Samuel has 5 bags of almonds. A full bag weighs 3 pounds. How many pounds of almonds does Samuel have? (Multiply)

A.15 Pounds
B.12 pounds
C.8 pounds

Answers

Answer 1

Answer:

15 pounds

Step-by-step explanation:

5 bags @ 3 pounds

5 x 3 = 15 lbs.

Answer 2

Samuel has 5 bags of almonds, each weighing 3 pounds. By multiplying the number of bags by the weight of each bag (5 * 3), we find that Samuel has a total of 15 pounds of almonds.

The total weight of Samuel's 5 bags of almonds is:

Multiply the weight of a full bag (3 pounds) by the number of bags (5): 3 pounds/bag x 5 bags = 15 pounds

Therefore, Samuel has 15 pounds of almonds.


Related Questions

Find the equation of quadratic function determined from the graph below?

Answers

Step-by-step explanation:

The x-intercepts are x = -1 and x = 5, so:

y = k (x + 1) (x − 5)

The vertex is (2, -3), so:

-3 = k (2 + 1) (2 − 5)

-3 = -9k

k = 1/3

y = 1/3 (x + 1) (x − 5)

Simplifying:

y = 1/3 (x² − 4x − 5)

y = 1/3 x² − 4/3 x − 5/3

f(x) =  1 / 3 x² - 4 / 3 x - 5 / 3

using the form:

f(x) = a(x - h)² + k

The vertex coordinates are 2 and -3.

h = 2

k = - 3

therefore,

f(x) = a(x - 2)²  - 3

f(x) = a(x - 2)² - 3

let's use the coordinates (-1, 0) to find a. Therefore,

0 = a(-1 - 2)² - 3

0 = 9a - 3

3 = 9a

a = 3 / 9

a = 1 / 3

let's insert the value of a in the equation.

f(x) = a(x - 2)² - 3

f(x) = 1 / 3 ( x - 2)² - 3

f(x) = 1 / 3 (x - 2)(x -2) - 3

f(x) = 1 / 3 (x² - 4x + 4) - 3

f(x) = x² / 3 - 4x / 3 + 4 / 3 - 3

f(x) =  1 / 3 x² - 4 / 3 x - 5 / 3

read more here; https://brainly.com/question/10268287?referrer=searchResults

Find the midpoint of the line segment with the given endpoints
(10,2) and (8,4)

Answers

Answer:

The midpoint of the line segment is (9,3).

Step-by-step explanation:

To find the midpoint of a line segment, we use the midpoint formula, ( (x1 + x2)/2, (y1+y2)/2).  This means that to find the midpoint, we must add together both of the x-values of the endpoints and divide by 2 and do the same with the y values, basically finding the average of the two endpoints, or the middle.

x1 + x2 = 10 + 8 = 18

18/2 = 9

y1 + y2 = 2 + 4 = 6

6/2 = 3

Therefore, the midpoint of the line segment is (9,3).

Hope this helps!

Take the average of their x and y values: avg(10,8)=9; avg(2,4)=3
(9,3)

Write in vertex form

Answers

Answer:

p(x) = 6(x + 2)² - 3

Step-by-step explanation:

This one requires a lot of thinking because since our A is not 1 and how the quadratic equation looks, we need to think of a low number while "completing the square [½B]²". So, let us choose 2. We set it up like this:

6(x + 2)² → 6(x² + 4x + 4) → 6x² + 24x + 24

6x² + 24x + 24 - 3 → 6x² + 24x + 21 [TA DA!]

We know that our vertex formula is correct. Additionally, -h gives you the OPPOSITE terms of what they really are, and k gives you the EXACT terms of what they really are. Therefore, your vertex is [-2, -3].

I am joyous to assist you anytime.

seven sixteeths wrote as a decimal​

Answers

Answer:

The answer is 0.4375 .

Hope this helps!

0.4375 is the answer

1,2,and 3 please I really need help

Answers

Answer:

1) yes

2) Option B

3) 9200

Step-by-step explanation:

1) yes

The exponential function is: y=-(x)^3

Putting the values of x in the given function we get the values of y.

x =1 , y= -(1)^3, y=-1

x= 2, y= -(2)^3, y = -8

x= 3, y= -(3)^3,y = -27

x= 4, y= -(4)^3,y = -64

2) f(x) = 160.2^x

if value of x = 2

then f(2) = 160.2^(2)

f(2) = 160.4

f(2) = 640

So, Option B is correct.

