z = \frac{\mu +2.5 \sigma -\mu}{\sigma}= 2.5[/tex]

We want this probability:

[tex] P(Z>2.5) = 1-P(Z<2.5)[/tex]

And using the normal standard table or excel we got:

[tex] P(Z>2.5) = 1-P(Z<2.5)= 1-0.9938= 0.0062[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the mileage of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(\mu,\sigma)[/tex]  

For this case we want this probability:

[tex] P(X > \mu +2.5 \sigma) [/tex]

And we can use the z score formula given by:

[tex] z = \frac{ X -\mu}{\sigma}[/tex]

And replacing we got:

[tex] z = \frac{\mu +2.5 \sigma -\mu}{\sigma}= 2.5[/tex]

We want this probability:

[tex] P(Z>2.5) = 1-P(Z<2.5)[/tex]

And using the normal standard table or excel we got:

[tex] P(Z>2.5) = 1-P(Z<2.5)= 1-0.9938= 0.0062[/tex]

Factorize 12x² + 15xy​

Answers

Answer:

[tex]12 {x}^{2} + 15xy \\ = 3x(4x +5 y)[/tex]

hope this helps you...

The average THC content of marijuana sold on the street is 10%. Suppose the THC content is normally distributed with standard deviation of 2%. Let X be the THC content for a randomly selected bag of marijuana that is sold on the street. Round all answers to two decimal places and give THC content in units of percent. For example, for a THC content of 11%, write "11" not 0.11.

Answers

Answer:

(a) [tex]X\sim N(0.10,\ 0.02^{2})[/tex].

(b) The probability that a randomly selected bag of marijuana sold on the street will have a THC content greater than 11% is 31%.

(c) The 60th percentile is 11%.

Step-by-step explanation:

The complete question is:

The average THC content of marijuana sold on the street is 10%. Suppose the THC content is normally distributed with standard deviation of 2%. Let X be the THC content for a randomly selected bag of marijuana that is sold on the street. Round all answers to two decimal places and give THC content in units of percent. For example, for a THC content of 11%, write "11" not 0.11.  

A. X ~ N( , )  

B. Find the probability that a randomly selected bag of marijuana sold on the street will have a THC content greater than 11%.

C.Find the 60th percentile for this distribution.

Solution:

The random variable X is defined as the THC content for a bag of marijuana that is sold on the street.

(a)

The random variable X is Normally distributed with mean, μ = 0.10 and standard deviation, σ = 0.02.

Thus, [tex]X\sim N(0.10,\ 0.02^{2})[/tex].

(b)

Compute the value of P (X > 0.11) as follows:

[tex]P(X>0.11)=P(\frac{X-\mu}{\sigma}>\frac{0.11-0.10}{0.02})\\=P(Z>0.50)\\=1-P(Z<0.50)\\=1-0.69146\\=0.30854\\\approx 0.31[/tex]

*Use a z-table.

Thus, the probability that a randomly selected bag of marijuana sold on the street will have a THC content greater than 11% is 31%.

(c)

The pth percentile is a data value such that at least p% of the data-set is less than or equal to this data value and at least (100 - p)% of the data-set are more than or equal to this data value.

Let x represent the 60th percentile value.

The, P (X < x) = 0.60.

⇒ P (Z < z) = 0.60

The value of z for this probability is,

z = 0.26.

Compute the value of x as follows:

[tex]z=\farc{x-\mu}{\sigma}\\0.26=\farc{x-0.10}{0.02}\\x=0.10+(0.26\times 0.02)\\x=0.1052\\x\approx 0.11[/tex]

Thus, the 60th percentile is 11%.

Find the derivative.
StartFraction d Over dt EndFraction Integral from 0 to t Superscript 8 StartRoot u cubed EndRoot du
a. by evaluating the integral and differentiating the result.
b. by differentiating the integral directly.

Answers

Answer:

Using either method, we obtain:  [tex]t^\frac{3}{8}[/tex]

Step-by-step explanation:

a) By evaluating the integral:

 [tex]\frac{d}{dt} \int\limits^t_0 {\sqrt[8]{u^3} } \, du[/tex]

The integral itself can be evaluated by writing the root and exponent of the variable u as:   [tex]\sqrt[8]{u^3} =u^{\frac{3}{8}[/tex]

Then, an antiderivative of this is: [tex]\frac{8}{11} u^\frac{3+8}{8} =\frac{8}{11} u^\frac{11}{8}[/tex]

which evaluated between the limits of integration gives:

[tex]\frac{8}{11} t^\frac{11}{8}-\frac{8}{11} 0^\frac{11}{8}=\frac{8}{11} t^\frac{11}{8}[/tex]

and now the derivative of this expression with respect to "t" is:

[tex]\frac{d}{dt} (\frac{8}{11} t^\frac{11}{8})=\frac{8}{11}\,*\,\frac{11}{8}\,t^\frac{3}{8}=t^\frac{3}{8}[/tex]

b) by differentiating the integral directly: We use Part 1 of the Fundamental Theorem of Calculus which states:

"If f is continuous on [a,b] then

[tex]g(x)=\int\limits^x_a {f(t)} \, dt[/tex]

is continuous on [a,b], differentiable on (a,b) and  [tex]g'(x)=f(x)[/tex]

Since this this function [tex]u^{\frac{3}{8}[/tex] is continuous starting at zero, and differentiable on values larger than zero, then we can apply the theorem. That means:

[tex]\frac{d}{dt} \int\limits^t_0 {u^\frac{3}{8} } } \, du=t^\frac{3}{8}[/tex]

"The Crunchy Potato Chip Company packages potato chips in a process designed for 10.0 ounces of chips with an upper specification limit of 10.5 ounces and a lower specification limit of 9.5 ounces. The packaging process results in bags with an average net weight of 9.8 ounces and a standard deviation of 0.12 ounces. The company wants to determine if the process is capable of meeting design specifications."

