solve l 3x-7 l = 2
and solve l 2x-5 l< or equal to 8
the lines (l) signifies absolute values therefore l 3x-7 l is the absolute value of that and same thing for 2x-5

Answers

Answer 1

Answer:

1) Solutions are x = 3 and x = 5/3

2) Solution are x ≤ 13/2 and  x ≤ -3/2

Step-by-step explanation:

1) Given absolute inequality,

|3x-7| = 2

⇒ 3x - 7 = ± 2

⇒ 3x = 7 ± 2

[tex]\implies x=\frac{7\pm 2}{3}[/tex]

[tex]x=\frac{7+2}{3}\text{ or }x=\frac{7-2}{3}[/tex]

[tex]\implies x = 3\text{ or }x=\frac{5}{3}[/tex]

2) l 2x-5 l ≤ 8

⇒  2x-5  ≤ ±8

⇒   2x ≤ 5 ± 8

[tex]\implies x\leq \frac{5\pm 8}{2}[/tex]

[tex]x\leq \frac{5+8}{2}\text{ or }x\leq \frac{5-8}{2}[/tex]

[tex]\implies x \leq \frac{13}{2}\text{ or }x\leq-\frac{3}{2}[/tex]

Answer 2

Answer:

Answer:

1) Solutions are x = 3 and x = 5/3

2) Solution are x ≤ 13/2 and  x ≤ -3/2

Step-by-step explanation:

1) Given absolute inequality,

|3x-7| = 2

⇒ 3x - 7 = ± 2

⇒ 3x = 7 ± 2

2) l 2x-5 l ≤ 8

⇒  2x-5  ≤ ±8

⇒   2x ≤ 5 ± 8


Related Questions

ONE HALF OF AN ANNUALLY SALARY OF $35,700. IS APPROXIMATELY

Answers

Answer: Approximately $18,000

Step-by-step explanation:

Since you are approximating, the 7 indicates the need to round the original number up to 36,000. Then divide by 2 since you want half, thus getting $18,000.

Professor Halen has 184 students in his college mathematics lecture class. The scores on the midterm exam are normally distributed with a mean of 72.3 and a standard deviation of 8.9. How many students in the class can be expected to receive a score between 82 and 90?

Answers

Answer: 21

Step-by-step explanation:

Given : The scores on the midterm exam are normally distributed with

[tex]\mu=72.3\\\\\sigma=8.9[/tex]

Let X be random variable that represents the score of the students.

z-score: [tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x=82

[tex]z=\dfrac{82-72.3}{8.9}\approx1.09[/tex]

For x=90

[tex]z=\dfrac{90-72.3}{8.9}\approx1.99[/tex]

Now, the probability of the students in the class receive a score between 82 and 90 ( by using standard normal distribution table ) :-

[tex]P(82<X<90)=P(1.09<z<1.99)\\\\=P(z<1.99)-P(z<1.09)\\\\=0.9767-0.8621=0.1146[/tex]

Now ,the number of students expected to receive a score between 82 and 90 are :-

[tex]184\times0.1146=21.0864\approx21[/tex]

Hence, 21 students are expected to receive a score between 82 and 90 .

The number of students who can be expected to receive a score between 82 and 90 is approximately 21.

The number of students who can be expected to receive a score between 82 and 90 is calculated by finding the area under the normal distribution curve between these two scores. This requires standardizing the scores and using the standard normal distribution table or a calculator with normal distribution capabilities.

First, we need to find the z-scores for both 82 and 90 using the formula:

[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]

where ( X ) is the score in question, [tex]\( \mu \)[/tex] is the mean, and [tex]\( \sigma \)[/tex] is the standard deviation.

For a score of 82:

[tex]\[ z_{82} = \frac{82 - 72.3}{8.9} \approx \frac{9.7}{8.9} \approx 1.09 \][/tex]

For a score of 90:

[tex]\[ z_{90} = \frac{90 - 72.3}{8.9} \approx \frac{17.7}{8.9} \approx 1.98 \][/tex]

Next, we look up these z-scores in the standard normal distribution table to find the corresponding area under the curve to the left of each z-score.