3) f(x) = 2300.2^x

if value of x = 2 decades then

f(2) = 2300.2^2

f(2) = 2300.4

f(2) = 9200

Since all options are not visible, so correct answer is 9200

There are 32 students in Jenny's class. If the teacher randomly picks a student to call on, what is the probability that Jenny will be called on twice? (If necessary, round to the nearest hundredth.)

Answers

Final answer:

To find the probability that Jenny will be called on twice, we multiply the probabilities of picking her on the first and second calls, which is 1/992.

Explanation:

To find the probability that Jenny will be called on twice, we need to consider the total number of possible outcomes and the number of favorable outcomes.

There are 32 students in Jenny's class, so the total number of possible outcomes is 32.

For the first call, the probability of picking Jenny is 1/32. After the first call, there are now 31 students left, with 1 of them being Jenny. So, the probability of picking Jenny again on the second call is 1/31.

To find the probability of both events happening, we multiply the probabilities together: (1/32) x (1/31) = 1/992.

The probability that Jenny will be called on twice is 1/992.

The probability that Jenny will be called twice in a class of 32 students is 0.00098. This rounds to 0.00 when rounded to the nearest hundredth.

To determine the probability that Jenny is called on twice when there are 32 students in the class, we start by finding the probability for one instance and then consider the repeated scenario.

For the first call, Jenny has a 1 in 32 chance of being called, so the probability is 1/32.For the second call, we're still considering a random selection from the entire class, so Jenny again has a 1 in 32 chance.

To find the combined probability of both events happening (Jenny being called twice), we multiply the probabilities of each individual event:

(1/32) * (1/32) = 1/1024

Thus, the probability that Jenny will be called on twice is approximately 0.00098 when rounded to the nearest hundredth.

This graph represents the function f(x) = x^2 - 4x + 3/ x^2 + ax + b. a= ___ b= ___

Answers

Answer:

f(x) = (x+2)(x-8)/(x-6)(x+4) <-> x=6,x=-4

i(x) = (x-4)(x-6)/(x-2)(x+8)  <-> x=2,x=-8

k(x) = (x-2)(x+8)/(x+6)(x-4) <-> x=-6,x=4

m(x) = (x+4)(x-6)/(x+2)(x-8)  <-> x=-2,x=8

Step-by-step explanation:

The function is discontinuous if the denominator is zero.

We will check for which function the values are given

1) f(x) = (x+2)(x-8)/(x-6)(x+4)

if x = 6 and x = -4 the  denominator  is zero

So, x=6 and x=-4 given

2) g(x) = (x+4)(x-8)/(x+2)(x-6)

if x = -2 and x = 6 the  denominator  is zero

So, x= -2 and x= 6 not given so, g(x) will not be considered

3) h(x)= (x+2)(x-6)/(x-8)(x+4)

if x = 8 and x = -4 the  denominator  is zero

So, x= 8 and x= -4 not given so, h(x) will not be considered

4) i(x) = (x-4)(x-6)/(x-2)(x+8)

if x = 2 and x = -8 the  denominator  is zero

So, x= 2 and x= -8 given

5) j(x) = (x-2)(x+6)/(x-4)(x+8)

if x = 4 and x = -8 the  denominator  is zero

So, x= 4 and x= -8 not given so, j(x) will not be considered

6) k(x) = (x-2)(x+8)/(x+6)(x-4)

if x = -6 and x = 4 the  denominator  is zero

So, x= -6 and x= 4  given

7) l(x) = (x-4)(x+8)/(x+6)(x-2)

if x = -6 and x = 2 the  denominator  is zero

So, x= -6 and x= 2  not given so, l(x) will not be considered

8) m(x) = (x+4)(x-6)/(x+2)(x-8)

if x = -2 and x = 8 the  denominator  is zero

So, x= -2 and x= 8 given

Simplify [4a^(-6) b^2]^(-3) write your answer using only positive exponent

Answers

For this case we must simplify the following expression:

[tex](4a^{ - 6} * b ^ 2)^{ - 3}[/tex]

By definition of power properties we have:[tex]a ^ {-1} = \frac {1} {a ^ 1} = \frac {1} {a}[/tex]

Then, rewriting the expression:

[tex](\frac {4} {a ^ 6} * b ^ 2) ^ {- 3} =\\\frac {1} {(\frac {4} {a ^ 6} * b ^ 2)^3} =\\\frac {1} {(\frac {4b ^ 2} {a ^ 6})^3} =[/tex]

By definition we have to:

[tex](a ^ n) ^ m = a ^ {n * m}[/tex]

[tex]\frac {1} {\frac {64b ^ 6} {a^{18}}}\\\frac {a^{18}} {64b ^ 6}[/tex]

Answer:

[tex]\frac {a^{18}} {64b ^ 6}[/tex]

13, 29, 427, 881
Is the sequence geometric? If so, identify the common ratio.