Answers

Answer:

The process does not meets the specifications.

Step-by-step explanation:

It is provided that the Crunchy Potato Chip Company packages potato chips in a process designed for 10.0 ounces of chips.

The value of upper specification limit is, USL =  10.5 ounces.

The value of lower specification limit is, LSL = 9.5 ounces.

The mean weight of the chips bags is, [tex]\bar X=9.8\ ounces[/tex].

And the standard deviation  weight of the chips bags is, [tex]\sigma=0.12\ ounces[/tex].

Compute the value of process capability as follows:

[tex]C_{p_{k}}=min \{C_{p_{L}},\ C_{p_{U}}\}[/tex]

Compute the value of [tex]C_{p_{L}}[/tex] as follows:

[tex]C_{p_{L}}=\frac{\bar X-LSL}{3 \sigma}=\frac{9.8-9.5}{3\times 0.12}=0.833[/tex]

Compute the value of [tex]C_{p_{K}}[/tex] as follows:

[tex]C_{p_{K}}=\frac{USL-\bar X}{3 \sigma}=\frac{10.5-9.8}{3\times 0.12}=1.944[/tex]

The value of process capability is:

[tex]C_{p_{k}}=min \{C_{p_{L}},\ C_{p_{U}}\}[/tex]

      [tex]=min\{0.833,\ 1.944\}\\=0.833[/tex]

The value of process capability lies in the interval 0 to 1. So the  process is not capable of meeting design specifications.

Thus, the process does not meets the specifications.

Final answer:

The process capability of The Crunchy Potato Chip Company's packaging process has been questioned. By calculating the process capability index (Cpk), we find that the process capability is below the desirable threshold, suggesting that the process might not consistently meet the specified design requirements.

Explanation:

The student's query pertains to the process capability of The Crunchy Potato Chip Company's packaging process. This concept is part of quality control in process management and is measured by the process capability index (Cpk). In this case, the company has set specifications for a bag to contain between 9.5 and 10.5 ounces of chips and aims to have an average of 10.0 ounces. However, with a mean of 9.8 ounces and a standard deviation of 0.12 ounces, we need to calculate whether the process falls within the acceptable limits and how often it meets design specifications. To do this, the Cpk value is computed, which considers the mean, standard deviation, and the proximity of the mean to the closest specification limit.

Calculating the Process Capability Index (Cpk)

The formula for Cpk is:

Cpk = minimum of [(USL - mean) / (3 * sigma), (mean - LSL) / (3 * sigma)]

Where:

USL = Upper Specification Limit

LSL = Lower Specification Limit

mean = average net weight of the bags

sigma = standard deviation

Here, USL is 10.5 ounces, LSL is 9.5 ounces, mean is 9.8 ounces, and sigma is 0.12 ounces. Substituting these values:

Cpk = minimum of [(10.5 - 9.8) / (3 * 0.12), (9.8 - 9.5) / (3 * 0.12)]
Cpk = minimum of [1.9444, 0.8333]

The smaller of the two results is 0.8333, indicating that this is the Cpk value. A Cpk of 1.33 or higher is generally considered good, while a Cpk less than 1 indicates that the process may not be capable of meeting design specifications consistently. In this case, with a Cpk of 0.8333, The Crunchy Potato Chip Company's process may need improvement.

Shawndra said that it is not possible to draw a trapezoid that is a rectangle, Explain your answer using the properties of quadrilaterals. Help FAST please. TELL ME WHAT TO DO AND SAY 30 points

Answers

Answer:

She is wrong

Rectangle can be a trapezoid

Step-by-step explanation:

A trapezoid is a quadrilateral which has atleast one pair of parallel sides.

A rectangle has two pairs of parallel sides, so it is a trapezoid too.

All rectangles are trapezoid.

But all trapezoids are not rectangles

Solve the following:
1)If 32x=2, find x
2) simplify 9-1\2

Answers

Answer:

the answers are

1) 1/16

2) -18

Answer:

[tex]1)32x = 2 \\ \frac{32x}{32} = \frac{2}{32} \\ x = \frac{1}{16} [/tex]

[tex]2)9 - \frac{1}{2} \\ \frac{9}{1} \frac{ \times }{ \times } \frac{2}{2} - \frac{1}{2} \\ \frac{18}{2} - \frac{1}{2} \\ = \frac{17}{2} \\ = 8 \frac{1}{2} [/tex]

The mean salary of people living in a certain city is $37,500 with a standard deviation of $2,119. A sample of n people will be selected at random from those living in the city. Find the smallest sample size n that will guarantee at least a 90% chance of the sample mean income being within $500 of the population mean income.

Answers

Answer:

The smallest sample size needed is 49.