For [tex]\( z_{82} \approx 1.09 \)[/tex], the area to the left is approximately 0.8621.

For [tex]\( z_{90} \approx 1.98 \)[/tex], the area to the left is approximately 0.9762.

The area between the two z-scores is the difference between the two areas:

[tex]\[ P(82 < X < 90) = P(X < 90) - P(X < 82) \][/tex]

[tex]\[ P(82 < X < 90) \approx 0.9762 - 0.8621 \approx 0.1141 \][/tex]

To find the expected number of students, we multiply this probability by the total number of students:

[tex]\[ \text{Number of students} = 184 \times 0.1141 \approx 21.0 \][/tex]

Since we cannot have a fraction of a student, we would round to the nearest whole number.

Therefore, the number of students who can be expected to receive a score between 82 and 90 is approximately 21.

Assume the random variable x is normally distributed with mean muμequals=8787 and standard deviation sigmaσequals=55. Find the indicated probability. ​P(x less than<7979​)

Answers

Answer:  0.4404

Step-by-step explanation:

Let the random variable x is normally distributed .

Given : Mean : [tex]\mu=\ 87[/tex]

Standard deviation : [tex]\sigma= 55[/tex]

The formula to calculate the z-score :-

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x = 79

[tex]z=\dfrac{79-87}{55}\approx-0.15[/tex]

The p-value = [tex]P(x<79)=P(z<-0.15)[/tex]

[tex]=0.4403823\approx0.4404[/tex]

Hence, the required probability : [tex]P(x<79)=0.4404[/tex]

A survey of 100 families showed that 35 had a dog: 28 had a cat: 10 had a dog and a cat: 42 had neither a cat nor a dog nor a parakeet: 0 had a cat, a dog, and a parakeet. How many had a parakeet only? A. 20 B. 15 C. 5 D. 10

Answers

Final answer:

By using the principle of inclusion-exclusion, we can find that the number of families that had only a parakeet is 5, making option C the correct answer.

Explanation:

To solve this problem, we can use the principle of inclusion-exclusion for sets. According to the survey:

100 families were surveyed.35 had a dog.28 had a cat.10 had both a dog and a cat.42 had neither a cat nor a dog nor a parakeet.0 had a cat, a dog, and a parakeet.

First, we need to determine the number of families that had either a cat or a dog or both, which is given by the formula for the union of two sets:

Families with a cat or dog = Families with a dog + Families with a cat - Families with both a dog and a cat

Families with a cat or dog = 35 + 28 - 10 = 53 families

Now, we subtract this number from the total number of families to find out how many families had a pet that was not a cat or a dog:

Families with other pets = Total families - Families with a cat or dog - Families with neither pet

Families with other pets = 100 - 53 - 42 = 5 families

Since none of the families had all three pets and we are assuming that 'other pets' only includes parakeets, those 5 families must have had only a parakeet. Therefore, the answer is 5 families had a parakeet only.

Using either the critical value rule or the p-value rule, if a one-sided null hypothesis is rejected at a given significance level, then the corresponding two-sided null hypothesis (i.e., the same sample size, the same standard deviation, and the same mean) will ______________ be rejected at the same significance level.

Answers

Final answer:

Rejecting a one-sided null hypothesis at a given significance level does not necessarily mean that the corresponding two-sided null hypothesis will also be rejected at the same significance level because one-sided tests and two-sided tests have different rejection regions.

Explanation:

Using either the critical value rule or the p-value rule, if a one-sided null hypothesis is rejected at a given significance level, then the corresponding two-sided null hypothesis (i.e., the same sample size, the same standard deviation, and the same mean) will not necessarily be rejected at the same significance level.

One-sided tests and two-sided tests have different rejection regions. For a one-sided test, the rejection region is all on one side of the sampling distribution, while for a two-sided test, the rejection regions are on both sides. If the test statistic falls in the rejection region for a one-sided test, it does not necessarily mean it will fall in the rejection region for the two-sided test, even at the same significance level.

Thus, even if you reject a one-sided null hypothesis at a given significance level, you cannot automatically reject the two-sided null hypothesis at the same level. You need to perform the appropriate statistical test.