Answers

Final answer:

The sequence 13, 29, 427, 881 is not geometric because each term is not obtained by multiplying the previous term by a constant ratio. The ratios between successive terms vary, so there is no common ratio.

Explanation:

Is the sequence 13, 29, 427, 881 geometric? To determine if a sequence is geometric, each term should be obtained by multiplying the previous term by a constant number, known as the common ratio.

Let's calculate the ratios between successive terms:

Ratio from 13 to 29: 29 ÷ 13 = 2.23077 (approximately)Ratio from 29 to 427: 427 ÷ 29 = 14.72414 (approximately)Ratio from 427 to 881: 881 ÷ 427 = 2.06324 (approximately)

Since the ratios are not the same, the sequence is not geometric. Therefore, there is no common ratio.

Simplify: |3 – 10| - (12 / 4 + 2)^2

Answers

Answer:

-18

Step-by-step explanation:

= |3 – 10| - (12 / 4 + 2)^2

= 7 - (3 + 2)^2

= 7 - (5)^2

= 7 - 25

= -18

A factory manufactures widgets based on customer orders. If a customer's order is for less than w widgets, the customer's cost per widget is d dollars. If a customer's order is for at least w widgets, the customer's cost per widget is decreased by c cents for each widget ordered over w widgets. A customer's total cost is t. Which of the following functions would best model the situation given above?

Answers

Answer:

Piecewise function model

Step-by-step explanation:

According to the given statement a factory manufactures widgets based on customer orders. If a customer's order is for less than w widgets, the customer's cost per widget is d dollars.

customer order < widgets

If a customer's order is for at least w widgets, the customer's cost per widget is decreased by c cents for each widget ordered over w widgets. A customer's total cost is t.

customer order > widgets

We can notice that we have two different conditions. In this type of question where there are different conditions for different types of domain we use piecewise function.

With different conditions, the cost is different, therefore piecewise function model would be the best option for the situation....

What is the product of eight factors of 10^4

Answers

Answer:

2ε + 12 [two trillion (twelve zeros)]

Step-by-step explanation:

[1][2][4][5][10][1000][2000][2500] (1 is unnecessary)

If you are talking about the FIRST 8 factors of 10000 [10⁴], then here you are. Multiply all those numbers to get the calculator notation answer above, or two trillion.

**This question is not specific enough, which was why I improvised and thought that this was what you meant. I apologize if this was not what you meant and I also hope this was what you were looking for.

I am joyous to assist you anytime.

Answer:

[tex]10^{32}[/tex].

Step-by-step explanation:

eight factors of 10^4 are

[tex]10^4*10^4*10^4*10^4*10^4*10^4*10^4*10^4 = (10^4)^8 = 10^{4*8}=10^{32}[/tex]

that is one hundred nonillion.

F(x)=x^2 what is g(x)

Answers

Answer:

[tex]\large\boxed{C.\ g(x)=3x^2}[/tex]

Step-by-step explanation:

[tex]f(x)=x^2\to f(1)=1^2=1\\\\g(1)=3\to\text{given point (1,\ 3)}\\\\3=3\cdot1=3\cdot1^2=3f(1)\to g(x)=3f(x)=3x^2[/tex]

Multiple choice question?

Answers

Answer:

9* 3 ^ (x-2)

Step-by-step explanation:

g(x) = 3^x

We know a^ (b) * a^(c) = a^ (b+c)

 9* 3 ^ (x+2) = 3^2 * 3 ^(x+2) = 3^(2+x+2) = 3^x+4  not equal to 3^x

3*(9^(x+2)) = 3*3^2(x+2) = 3^1 * 3^(2x+4) =3^(2x+4+1) = 3^(2x+5) not equal  

9* 3 ^ (x-2) = 3^2 * 3 ^(x-2) = 3^(2+x-2) = 3^x  equal to 3^x    

3*(9^(x-2)) = 3*3^2(x-2) = 3^1 * 3^(2x-4) =3^(2x-4+1) = 3^(2x-3) not equal        

Roy wants to make a path from one corner of his yard to the other as shown below. The path will be 4 feet wide. He wants to find the area of lawn that remains.


Roy claims that the area of the lawn is 300 square feet since it covers exactly one-half of the yard. Which statement about his claim is correct?