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1-0.9}{2} = 0.05[/tex]

Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].

So it is z with a pvalue of [tex]1-0.05 = 0.95[/tex], so [tex]z = 1.645[/tex]

Now, find the margin of error M as such

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

Find the smallest sample size n that will guarantee at least a 90% chance of the sample mean income being within $500 of the population mean income.

This is n for which [tex]M = 500, \sigma = 2119[/tex]

So

[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]

[tex]500 = 1.645*\frac{2119}{\sqrt{n}}[/tex]

[tex]500\sqrt{n} = 1.645*2119[/tex]

[tex]\sqrt{n} = \frac{1.645*2119}{500}[/tex]

[tex](\sqrt{n})^{2} = (\frac{1.645*2119}{500})^{2}[/tex]

[tex]n = 48.6[/tex]

Rounding up

The smallest sample size needed is 49.

Answer:

[tex]n=(\frac{1.640(2119)}{500})^2 =48.31 \approx 49[/tex]

So the answer for this case would be n=49 rounded up to the nearest integer

Step-by-step explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

[tex]\bar X=37500[/tex] represent the sample mean for the sample  

[tex]\mu[/tex] population mean (variable of interest)

[tex]\sigma=2119[/tex] represent the sample standard deviation

n represent the sample size  

Solution to the problem

The margin of error is given by this formula:

[tex] ME=z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]    (a)

And on this case we have that ME =500 and we are interested in order to find the value of n, if we solve n from equation (a) we got:

[tex]n=(\frac{z_{\alpha/2} \sigma}{ME})^2[/tex]   (b)

The critical value for 90% of confidence interval now can be founded using the normal distribution. And in excel we can use this formla to find it:"=-NORM.INV(0.05;0;1)", and we got [tex]z_{\alpha/2}=1.640[/tex], replacing into formula (b) we got:

[tex]n=(\frac{1.640(2119)}{500})^2 =48.31 \approx 49[/tex]

So the answer for this case would be n=49 rounded up to the nearest integer

An eight-sided die, which may or may not be a fair die, has four colors on it; you have been tossing the die for an hour and have recorded the color rolled for each toss. What is the probability you will roll an orange on your next toss of the die? Express your answer as a simplified fraction or a decimal rounded to four decimal places.

Answers

Answer:

Probability of an Orange on the next toss

= (23/60) = 0.3833

Step-by-step explanation:

Orange: 46

Brown: 23

Green: 32

Yellow: 19

Probability of an Orange on the next toss

= n(orange colours obtained in the tosses) ÷ n(number of tosses)

n(orange colours in the tosses) = 46

Total number of tosses = 46 + 23 + 32 + 19

= 120.

Probability of an Orange on the next toss

= (46/120) = (23/60) = 0.3833

Hope this Helps!!!!

Convert 100 USD to rubles. Use exchange rate, where 1 USD equals 32.5 rubles.

Answers

Answer:

3250 rubles.  

Step-by-step explanation:

1 USD = 32.5 rubles so...

1 * 100 USD = 32.5 * 100 rubles.  

The answer is 3250 rubles.  

Answer:

3250 rubles

Step-by-step explanation:

1 USD = 32.5 rubles

100 USD = 100 × 32.5

= 3250 rubles

A sample of 16 elements is selected from a population with a reasonably symmetrical distribution. The sample mean is 100 and the sample standard deviation is 40. We can say that we are 90% confident that is between what two numbers? 12. What is the upper number? Maintain three decimal points in your calculations and give at least two decimal points in your answer.

Answers

Answer:

We can say that we are 90% confident that the population mean is between 29.876 and 170.124.

The upper number is 170.124.

Step-by-step explanation:

We have the sample's standard deviation, so we use the students' t-distribution to solve this question.

The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So

df = 16 - 1 = 15

90% confidence interval

Now, we have to find a value of T, which is found looking at the t table, with 15 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.9}{2} = 0.95([tex]t_{95}[/tex]). So we have T = 1.7531

The margin of error is:

M = T*s = 40*1.7531 =70.124

In which s is the standard deviation of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 100 - 70.124 = 29.876

The upper end of the interval is the sample mean added to M. So it is 100 + 70.124 = 170.124

We can say that we are 90% confident that the population mean is between 29.876 and 170.124.

The upper number is 170.124.

Answer:

[tex]100-1.753\frac{40}{\sqrt{16}}=82.470[/tex]    

[tex]100+ 1.753\frac{40}{\sqrt{16}}=117.530[/tex]    

So on this case the 90% confidence interval would be given by (82.470;117.530)

And the upper value would be 117.530 for this case

Step-by-step explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

[tex]\bar X=100[/tex] represent the sample mean

[tex]\mu[/tex] population mean (variable of interest)

s=40 represent the sample standard deviation

n=16 represent the sample size  

Solution to the problem

The confidence interval for the mean is given by the following formula:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (1)

In order to calculate the critical value [tex]t_{\alpha/2}[/tex] we need to find first the degrees of freedom, given by:

[tex]df=n-1=16-1=15[/tex]

Since the Confidence is 0.90 or 90%, the value of [tex]\alpha=0.1[/tex] and [tex]\alpha/2 =0.05[/tex], and we can use excel, a calculator or a table to find the critical value. The excel command would be: "=-T.INV(0.05,15)".And we see that [tex]t_{\alpha/2}=1.753[/tex]

Now we have everything in order to replace into formula (1):

[tex]100-1.753\frac{40}{\sqrt{16}}=82.470[/tex]    

[tex]100+ 1.753\frac{40}{\sqrt{16}}=117.530[/tex]    

So on this case the 90% confidence interval would be given by (82.470;117.530)    

7 divided by 4 long division

Answers

There is the answer hope it helps

The same researcher wants to see if recently widowed spouses leave the house more after they perform some activity (e.g., Bingo, Support Group, etc.). She wants to compare participants before and after a group activity. Which type of t-test should she use?