Learn more about Null Hypothesis here:

https://brainly.com/question/30821298

#SPJ3

Suppose you send out your newest "tweet" to your 5000 Twitter followers. You suspect that the change in the number of followers that have seen your tweet is proportional to the ratio of the number of followers that have seen the tweet and the number of followers that have not seen the tweet. If 10 followers have seen the tweet 5. after 1 minute, write a differential equation that models the number of followers that have seen the tweet, including any initial condition. [Do not solve the differential equation.]

Answers

Answer: Suppose we send out our newest "tweet" to our 5000 Twitter followers.

If 10 followers have seen the tweet after 1 minute, then the differential equation can be written as ;

Let us first assume that at time "t" , "n" followers have seen this tweet.

So, no. of follower who have not seen this tweet are given as : 5000 - n

ratio = [tex]\frac{n}{5000 - n}[/tex]

∴ we get ,

[tex]\frac{\delta x}{\delta t}[/tex] ∝  [tex]\frac{n}{5000 - n}[/tex]

[tex]\frac{\delta x}{\delta t}[/tex] = k×[tex]\frac{n}{5000 - n}[/tex]               ------ (1)

where k is the proportionality constant

At t = 0 , one follower has seen the tweet.

So n(0) = 0                                                                                   ------ (2)

So n(1) = 10                                                                                   ------ (3)

∴ equation (1), (2) and (3) together model the no. of followers that have seen the tweet.

The average time required to complete an accounting test has been determined to be 55 minutes. Assuming that times required to take tests are exponentially distributed, how many students from a class of 30 should be able to complete the test in between 45 and 60 minutes?

Answers

Answer: 3

Step-by-step explanation:

Given : The average time required to complete an accounting test  : [tex]\lambda = 55 \text{ minutes}=0.9167\text{ hour}[/tex]

Interval = (45, 60) minutes

In hour :  Interval = (0.75, 1)

The cumulative distribution function for exponential function is given by :-

[tex]F(x)=1- e^{-\lambda x}[/tex]

For [tex]\lambda =0.9167\text{ hour}[/tex]

[tex]P(X\leq1)=1- e^{-(0.9167) (1)}=0.6002[/tex]

[tex]P(X\leq0.75)=1- e^{-(0.9167)(0.75)}=0.4972[/tex]

Then ,

[tex]P(0.75<x<1)=P(X\leq1)-P(X\leq0.75)\\\\=0.6002-0.4972=0.103[/tex]

Now, the number of students from a class of 30 should be able to complete the test in between 45 and 60 minutes =

[tex]0.103\times30=3.09\approx3[/tex]

Hence, the  number of students should be able to complete the test in between 45 and 60 minutes =3

Please explain.
A quiz has 3 multiple-choice questions with 4 possible answer choices each. For each question, there is only 1 correct answer.

A student chooses each answer at random. What is the probability that the student will answer all three questions correctly?

Answers

Answer:

25% probability

Step-by-step explanation:

If there are three questions with four possible choices, there are twelve total answer choices. if you only get one answer as the correct one in each question then there's three out of the twelve answer choices that are correct in total. Basically, 3/12 = .25 = 25%. that's for total.

Also, with each question having 4 answers with 1 correct, 1/4 = .25 = 25% as well.

I hope this helped!

Answer: 25% is the possibility.

Step-by-step explanation:

So 1 multiple choice will have 4 possible answer.

2 multiple choice will have 4 possible answer.

3 multiple choice will have 4 possible chances.

So it’s out of a 100. You do 100 divided by 4.

Since there are 4 possible answer and it gives us 25%.

To check if our answer is correct then you should do 25 divided by 4 which gives us 100%.

Every day a student randomly chooses a sandwich for lunch from a pile of wrapped sandwiches. If there are six kinds of sandwiches, how many different ways are there for the student to choose sandwiches for the seven days of a week if the order in which the sandwiches are chosen matters?

Answers

Final answer:

If the order matters and there are six kinds of sandwiches a student can choose for each of the seven days, there are 6^7, or 279,936, combinations possible. The calculation is based on the permutation rule of counting principle.