He is incorrect. The path will have an area of (4)(40)=160 sq ft. The yard has an area of 600 sq ft. The area of the lawn will be the difference of the yard and path, so it is 440 sq ft.
He is incorrect. The path will have an area of 1/2(4)(40)=80 sq ft. The yard has an area of 300 sq ft. The area of the lawn will be the difference of the yard and path, so it is 220 sq ft.

He is incorrect. The path will have an area of (4)(40)=160 sq ft. The yard has an area of 300 sq ft. The area of the lawn will be the difference of the yard and path, so it is 140 sq ft.

He is incorrect. The path will have an area of (9)(40)=360 sq ft. The yard has an area of 600 sq ft. The area of the lawn will be the difference of the yard and path, so it is 240 sq ft.

Answers

Answer:

He is incorrect. The path will have an area of (4)(40) = 160 ft². The yard has an area of 600 ft². The area of the lawn will be the difference of the yard and path, so it is 440 ft².

Step-by-step explanation:

1. Original area of yard

A = lw = 40 × 15 = 600 ft²

2. Area of path

The path is a parallelogram.

A = bh = 4 × 40 =160 ft²

3. Remaining area

Remaining area = original area - area of path = 600 - 160 = 440 ft².

Answer:

A is correct

Step-by-step explanation:

I got 100 on edg

Which represents the solution set of the inequality 5x-9321?

Answers

Answer:

The solution set is the interval (-∞ , 6] OR {x : x ≤ 6}

Step-by-step explanation:

* Lets explain how to find the solution set of the inequality

- The inequality is 5x - 9 ≤ 21

∵ 5x - 9 ≤ 21

- At first add 9 to both sides of the inequality to separate x in one

 side and the numbers in the other sides

∴ 5x - 9 + 9 ≤ 21 + 9

∴ 5x ≤ 30

- Lets divide both sides of the inequality by 5 to find the values of x

∴ (5x ÷ 5) ≤ (30 ÷ 5)

∴ x ≤ 6

- The solutions of the inequality is all real numbers smaller than

  or equal to 6

∴ The solution set is the interval (-∞ , 6] OR {x : x ≤ 6}

- We can represent this inequality graphically to more understand

 for the solution

- From the graph the solution set is the purple area

Write a polynomial function of least degree with integral coefficients that has the given zeros. –2, –3,3 – 6i

Answers

Answer:

f(x) = (x+2)(x+3)(x-(3-6i))(x-(3+6i))

f(x) = 270 + 189 x + 21 x^2 - x^3 + x^4

Step-by-step explanation:

First of all, we must know that complex roots come in conjugate pairs.

So the zeros of your equation would be

x = -2

x = -3

x = 3 - 6i

x = 3 + 6i

Your polynomial is of fourth degree.

f(x) = (x-(-2))(x-(-3))(x-(3-6i))(x-(3+6i))

f(x) = (x+2)(x+3)(x-(3-6i))(x-(3+6i))

Please , see attached image below for full expression

f(x) = 270 + 189 x + 21 x^2 - x^3 + x^4

Answer:

The required polynomial is [tex]P(x)=a\left(x^4-x^3+21x^2+189x+270\right)[/tex].

Step-by-step explanation:

The general form of a polynomial is

[tex]P(x)=a(x-c_1)^{m_1}(x-c_2)^{m_2}...(x-c_n)^{m_n}[/tex]

where, a is a constant, [tex]c_1,c_2,..c_n[/tex] are zeroes with multiplicity [tex]m_1,m_2,..m_n[/tex] respectively.

It is given that  –2, –3,3 – 6i are three zeroes of a polynomial.

According to complex conjugate root theorem, if a+ib is a zero of a polynomial, then a-ib is also the zero of that polynomial.

3 – 6i is a zero. By using complex conjugate root theorem 3+6i is also a zero.

The required polynomial is

[tex]P(x)=a(x-(-2))(x-(-3))(x-(3-6i))(x-(3+6i))[/tex]

[tex]P(x)=a(x+2)(x+3)(x-3+6i)(x-3-6i)[/tex]

[tex]P(x)=a\left(x^2+5x+6\right)\left(x-3+6i\right)\left(x-3-6i\right)[/tex]

On further simplification, we get

[tex]P(x)=a\left(x^3+6ix^2+2x^2+30ix-9x+36i-18\right)\left(x-3-6i\right)[/tex]

[tex]P(x)=a\left(x^4-x^3+21x^2+189x+270\right)[/tex]

Therefore the required polynomial is [tex]P(x)=a\left(x^4-x^3+21x^2+189x+270\right)[/tex].