Answers

Answer:

paired t-test

Step-by-step explanation:

Paired t-test is used to measure before and after effect. For example, a researcher wants to check the effect of new teaching method and he wants to compares marks of students before new teaching method and marks of students before new teaching method.

In the given example there are two groups participants before group activity and participants after group activity. A researcher wants to investigate that whether recently widowed spouses leave house after performing group activity or not. The observations in these two groups are paired naturally and we take the differences of these two groups are considered as random sample. This type of t-test is known as paired t-test.

If Sergio has 16 quarters and dimes in his pocket, and they have a combined value of 265 cents, how many of each coin does he have?

Answers

9 dimes and 7 quarters. Each quarter is 25 cents and each dime is 10 cents. 25 x 7 = 175, 10 x 9 = 90. Add 175 and 90 together and it gives you 265.

please help me ASAP!!

Answers

Answer:

x  = 16

Step-by-step explanation:

The sum of measures of these three angles of any triangle is equal to 180 °

54 + 90 + (2x + 4) = 180

144 + 2x + 4 = 180

148 + 2x = 180

2x = 180 - 148

2x = 32

[tex]x= \frac{32}{2} \\\\x=16[/tex]

Focus on triangle KLM. Since JKLM is a rectangle, angle KLM is right. Since the sum of the interior angles of every triangle is 180, we deduce that

[tex]\hat{K}+\hat{L}+\hat{M}=180[/tex]

Now plug the values for each angle and you have

[tex]54+90+(2x+4)=180[/tex]

Move 54 and 90 to the right side to get

[tex]2x+4=36 \iff 2x=32 \iff x=16[/tex]

The diameters of a batch of ball bearings are known to follow a normal distribution with a mean 4.0 in and a standard deviation of 0.15 in. If a ball bearing is chosen randomly, find the probability of realizing the following event: (a) a diameter between 3.8 in and 4.3 in, (b) a diameter smaller than 3 9 in, (c) a diameter larger than 4.2 in

Answers

Answer:

a) 88.54% probability of a diameter between 3.8 in and 4.3 in

b) 25.14% probability of a diameter smaller than 3.9in

c) 90.82% probability of a diameter larger than 4.2 in

Step-by-step explanation:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 4, \sigma = 0.15[/tex]

(a) a diameter between 3.8 in and 4.3 in,

This is the pvalue of Z when X = 4.3 subtracted by the pvalue of Z when X = 3.8.

X = 4.3

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{4.3 - 4}{0.15}[/tex]

[tex]Z = 2[/tex]

[tex]Z = 2[/tex] has a pvalue of 0.9772

X = 3.8

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{3.8 - 4}{0.15}[/tex]

[tex]Z = -1.33[/tex]

[tex]Z = -1.33[/tex] has a pvalue of 0.0918

0.9772 - 0.0918 = 0.8854

88.54% probability of a diameter between 3.8 in and 4.3 in

(b) a diameter smaller than 3 9 in,

This is the pvalue of Z when X = 3.9. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{3.9 - 4}{0.15}[/tex]

[tex]Z = -0.67[/tex]

[tex]Z = -0.67[/tex] has a pvalue of 0.2514

25.14% probability of a diameter smaller than 3.9in

(c) a diameter larger than 4.2 in

This is 1 subtracted by the pvalue of Z when X = 4.2. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{4.2 - 4}{0.15}[/tex]

[tex]Z = 1.33[/tex]

[tex]Z = 1.33[/tex] has a pvalue of 0.9082

90.82% probability of a diameter larger than 4.2 in

Find equations of the tangent plane and the normal line to the given surface at the specified point. x + y + z = 8exyz, (0, 0, 8) (a) the tangent plane (b) the normal line (x(t), y(t), z(t)) =

Answers

Let [tex]f(x,y,z)=x+y+z-8e^{xyz}[/tex]. The tangent plane to the surface at (0, 0, 8) is

[tex]\nabla f(0,0,8)\cdot(x,y,z-8)=0[/tex]

The gradient is

[tex]\nabla f(x,y,z)=\left(1-8yze^{xyz},1-8xze^{xyz},1-8xye^{xyz}\right)[/tex]

so the tangent plane's equation is

[tex](1,1,1)\cdot(x,y,z-8)=0\implies x+y+(z-8)=0\implies x+y+z=8[/tex]

The normal vector to the plane at (0, 0, 8) is the same as the gradient of the surface at this point, (1, 1, 1). We can get all points along the line containing this vector by scaling the vector by [tex]t[/tex], then ensure it passes through (0, 0, 8) by translating the line so that it does. Then the line has parametric equation

[tex](1,1,1)t+(0,0,8)=(t,t,t+8)[/tex]

or [tex]x(t)=t[/tex], [tex]y(t)=t[/tex], and [tex]z(t)=t+8[/tex].