Explanation:

The student can select sandwiches in different ways following the rules of counting principle or more specifically permutation. Since the student can choose from six sandwiches each day, and this choice is made seven times (for seven days), the choice each day is an independent event because the choice of sandwich one day does not affect what he or she can choose the subsequent day.

 

The total number of ways the student can select sandwiches is given by raising the total number of choices (6) by the total number of days (7). So, there are 6^7 or 279,936 possible combinations of sandwiches for the week.

Learn more about Counting Principle, Permutation here:

https://brainly.com/question/14632628

#SPJ11

Find a vector equation and parametric equations for the line. (Use the parameter t.) The line through the point (0, 11, −8) and parallel to the line x = −1 + 4t, y = 6 − 4t, z = 3 + 6t

Answers

Answer:

The vector equation of the line is [tex]\overrightarrow {r}=(11j-8k)+t(4i-4j+6k)[/tex] and parametric equations for the line are [tex]x=4t[/tex], [tex]y=11-4t[/tex], [tex]z=-8+6t[/tex].

Step-by-step explanation:

It is given that the line passes through the point (0,11,-8) and parallel to the line

[tex]x=-1+4t[/tex]

[tex]y=6-4t[/tex]

[tex]z=3+6t[/tex]

The parametric equation are defined as

[tex]x=x_1+at,y=y_1+bt,z=z_1+ct[/tex]

Where, (x₁,y₁,z₁) is point from which line passes through and <a,b,c> is cosine of parallel vector.

From the given parametric equation it is clear that the line passes through the point (-1,6,3) and parallel vector is <4,-4,6>.

The required line is passes through the point (0,11,-8) and parallel vector is <4,-4,6>. So, the parametric equations for the line are

[tex]x=4t[/tex]

[tex]y=11-4t[/tex]

[tex]z=-8+6t[/tex]

Vector equation of a line is

[tex]\overrightarrow {r}=\overrightarrow {r_0}+t\overrightarrow {v}[/tex]

where, [tex]\overrightarrow {r_0}[/tex] is a position vector and [tex]\overrightarrow {v}[/tex] is cosine of parallel vector.

[tex]\overrightarrow {r}=(11j-8k)+t(4i-4j+6k)[/tex]

Therefore the vector equation of the line is [tex]\overrightarrow {r}=(11j-8k)+t(4i-4j+6k)[/tex] and parametric equations for the line are [tex]x=4t[/tex], [tex]y=11-4t[/tex], [tex]z=-8+6t[/tex].

Final answer:

The vector equation and parametric equations for the line through the point (0, 11, −8) and parallel to the given line are established by using the point as the initial point and the direction ratios from the parallel line.

Explanation:

The task is to find a vector equation and parametric equations for a line passing through the point (0, 11, −8) and parallel to given line equations x = −1 + 4t, y = 6 − 4t, z = 3 + 6t. To find these equations, we utilize the given point as the initial point and extract the direction ratios from the coefficients of t in the given parametric equations of the parallel line, which are (4, −4, 6).

The vector equation of the line can be written as ℓ = ℓ0 + t·d, where ℓ0 is the position vector of the initial point, and d is the direction vector. Since the given point is (0, 11, −8) and the parallel line's direction vector is (4, −4, 6), the vector equation is ℓ = (0, 11, −8) + t(4, −4, 6).

The parametric equations are derived directly from the vector equation. These are:

x = 0 + 4ty = 11 − 4tz = −8 + 6t

These equations represent the trajectory of the line through space, governed by the parameter t.

The resistance,R(in ohms), Of a wire varies directly with the length, L(in cm) of the wire, and inversely with the cross-sectional area, A (in cm2). A 500 cm piece of wire with a radius of 0.2 cm has a resistance of 0.025 ohm. Find an equation that relates these variables.

Answers

Answer:

R = 2π×10⁻⁶ L / A

Step-by-step explanation:

Resistance varies directly with length and inversely with area, so:

R = kL/A

A round wire has cross-sectional area of:

A = πr²

Substituting:

R = kL/(πr²)

Given that R = 0.025 Ω when L = 500 cm and r = 0.2 cm:

0.025 = k (500) / (π (0.2²))

k = 2π×10⁻⁶

Therefore:

R = 2π×10⁻⁶ L / A

Answer:

0.00002 in the first blank. in the second blank its A

Step-by-step explanation:

samantha wants to sort her greeting cards into boxes of 24 cards each. she has 312 greeting cards. How many boxes will she need?