PLEASE HELP! Select all the correct answers.
Terry is an up-and-coming florist who specializes in weddings. He uses 5 roses, 3 daisies, and 4 bundles of green filler to make one bouquet. If r is the cost of a rose, d is the cost of a daisy, and f is the cost of a bundle of green filler, which expression represents the cost for making 75 bouquets?

Answers

Answer:

im sorry this never got answered but you would put the third one i believe

Step-by-step explanation:

Let f(x)=2^x and g(x)=x-2. The graph of (f o g)(c) is shown below. What is the domain of (f o g)(x)?

Answers

The domain of the outer function is all real numbers, because f(x) is an exponential function.

The domain and range of g(x) are all real numbers.

So, the domain of the composition is again all real numbers, because there is no way that an output from g(x) will not be a valid input for f(x).

For this case we have the following functions:

[tex]f (x) = 2 ^ x\\g (x) = x-2[/tex]

We must find [tex](f_ {o} g) (x):[/tex]

By definition we have to:

[tex](f_ {o} g) (x) = f [g (x)][/tex]

So:

[tex](f_ {o} g) (x) = 2 ^ {x-2}[/tex]

By definition, the domain of a function is given by all the values for which the function is defined. Thus, the domain of the composite function is:

In this case, there are no real numbers that make the expression indefinite.

Thus, the domain is given by all the real numbers.

Answer:

All the real numbers

The figure is a regular hexagon with side length 26 ft.
What is the length of y?

Answers

Answer: the length is 13

Step-by-step explanation:

one side is 26 ft. and y is half of one side so by dividing 26 by 2 you would get 13

john is five years older than his sister. the product of their present ages is 150.

John's present age is (blank) years, and this sister's present age is (blank) years

so i believe you have to answer this with the quadratic formula but I'm not sure. please help​

Answers

John's present age is 15 years, and his sister's present age is 10 years.

We have,

Let's denote John's sister's age as x.

According to the given information,

John is five years older than his sister, so John's age would be x + 5.

The product of their present ages is 150, which means:

x * (x + 5) = 150

Expanding the equation:

x² + 5x = 150

Rearranging the equation to standard quadratic form:

x² + 5x - 150 = 0

Now we can solve this quadratic equation.

Factoring or using the quadratic formula will give us the values of x, representing the sister's age.

Factoring the equation:

(x - 10)(x + 15) = 0

Setting each factor to zero:

x - 10 = 0 or x + 15 = 0

Solving for x:

x = 10 or x = -15

Since ages cannot be negative, we can discard the solution x = -15. Therefore, the sister's present age is x = 10.

John's present age is then calculated by adding 5 years to his sister's age:

John's age = x + 5 = 10 + 5 = 15 years.

Thus,

John's present age is 15 years, and his sister's present age is 10 years.

Learn more about expressions here:

https://brainly.com/question/3118662

#SPJ2

By forming a quadratic equation from the given problem, we determine that John's present age is 15 years and his sister's present age is 10 years.

Let's designate John's age as J and his sister's age as S. We've been given two pieces of information: John is five years older than his sister, and the product of their present ages is 150. Mathematically, these can be expressed as:

J = S + 5J * S = 150

Substituting the first equation into the second gives us:

(S + 5) * S = 150

Expanding and rearranging, we get a quadratic equation:

S2 + 5S - 150 = 0

To solve for S, we can either factor the quadratic equation or use the quadratic formula. Factoring seems simpler in this case:

(S + 15)(S - 10) = 0

This gives us two possible values for S: -15 and 10. Since ages cannot be negative, we discard S = -15 and keep S = 10. Now we can find John's age:

J = S + 5 = 10 + 5 = 15

Therefore, John's present age is 15 years, and his sister's present age is 10 years.

The Coffee Counter charges $10 per pound for Kenyan French Roast coffee and $9 per pound for Sumatran coffee.
How much of each type should be used to make a 20 pound blend that sells for $ 9.50 per pound?​

Answers

      10 pounds of each type of coffee should be mixed to make a 20 pound blend that sells for $9.50 per pound.

 Charges for Kenyan French Roast coffee = $10 per pound

 Charges for Sumatran coffee = $9 per pound

Let the amount of Kenyan French Roast used = K pound

And the amount of Sumatran coffee used = S pound

If the total amount of the mixture = 20 pounds

Equation for the total amount will be,

K + S = 20 ------- (1)

If the cost of this mixture = $9.50

Equation for the cost of the mixture will be,

10K + 9S = 20×9.50

10k + 9S = 190 ------- (2)

Multiply equation (1) by 9 and subtract this equation from equation (2),

(10k + 9S) - (9K + 9S) = 190 - 180

K = 10 pounds

Substitute the value of K in equation (1),

10 + S = 20

S = 10 pounds

     Therefore, 10 pounds of each blend of coffee should be mixed.