(See the attached plot; the given surface is orange, (0, 0, 8) is the black point, the tangent plane is blue, and the red line is the normal at this point)

Final answer:

This detailed answer explains how to find the equation of the tangent plane and the normal line to a given surface at a specified point. The parametric equations of the normal line are [tex]\( (x(t), y(t), z(t)) = (t, t, 8 + t) \).[/tex]

Explanation:

To find the equations of the tangent plane and the normal line to the given surface x + y + z = 8exyz at the specified point 0, 0, 8) we first need to find the partial derivatives of x + y + z - 8exyz with respect to x, y, and z.

Given the surface equation:

[tex]\[ x + y + z = 8exyz \][/tex]

Let's denote the function as [tex]\(F(x, y, z) = x + y + z - 8exyz\).[/tex]

(a) To find the equation of the tangent plane, we use the gradient vector of F at the point 0, 0, 8 as the normal vector to the tangent plane.

The gradient vector of F is given by:

[tex]\[ \nabla F = \left( \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z} \right) \][/tex]

Let's calculate the partial derivatives:

[tex]\[ \frac{\partial F}{\partial x} = 1 - 8eyz \][/tex]

[tex]\[ \frac{\partial F}{\partial y} = 1 - 8exz \][/tex]

[tex]\[ \frac{\partial F}{\partial z} = 1 - 8exy \][/tex]

Now, evaluate these partial derivatives at the point (0, 0, 8):

[tex]\[ \frac{\partial F}{\partial x} = 1 - 8e(0)(0) = 1 \][/tex]

[tex]\[ \frac{\partial F}{\partial y} = 1 - 8e(0)(0) = 1 \][/tex]

[tex]\[ \frac{\partial F}{\partial z} = 1 - 8e(0)(0) = 1 \][/tex]

So, the gradient vector of [tex]\(F\) at \((0, 0, 8)\) is \( \nabla F = (1, 1, 1) \).[/tex]

Therefore, the equation of the tangent plane is:

[tex]\[ x + y + z = 8 \][/tex]

(b) To find the equation of the normal line, we use the same gradient vector [tex]\( \nabla F = (1, 1, 1) \)[/tex] as the direction vector for the line.

Given the point \((0, 0, 8)\) on the surface, the parametric equations of the normal line are:

[tex]\[ x(t) = 0 + t(1) = t \][/tex]

[tex]\[ y(t) = 0 + t(1) = t \][/tex]

[tex]\[ z(t) = 8 + t(1) = 8 + t \][/tex]

So, the parametric equations of the normal line are [tex]\( (x(t), y(t), z(t)) = (t, t, 8 + t) \).[/tex]

A worker has asked her supervisor for a letter of recommendation for a new job. She estimates that there is an 80 percent chance that she will get the job if she receives a strong recommendation, a 40 percent chance if she receives a moderately good recommendation, and a 10 percent chance if she receives a weak recommendation. She further estimates that the probabilities that the recommendation will be strong, moderate, and weak are 0.7, 0.2, and 0.1, respectively.

a. How certain is she that she will receive the new job offer?
b. Given that she does receive the offer, how likely should she feel that she received a strong recommendation?

i. a moderate recommendation?
ii. a weak recommendation?

c. Given that she does not receive the job offer, how likely should she feel that she received a strong recommendation?
i. a moderate recommendation?
ii. a weak recommendation?

Answers

Answer:

a) P(Job offer) = 0.65

b) P(S|J) = 0.862

P(M|J) = 0.143

P(W|J) = 0.0179

c) P(S|J') = 0.400

P(M|J') = 0.343

P(W|J') = 0.257

Step-by-step explanation:

- Let the event that she gets a job be J

- Let the event that she does not get the job be J'

- Let the event that she receives a strong recommendation be S

- Let the event that she receives a moderate recommendation be M

- Let the event that she receives a weak recommendation be W.

Given in the question,

P(J|S) = 80% = 0.8

P(J|M) = 40% = 0.4

P(J|W) = 10% = 0.1

P(S) = 0.70

P(M) = 0.20

P(W) = 0.10

a) How certain is she that she will receive the new job offer?

P(J) = P(J n S) + P(J n M) + P(J n W) (since S, M and W are all of the possible outcomes that lead to a job)

But note that the conditional probability, P(A|B) is given mathematically as,

P(A|B) = P(A n B) ÷ P(B)

P(A n B) is then given as

P(A n B) = P(A|B) × P(B)

So,

P(J n S) = P(J|S) × P(S) = 0.80 × 0.70 = 0.56

P(J n M) = P(J|M) × P(M) = 0.40 × 0.20 = 0.08

P(J n W) = P(J|W) × P(W) = 0.10 × 0.10 = 0.01

P(J) = P(J n S) + P(J n M) + P(J n W)

P(J) = 0.56 + 0.08 + 0.01 = 0.65

b) Given that she does receive the offer, how likely should she feel that she received a strong recommendation?

This probability = P(S|J)

P(S|J) = P(J n S) ÷ P(J) = 0.56 ÷ 0.65 = 0.862

i. a moderate recommendation?