Answers

312 greeting cards in 24-card boxes require 13 boxes.

312/24=13

Samantha will need 13 boxes to sort her 312 greeting cards.

To determine the number of boxes needed, we divide the total number of greeting cards by the number of cards that can fit into one box. Samantha has 312 greeting cards, and each box can hold 24 cards.

First, we perform the division:

[tex]\[ \frac{312}{24} = 13 \][/tex]

Since we are dealing with whole boxes, we do not need to consider any remainder because Samantha cannot use a fraction of a box. Therefore, Samantha will need exactly 13 boxes to accommodate all 312 greeting cards.

The probability that an appliance is currently being repaired is .5. If an apartment complex has 100 such appliances, what is the probability that at least 60 are currently being repaired? Use the normal approximation to the binomial.

Answers

The probability that no more than [tex]25[/tex] were victims of e-mail fraud is [tex]\fbox{0.0278}[/tex].

Further explanation:

Given:

The probability [tex]p[/tex] that an appliance is currently repaired is [tex]0.5[/tex].

The number of complex [tex]n[/tex] are [tex]100[/tex].

Calculation:

The [tex]\bar{X}[/tex] follow the Binomial distribution can be expressed as,

[tex]\bar{X}\sim \text{Binomial}(n,p)[/tex]

Use the normal approximation for [tex]\bar{X}[/tex] as

[tex]\bar{X}\sim \text{Normal}(np,np(1-p))[/tex]

The mean [tex]\mu[/tex] is [tex]\fbox{np}[/tex]

The standard deviation [tex]\sigma\text{ } \text{is} \text{ } \fbox{\begin{minispace}\\ \sqrt{np(1-p)}\end{minispace}}[/tex]

The value of [tex]\mu[/tex] can  be calculated as,

[tex]\mu=np\\ \mu= 100 \times0.5\\ \mu=50[/tex]

The value of [tex]\sigma[/tex] can be calculated as,

[tex]\sigma=\sqrt{100\times0.5\times(1-0.5)} \\\sigma=\sqrt{100\times0.5\times0.5}\\\sigma=\sqrt{25}\\\sigma={5}[/tex]

By Normal approximation \bar{X} also follow Normal distribution as,

[tex]\bar{X}\sim \text{Normal}(\mu,\sigma^{2} )[/tex]

Substitute [tex]50[/tex] for [tex]\mu[/tex] and [tex]25[/tex] for [tex]\sigma^{2}[/tex]

[tex]\bar{X}\sim\text {Normal}(50,25)[/tex]

The probability that at least [tex]60[/tex] are currently being repaired can  be calculated as,

[tex]\text{Probability}=P\left(\bar{X}>60)\right}\\\text{Probability}=P\left(\frac{{\bar{X}-\mu}}{\sigma}>\frac{{(60-0.5)-50}}{\sqrt{25} }\right)\\\text{Probability}=P\left(Z}>\frac{{59.5-50}}{5}}\right)\\\text{Probability}=P\left(Z}>\frac{9.5}{5}}\right)\\\text{Probability}=P(Z}>1.9})[/tex]

The Normal distribution is symmetric.

Therefore, the probability of greater than [tex]1.9[/tex] is equal to the probability of less than [tex]1.9 [/tex].

[tex]P(Z>1.9})=1-P(Z<1.9)\\P(Z>1.9})=1-0.9722\\P(Z>1.9})=0.0278[/tex]

Hence, the probability that no more than [tex]25[/tex] were victims of e-mail fraud is [tex]\fbox{0.0278}[/tex].

Learn More:

1. Learn more about angles https://brainly.com/question/1953744

2. Learn more about domain https://brainly.com/question/3852778

Answer Details:

Grade: College Statistics

Subject: Mathematics

Chapter: Probability and Statistics

Keywords:

Probability, Statistics, Appliance, Apartment complex, Binomial distribution, Normal distribution, Normal approximation, Central Limit Theorem, Z-table, Mean, Standard deviation, Symmetric.