Learn more,

https://brainly.com/question/17106913

Final answer:

To make a 20 pound blend of coffee that costs $9.50 per pound using Kenyan French Roast coffee ($10 per pound) and Sumatran coffee ($9 per pound), you should use 10 pounds of each type.

Explanation:

To solve this problem, we can set up a system of equations to represent the given information. Let x represent the amount of Kenyan French Roast coffee and y represent the amount of Sumatran coffee. We have the following equations:

x + y = 20 (equation 1 - representing the total weight of the blend)

10x + 9y = 9.50 * 20 (equation 2 - representing the total cost of the blend)

To solve this system, we can first multiply equation 1 by 10 to get:

10x + 10y = 200 (equation 3)

We can then subtract equation 3 from equation 2 to eliminate the variable x:

10x + 9y - (10x + 10y) = 9.50 * 20 - 200

9y - 10y = 190 - 200

-y = -10

y = 10

Substituting this value back into equation 1 gives us:

x + 10 = 20

x = 10

Therefore, we should use 10 pounds of Kenyan French Roast coffee and 10 pounds of Sumatran coffee to make the 20 pound blend.

Learn more about Coffee blend here:

https://brainly.com/question/26627385

#SPJ11

An ancient artifact was recently discovered, but due to rust and corrosion, only 75 grams of the original item remained. Based on historical dates, scientists believe that this artifact was decaying at a rate of 2% each year. Although the artifact will now be preserved at a museum, scientists wonder: how much of the original artifact would there be if they had not discovered it for another 10 years?

Write an exponential function rule and solve. Round your answer to the nearest whole number (the ones place). Enter both the number and the associated units

Answers

namely, what is the leftover amount when the decay rate is 2% for an original amount of 75 grams after 10 years?

[tex]\bf \qquad \textit{Amount for Exponential Decay} \\\\ A=P(1 - r)^t\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{initial amount}\dotfill &75\\ r=rate\to 2\%\to \frac{2}{100}\dotfill &0.02\\ t=\textit{elapsed time}\dotfill &10\\ \end{cases} \\\\\\ A=75(1-0.02)^{10}\implies A=75(0.98)^{10}\implies A\approx 61.28\implies \stackrel{\textit{rounded up}}{A=61~grams}[/tex]

Answer with explanation:

The exponential decay function is written as :-

[tex]f(x)=A(1-r)^x[/tex], where f (x) is the amount of material left after x years , A is the initial amount of material and r is the rate of decay.

Given : The amount of original item remained now = 75 grams

The rate of decay = 2% = 0.02

Now, the amount of original artifact would there be left if they had not discovered it for another 10 years is given by :-

[tex]f(10)=75(1-0.02)^{10}[/tex]

Solving the above exponential equation , we get

[tex]=61.2804605166\approx61[/tex]

Hence only 61 grams original artifact would there be left if they had not discovered it for another 10 years .

Select the correct answer from each drop-down menu.
Ashley has 500 songs in his music player. Every week he adds 10 songs to his collection. How many songs will he have in his music player after
20 weeks?
The output of the function (f(n)=500+10n) or (f(n)=10+20n).the output of the function is (700/600)
when the input is 20

Answers

Answer:

700

Step-by-step explanation:

he originally has 500 songs which is the constant. He adds 10 songs a week which is the slope. and 20 will be the number of weeks. You can make the equation y=10x+500 and replace the x with 20. 20 times 10 is 200 and 200 plus 500 is 700 which is your answer

Which of the tables represents a function? Table P Input Output 8 3 1 7 5 4 Table Q Input Output 9 3 9 5 4 2 Table R Input Output 7 2 8 6 7 3 Table S Input Output 1 7 1 5 9 2 Table P Table Q Table R Table S

Answers

Answer:

Table P represents a function

Step-by-step explanation:

* Lets explain the meaning of the function

- A function is a relation between a set of inputs and a set of outputs

 in condition of each input has exactly one output

- Ex:

# The relation {(1 , 2) , (-4 , 5) , (-1 , 5)} is a function because each x in the

   order pair has only one value of y

# The relation {(1 , 2) , (1 , 5) , (3 , 7)} is not a function because there is x

   in the order pairs has two values of y (x = 1 has y = 2 and y = 5)