P(M|J) = P(J n M) ÷ P(J) = 0.08 ÷ 0.65 = 0.143

ii. a weak recommendation?

P(W|J) = P(J n W) ÷ P(J) = 0.01 ÷ 0.65 = 0.0179

c) Probability that she doesn't get job offer, given she got a strong recommendation = P(J'|S)

P(J'|S) = 1 - P(J|S) = 1 - 0.80 = 0.20

Probability that she doesn't get job offer, given she got a moderate recommendation = P(J'|M)

P(J'|M) = 1 - P(J|M) = 1 - 0.40 = 0.60

Probability that she doesn't get job offer, given she got a weak recommendation = P(J'|S)

P(J'|W) = 1 - P(J|W) = 1 - 0.10 = 0.90

Total probability that she doesn't get job offer

P(J') = P(J' n S) + P(J' n M) + P(J' n W)

P(J' n S) = P(J'|S) × P(S) = 0.20 × 0.70 = 0.14

P(J' n M) = P(J'|M) × P(M) = 0.60 × 0.20 = 0.12

P(J' n W) = P(J'|W) × P(W) = 0.90 × 0.10 = 0.09

Total probability that she doesn't get job offer

P(J') = P(J' n S) + P(J' n M) + P(J' n W)

= 0.14 + 0.12 + 0.09 = 0.35

Given that she does not receive the job offer, how likely should she feel that she received a strong recommendation?

This probability = P(S|J')

P(S|J') = P(J' n S) ÷ P(J') = 0.14 ÷ 0.35 = 0.400

i. a moderate recommendation?

P(M|J') = P(J' n M) ÷ P(J') = 0.12 ÷ 0.35 = 0.343

ii. a weak recommendation?

P(W|J') = P(J' n W) ÷ P(J') = 0.09 ÷ 0.35 = 0.257

Hope this Helps!!!

Final answer:

She has 62% certainty of getting the job. If she gets it, there are high chances (~90%) that the recommendation was strong. In case of rejection, she's slightly more likely to have received a strong recommendation than a moderate or weak one.

Explanation:

The subject of this problem involves the understanding of conditional probabilities and the principle of total probability. Let's denote the events as follows:

A1: the recommendation is strong A2: the recommendation is moderate A3: the recommendation is weak B: she gets the new job offer

a. The total probability that she will receive the job offer is calculated as follows:

P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3) = 0.7*0.8+0.2*0.4+0.1*0.1=0.62, so she is 62% certain that she will receive the job offer.

b. If she does receive the offer, the probabilities that she got a strong, moderate and weak recommendation are calculated using Bayes' Theorem:

P(A1|B)=P(B|A1)P(A1)/P(B)=0.8*0.7/0.62 =~ 0.9 P(A2|B)=P(B|A2)P(A2)/P(B)=0.4*0.2/0.62 =~ 0.13 P(A3|B)=P(B|A3)P(A3)/P(B)=0.1*0.1/0.62 =~ 0.016

c. If she doesn't get the job, the probabilities are calculated similarly:

P(A1|Not B)=P(Not B|A1)P(A1)/P(Not B)=0.2*0.7/0.38 =~ 0.37 P(A2|Not B)=P(Not B|A2)P(A2)/P(Not B)=0.6*0.2/0.38 =~ 0.32 P(A3|Not B)=P(Not B|A3)P(A3)/P(Not B)=0.9*0.1/0.38 =~ 0.24

Learn more about Conditional Probability here:

https://brainly.com/question/32171649

#SPJ3

A bag of marbles contains 3 yellow, 6 blue, 1 green, 8 red, 2 orange. Find the probability: P(yellow, then orange WITHOUT replacement)

Answers

Answer:

P(yellow, then orange WITHOUT replacement) = 0.0158

Step-by-step explanation:

A probability is the number of desired outcomes divided by the number of total outcomes

This problem asks:

The probability of first getting a yellow marble, then an orange marble, without replacemtn.

Yellow marble first:

3 yellow marbles out of 3+6+1+8+2 = 20 marbles.

So P(a) = 3/20.

Then the orange marble:

Now the yellow marble is retired.

2 orange marbles out of 19.

So P(b) = 2/19

Probability:

P(yellow, then orange WITHOUT replacement) = P(a)P(b) = (3/20)*(2/19) = 0.0158

The two dot plots represent a sample of the number of
people in households in two towns. Which statements
are true about the data sets?
Check all that apply.
Both have the same number of data points.
Both means are between 3 and 4.
O Both have the same median.
Both have the same range.
Westwood has less variability than Middleton.

Answers

The answer is:

Both have the same number of data points

Both means are between 3 and 4

Westwood has less variability than Middleton

Answer:

The right anwers are : A B and E

Step-by-step explanation:

right on edg!

A random sample of 121 automobiles traveling on an interstate showed an average speed of 65 mph. From past information, it is known that the standard deviation of the population is 22 mph. The 95 percent confidence interval for μ is determined as (61.08, 68.92). If we are to reduce the sample size to 100 (other factors remain unchanged), the 95 percent confidence interval for μ would: Question 6 options: be the same. become wider. become narrower. be impossible to determine.

Answers

Answer:

95 percent confidence interval for μ is determined by

(60.688 ,  69.312)

a) be the same

Step-by-step explanation:

Step (i):-

Given data a random sample of 121 automobiles traveling on an interstate showed an average speed of 65 mph.