Other Questions
A multiple choice test contains 10 questions, each with 3 possible answers (of which only one is correct). If a student answers each question by rolling a die and choosing the first answer if the die shows 1 or 2, the second answer if the die shows 3 or 4, or the third answer if the die shows 5 or 6, what is the probability that the student will get exactly 6 correct answers? more than 6 correct answers? Question 5: What is the radius of the circle with general form x2+y2-4y=21?Question 5 options:214.58525 For many years Futura Company has purchased the starters that it installs in its standard line of farm tractors. Due to a reduction in output, the company has idle capacity that could be used to produce the starters. The chief engineer has recommended against this move, however, pointing out that the cost to produce the starters would be greater than the current $10.80 per unit purchase price: Per Unit Total Direct materials $ 6.00 Direct labor 2.20 Supervision 1.50 $ 97,500 Depreciation 1.10 $ 71,500 Variable manufacturing overhead 0.80 Rent 0.30 $ 19,500 Total product cost $ 11.90 A supervisor would have to be hired to oversee production of the starters. However, the company has sufficient idle tools and machinery so that no new equipment would have to be purchased. The rent charge above is based on space utilized in the plant. The total rent on the plant is $83,000 per period. Depreciation is due to obsolescence rather than wear and tear. Required: 1. Determine the total relevant cost per unit if starters are made inside the company. PLEASE HURRYIn the diagram of circle O, what is the measure of ABC?I WILL GIVE BRAINLIEST Find the equation of the line through (2,9)(1,6)(-7,-6) When figures (including points) are rotated 270 counterclockwise about the origin, it is also the same rotating figures clockwise by what other degree amount? Please help! Misaka solved the radical equation x 3 = square root of 4x-7 but did not check her solutions. (x 3)2 = square root of 4x-7^2 x2 6x + 9 = 4x 7 x2 10x + 16 = 0 (x 2)(x 8) = 0 x = 2 and x = 8 Which shows the true solution(s) to the radical equation x 3 = square root of 4x-7 x = 2 x = 8 x = 2 and x = 8 There are no true solutions to the equation. The frequency factor and activation energy for a chemical reaction are A = 4.23 x 1012 cm3/(molecules) and Ea = 12.9 kJ/mol at 384.7 K, respectively. Determine the rate constant for this reaction at 384.7 K. Find the GCF of 52 and 84. What is the vertex form of y=x^2-6x+6 Emilio is writing a persuasive letter to his principal on improving school lunches. Which of the following would be the best thesis for Emilio to use? Two wires are perpendicular to each other and form a coordinate axis. The current in the vertical wire is going up (in the positive y direction) and the current in the horizontal wire is going to the right(in the positive x direction). Where is the net magnetic field equal to zero? The return of merchandise to the supplier for credit using the perpetual inventory system would include a: A. debit to Accounts Payable and a credit to Merchandise Inventory. B. debit to Accounts Receivable and a credit to Accounts Payable. C. debit to Sales Returns and Allowances and a credit to Merchandise Inventory. D. debit to Accounts Payable and a credit to Purchases Returns and Allowances What is the purpose of a unit conversion? Drag the titles to the boxes to form correct pairs .not all titles will be used. Match the pairs of equation that represents concentric circles. Pleaseeeeeeee help The site of communication between two neurons or between a neuron and another effector cell is called a ___________.a. Cleftb. Synapsec. Pre and post neuronal axis which methods could you use to calculate the y-coordinate of the midpoint of a vertical line segment with endpoints at (0,0) and (0,15). Check all that apply.a. Divide 1 by 15b. Count by handc. Add the endpointsd. Divide 15 by 2 Although not so common now, consider a phone plan that does not have unlimited texting. Your base plan costs you $30 a month and each text sent or received is only 12 cents. Write an equation to describe the total monthly cost of your bill with x text messages and y cost.In one month 217,000 messages were sent between two brothers in Philadelphia. What was their approximate bill? (This is a true story!) (3 1/6 - 1 5/8) divided by (8 3/4 - 1.35) At the first meeting, the committee voted on ________ bylaws. A. it's B. its C. their