* Lets solve the problem

# Table P :

- In put    : 8  ,  1  ,  5

- Out put : 3  ,  7  , 4

∵ Each input has only one output

∴ Table P represents a function

# Table Q :

- Input     : 9  ,  9  ,  4

- Out put : 3  ,  5  ,  2

∵ The input 9 has two outputs 5 and 2

∴ Table Q doesn't represent a function

# Table R :

- In put    : 7  ,  8  ,  7

- Out put : 2  ,  6  ,  3

∵ The input 7 has two outputs 2 and 3

∴ Table R doesn't represent a function

# Table S :

- In put    :  1  ,  1  ,  9

- Out put :  7 ,  5  ,  2

∵ The input 1 has two outputs 7 and 5

∴ Table S doesn't represent a function

* Table P represents a function

Answer:

The answer is A I just took the test

Determine the domain of the function f (x) = 2x - 4 when the range is (0, 12, 20)

Answers

Answer:

The domain is (2,8,12)

Step-by-step explanation:

we have

[tex]f(x)=2x-4[/tex]

we know that

The range is (0,12,20)

Find the domain

1) For f(x)=0 -----> Find the value of x

substitute the value of f(x) in the equation and solve for x

[tex]0=2x-4[/tex]

[tex]2x=4[/tex]

[tex]x=2[/tex]

therefore

For f(x)=0 the domain is x=2

2) For f(x)=12 -----> Find the value of x

substitute the value of f(x) in the equation and solve for x

[tex]12=2x-4[/tex]

[tex]2x=12+4[/tex]

[tex]x=8[/tex]

therefore

For f(x)=12 the domain is x=8

3) For f(x)=20 -----> Find the value of x

substitute the value of f(x) in the equation and solve for x

[tex]20=2x-4[/tex]

[tex]2x=20+4[/tex]

[tex]x=12[/tex]

therefore

For f(x)=20 the domain is x=12

therefore

The domain is (2,8,12)


What is the volume of the composite figure?

A. 140 cubic inches

B. 147 cubic inches

C. 168 cubic inches

D. 196 cubic inches

Answers

Answer:

A. 140 cubic inches

Step-by-step explanation:

The total volume is the volume of the rectangular prism at the bottom plus the volume of the pyramid on top.

The volume of the prism is width times length times height.

V = wlh

V = (3)(7)(4)

V = 84

The volume of the pyramid is one third the area of the base times the height.

V = ⅓ Ah

The base of the pyramid is a rectangle.  Its area is the width times length.  The height of the pyramid is the total height minus the height of the prism.

V = ⅓ (3)(7)(12−4)

V = 56

So the total volume is:

V = 84 + 56

V = 140

Answer:

140 cubic inches

Step-by-step explanation:

Which of the following fractions is an improper fraction?
*2/3
*6/11
*21/25
*8/7


Answers

Answer:

8/7

Step-by-step explanation:

8/7 is an improper fraction.

8 > 7

A fraction has to have the numerator less than the denominator, in order to be a proper fraction.

In this case, 8/7 is the only fraction with a numerator more than the denominator.

Therefore, 8/7 is an improper fraction.

Answer:

8/7 is an improper fraction.

Step-by-step explanation:

An improper fraction is just a fraction where the numerator (top number) is greater than the denominator (bottom number)

2<3

6<11

21<25

8>7

Hope this helps!!!

Which functions have an additive rate of change of 3? Select TWO options

Answers

Answer:

Second table.

Step-by-step explanation:

A function has an additive rate of change if there is a constant difference between any two consecutive input and output values.

The additive rate of change is determined using the slope formula,

[tex]m = \frac{y_2-y_1}{x_2-x_1} [/tex]

From the first table we can observe a constant difference of -6 among the y-values and a constant difference of 2 among the x-values.

[tex]m = \frac{ - 9- - 3}{4-2} = - 3[/tex]

For the second table there is a constant difference of 3 among the y-values and a constant difference of 1 among the x-values.

The additive rate of change of this table is

[tex]m = \frac{ - 1 - - 4}{3 - 1} = 3[/tex]

Therefore the second table has an additive rate of change of 3.

Answer: it’s A and E

First and last one

Step-by-step explanation:


Write the equation of the line that passes
through the point (3, -3) and has a slope of -2.