The sample size is n= 121

The mean of the sample x⁻ = 65mph.

The standard deviation of the population is 22 mph

σ = 22mph

Step (ii) :-

Given  The 95 percent confidence interval for μ is determined as

(61.08, 68.92)

we are to reduce the sample size to 100 (other factors remain unchanged) so

given The sample size is n= 100

The mean of the sample x⁻ = 65mph.

The standard deviation of the population is 22 mph

σ = 22mph

Step (iii):-

95 percent confidence interval for μ is determined by

[tex](x^{-} - 1.96\frac{S.D}{\sqrt{n} } , x^{-} + 1.96 \frac{S.D}{\sqrt{n} } )[/tex]

[tex](65 - 1.96\frac{22}{\sqrt{100} } , 65 + 1.96 \frac{22}{\sqrt{100} } )[/tex]

(65 - 4.312 ,65 +4.312)

(60.688 ,  69.312) ≅(61 ,69)

This is similar to (61.08, 68.92) ≅(61 ,69)

Conclusion:-

it become same as (61.08, 68.92)

Final answer:

In the given scenario, the 95 percent confidence interval for μ would become wider if the sample size is reduced from 121 to 100. This is due to the increased uncertainty in estimation as a result of a smaller sample size.

Explanation:

In statistics, a confidence interval is a range in which a population parameter is estimated to lie. The calculation of a confidence interval involves several factors, one of which is the sample size. The width of the confidence interval decreases as the sample size increases, assuming that all other factors remain the same.

In this case, the sample size is proposed to decrease from 121 to 100. As a result, the confidence interval for μ would become wider. This is because as the sample size decreases, the standard error increases, which in turn widens the confidence interval, allowing for more uncertainty in estimations.

Learn more about Confidence Interval here:

https://brainly.com/question/34700241

#SPJ3

The price-earnings (PE) ratios of a sample of stocks have a mean value of 10.5 and a standard deviation of 3. If the PE ratios have a normal distribution, use the Empirical Rule (also called the 68-95-99.7 Rule) to estimate the percentage of PE ratios that fall between:

Answers

Answer:

a) 68% falls within 7.5 and 13.5

b) 95% falls within 4.5 and 16.5

c) 99.7% falls within 1.5 and 19.5

Step-by-step explanation:

Given that:

mean (μ) = 10.5, Standard deviation (σ) = 3.

The Empirical Rule (also called the 68-95-99.7 Rule)  for a normal distribution states that all data falls within three standard deviations. That is 68% falls within the first standard deviation (µ ± σ), 95% within the first two standard deviations (µ ± 2σ), and 99.7% within the first three standard deviations (µ ± 3σ).

Therefore using the empirical formula:

68% falls within the first standard deviation (µ ± σ) = (10.5 ± 3) = (7.5, 13.5)

95% within the first two standard deviations (µ ± 2σ) = (10.5 ± 2(3)) = (10.5 ± 6) = (4.5, 16.5)

99.7% within the first three standard deviations (µ ± 3σ) = (10.5 ± 3(3)) = (10.5 ± 9) = (1.5, 19.5)

Imagine you conducted a study to look at the association between whether an expectant mother eats breakfast (or not) and the gender of her baby. Cramér's V = .22. How would you interpret this value? (Hint: Cramér's V can range between 0 and 1.) There was a small to medium association between baby gender and whether the mother ate breakfast every day. 22% of the variation in frequency counts of baby gender (boy or girl) can be explained by whether or not the mother ate breakfast every day. 2.2% of the variation in frequency counts of baby gender (boy or girl) can be explained by whether or not the mother ate breakfast every day. There is a medium to large association between the gender of the baby and whether or not the mother ate breakfast every day.

Answers

Answer:

: The percentage of newborn infants who are exclusively breastfed at the time of hospital discharge.

Data Source: Rhode Island Department of Health, Center for Health and Data Analysis, Newborn Developmental Risk Screening Program Database and Maternal and Child Health Database.

Footnotes: The year indicated is the mid-year of a five-year period of data.

Step-by-step explanation:

Final answer:

Cramér's V value of .22 in the study indicates a small to medium association between whether the mother ate breakfast and the gender of her baby.

Explanation:

In the study, Cramér's V measuress the strength of association between two nominal variables, in this case, the mother's breakfast-eating habits and the gender of her baby. The value of Cramer’s V ranges from 0 (indicating no association) to 1 (indicating a perfect association)). Given the value of Cramér's V at .22 for this study, there is a small to medium association between whether a mother ate breakfast and the gender of her baby. It does not mean that 22% of the variation in baby gender can be explained by the mother's breakfast-eating habits. Rather, it quantifies the extent of the association between these two factors.

Learn more about Cramér's V here:

https://brainly.com/question/32264601

#SPJ3


The graph of a line passes through the points (0,5) and (-10,0). What is the equation
of the line?
CLEAR
CHECK
y = 2x - 10
y = 5x + 5
y= 1 / 8x 10
y = -2x + 5

Answers

Answer:

Y=1/2x +5

Step-by-step explanation:

(0,5) (-10,0)

0-5/-10-0=1/2

(0,5) (x, y)

Y-5/x-10=1/2(crossmultiply)

2y-10=x

2y= x +10(divide all sides by 2)

Y=1/2x+5

You spin the spinner shown below once. Each sector shown has an equal area.