Answers

Step-by-step explanation:

The point-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

m - slope

(x₁, y₁) - point on a line

We have the point (3, -3) and the slope m = -2. Substitute:

[tex]y-(-3)=-2(x-3)[/tex]

[tex]y+3=-2(x-3)[/tex] - point-slope form

Convert to the slope-intercept form (y = mx + b):

[tex]y+3=-2(x-3)[/tex]        use the distributtive property

[tex]y+3=-2x+(-2)(-3)[/tex]

[tex]y+3=-2x+6[/tex]      subtract 3 from both sides

[tex]y=-2x+3[/tex] - slope-intercept form

Convert to the standard form (Ax + By = C):

[tex]y=-2x+3[/tex]        add 2x to both sides

[tex]2x+y=3[/tex] - standard form

Convert to the general form (Ax + By + C = 0):

[tex]2x+y=3[/tex]      subtract 3 from both sides

[tex]2x+y-3=0[/tex] - general form

Other Questions
Which of the following objects has the greatest kinetic energy?A. a car traveling at 35 miles per hour B. a horse sprinting at 35 miles per hour C. a baseball flying at 35 miles per hour D. an insect flying at 35 miles per hour E. All four objects have the same kinetic energy. A freight car moves along a frictionless level railroad track at constant speed. The car is open on top. A large load of coal is suddenly dumped into the car. What happens to the velocity of the car? Who praised for the Greeks preparing the government of their new nation "a study of the fine models of science left by their ancestors, to whom we also are all indebted for the lights which originally led ourselves out of Gothic darkness"? Chad is a senior a Small Town Public High School. His classmates have chosen him to read The Lord's Prayer at graduation. Sid Grinch, a member of the graduating class, is an atheist. Sid's family files a lawsuit to prevent anyone giving a prayer at the graduation. This is an example of a case that involves the ________ clause of the Constitution's First Amendment. a.free exercise b.free association c.establishment d.independence Find the domain of the graphed function.-10 Find an implicit solution to the ODE. ("Homogeneous") y' = y^2x/y^3 +x^3 + y/x -f(3f-7)=0 solve equation what are the differences betweenCONS, LIST, and APPEND? When Shawn started at the new company, almost everyone within the organization was quick to offer suggestions at meetings and get involved in the decision making process. Although Shawn was normally not a very talkative person, the constant involvement of everyone else eventually had Shawn offering ideas as well. This is an example of _____________. a. Emotional intelligence theory b. Situation strength theory c. Personality conflict theory d. Transformational leadership theory e. Affective disorder theory. 1. carne pescado verdura fruta bebida 2. carne pescado verdura fruta bebida 3. carne pescado verdura fruta bebida 4. carne pescado verdura fruta bebida 5. carne pescado verdura fruta bebida 6. carne pescado verdura fruta bebida 7. carne pescado verdura fruta bebida Given the functions f(x) = x2 - 2x - 4 and g(x) = 2x - 4, at what values of x do f(x) and g(x) intersect? The equilibrium constant, Kc, for the reactionN2O4(g)?2NO2(g)is 4.910?3.If the equilibrium mixture contains [NO2] = 0.050 M , what is the molar concentration of N2O4?Express the concentration to two significant figures and include the appropriate units. The probability that a grader will make a marking error on any particular question of a multiple-choice exam is 0.10. If there are ten questions and questions are marked independently, what is the probability that no errors are made?The probability that a grader will make a marking error on any particular question of a multiple-choice exam is 0.10. If there are ten questions and questions are marked independently, what is the probability that no errors are made? What precautions should you take to prevent injuries when dealing with heavy loads? What are the two cases in which the Laws of Sines can be applied to solve a non-right triangle?Case I. You know the measures of two angles and any side of the triangle.Case II. You know the measures of two sides and an angle opposite one of the two known sides.Case III. You know the measures of two sides and the included angle.Case IV. You know the measures of all three sides. A parallel-plate air capacitor with a capacitance of 260 pF has a charge of magnitude 0.155 C on each plate. The plates have a separation of 0.313 mm. What is the potential difference between the plates? Can someone please help me ?!!! (b) dy/dx = (x-y + 1)^2 How does the image support the text?Read the passage and study the image and caption fromSugar Changed the World.The image shows the process for manufacturing cottonin early factories.The image shows English factory workers enjoyingsugar during their break.The image shows that factory work in the 1800s waslabor intensive.The image shows how sugar was produced in cottonfactories. The table below shows the cube roots of different numbers:Number(x)82764125Cube root(y)2345Part A: Does the table represent y as a function of x? Justify your answer. (5 points)Part B: The total cost f(x), in dollars, for renting a bike for x hours is shown below:f(x) = 10 + 20xWhat is the value of f(100), and what does f(100) represent? (5 points)