What is p (not squirrel)

Answers

Answer: 0.8

Step-by-step explanation:

There are 5 possible equally sized sections meaning there is a 0.2 or 20% of landing on each section. We can subtract the probability of getting a squirrel from the whole thing (1 as probability always equals 1) to determine the probability of not squirrel.

P(squirrel) = 0.2

1 - P(squirrel) = P(not a squirrel)

1 - 0.2 = 0.8

Answer: the anserw is 0.8

Step-by-step explanation:

We survey a random sample of American River College students and ask if they drink coffee on a regular basis. The 90% confidence interval for the proportion of all American River College students who drink coffee on a regular basis is (0.262, 0.438). What will be true about the 95% confidence interval for these data? Group of answer choices The 95% confidence interval is narrower than the 90% confidence interval. The 95% confidence interval is wider than the 90% confidence interval. The two intervals will have the same width. It is impossible to say which interval will be wider.

Answers

Answer:

Correct option:

The 95% confidence interval is wider than the 90% confidence interval.

Step-by-step explanation:

The (1 - α)% confidence interval for the population proportion is:

[tex]CI=\hat p\pm z_{\alpha/2}\times \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]

The width of this interval is:

[tex]W=UL-LL\\=2\times z_{\alpha/2}\times \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]

The width of the interval is directly proportional to the critical value.

The critical value of a distribution is based on the confidence level.

Higher the confidence level, higher will be critical value.

The z-critical value for 95% and 90% confidence levels are:

[tex]90\%: z_{\alpha /2}=z_{0.05}=1.645\\95\%: z_{\alpha /2}=z_{0.025}=1.96[/tex]

*Use a z-table.

The critical value of z for 95% confidence level is higher than that of 90% confidence level.

So the width of the 95% confidence interval will be more than the 90% confidence interval.

Thus, the correct option is:

"The 95% confidence interval is wider than the 90% confidence interval."

Write the equation of the line that goes through the point (-4,7) and has a slope of -5.

Answers

Answer:

y= -5x-13

Step-by-step explanation:

start with the linear equation

y= mx+b

indentify what you already have.

x= -4 and y= 7 and m(slope)= -5

We are solving for b, so plug in what you have.

7= -5(-4)+b

Simplify.

7= 20+b

Subtract 20 on both sides.

-13= b

Rewrite your equation with the x and y values.

y= -5x-13

Other Questions
expression is to phrase as inequality is to _______________. In the example sentence,personification makesa real person.seem like If h(t) = t^2/3 9 and j(t) = 3t + 5t^2/3,what is h(t) j(t)?A) -4t^2/3-3t-9B) 4t^2/3+3t+9C) 3t+6t^4/3D) -7t^7/3-9 1. Find the measure of ZBOD. Then, classify the angle as acute, right, or obtuse.ToIspompyjagram90 200sajt570080 70 8070 60 500120 130 14050 1.60glosslesund20 120 1104030OEI OOT OSTOacesso30203020180 170 160 1100iedad50 160 17010570 180A) mZBOD = 125; obtuseB) mZBOD = 35; acuteC) mZBOD = 90; rightD) mZBOD = 160; obtuse Write as a mathematical expression and solve. The sum of a number and 8 times the number is 45. Find the number. plz help fast Which is the area of the rectangle? Which observer would hear the louder sound?a. The womanC. They both dob. The man ___Is a poor conductor of heat?Aluminum?Iron?Ceramic?Or Zinc? Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional questions. Online Content: Site 1 Describe the weather at Mount Everest. What does this mean for hikers? how old is gabriella if she was 11 years old 19 years ago Which musical era was like a fresh start? * 1 point Medieval, 500 - 1450 Renaissance, 1450 - 1600 Baroque, 1600 - 1750 ANSWER PLZZZZ FAST! Read CAREFULLY FOR THE SAKE OF GOD! What is the graph 4=y2 Find the value of x. 7. Compare Compare the tones of "Wild Peaches and Spring and All." How does thetone of each poem reflect the role of the speaker? 57281919265488651310185029 Calculate the average (arithmetic mean) of the list of numbers shown in the table. (rounded to the nearest tenth) The following information relates to Halloran Co.'s accounts receivable for 2018: Accounts receivable balance, 1/1/2018 $ 844,000 Credit sales for 2018 3,470,000 Accounts receivable written off during 2018 54,000 Collections from customers during 2018 3,050,000 Allowance for uncollectible accounts balance, 12/31/2018 205,000 What amount should Halloran report for accounts receivable, before allowances, at December 31, 2018?A. $1,210,000.B. $1,264,000.C. $1,005,000.D. None of these answer choices are correct. Dr. Zakaria, a young faculty member at Soujourner University, is interested in how personal characteristics such as hopefulness, trustworthiness, and kindness affect self-perceived happiness. Dr. Zakaria is most likely a __________.A) cognitive psychologist.B) positive psychologist.C) psychoanalyst.D) social psychologist. Estimate the area of the circle. Round to the nearest whole number. A)3 square units B)6 square units C)9 square units D)12 square units How does the image of the .50-caliber tracer in flight compare with the image of the pilot who has been hit by the tracer?