The fixed hydraulic cylinder C imparts a constant upward velocity v = 2.2 m/s to the collar B, which slips freely on rod OA. Determine the resulting angular velocity ωOA when point B has a displacement s = 220 mm, and the fixed distance d = 510 mm. The angular velocity is positive if counterclockwise, negative if clockwise.

Answers

Answer 1

We can determine the angular velocity using the formula ω = v/r, where v is the tangential speed (2.2 m/s) and r is the radius of the circle (510 mm). After converting the radius to meters, we can then plug these values into the formula and solve for ω, yielding an angular velocity of  3.9636 rad/s.

To determine the resulting angular velocity ωOA of rod OA when point B has a displacement s = 220 mm, we can use the following formula:

ωOA = v / r

Where:

ωOA = Angular velocity of rod OA

v = Linear velocity of point B

r = Radius or distance from point O to point B

Given:

v = 2.2 m/s

s = 220 mm = 0.22 m

d = 510 mm = 0.51 m

First, we calculate the radius (r) using the Pythagorean theorem because the motion is along a right-angled triangle:

r² = d² + s²

r² = (0.51 m)² + (0.22 m)²

r² = 0.2601 m² + 0.0484 m²

r² = 0.3085 m²

Now, we calculate the square root of r² to get r:

r = √0.3085 m

r ≈ 0.555 m

Now, we can calculate the angular velocity ωOA:

ωOA = v / r

ωOA = 2.2 m/s / 0.555 m

ωOA ≈ 3.9636 rad/s

The angular velocity ωOA is approximately 3.9636 rad/s. Since the motion is counterclockwise (as indicated by the positive linear velocity of point B), the angular velocity is also positive.

Learn more about Angular Velocity here:

https://brainly.com/question/30733452

#SPJ3


Related Questions

what is the de broglie wavelength of 10 Mev electron

Answers

Answer:

The wave length is [tex]3.885\times10^{-13}\ m[/tex]

Explanation:

Given that,

Energy = 10 Mev

We need to calculate the wavelength

Using formula of debroglie wave length

[tex]\lambda=\dfrac{h}{\sqrt{2mE}}[/tex]

Where, h = Planck constant

E = energy

m = mass

Put the value into the formula

[tex]\lambda =\dfrac{6.634\times10^{-34}}{\sqrt{2\times9.11\times10^{-31}\times10\times10^{6}\times1.6\times10^{-19}}}[/tex]

[tex]\lambda=3.885\times10^{-13}\ m[/tex]

Hence, The wave length is [tex]3.885\times10^{-13}\ m[/tex]

The 68-kg crate is stationary when the force P is applied. Determine the resulting acceleration of the crate if (a) P = 0, (b) P = 181 N, and (c) P = 352 N. The acceleration is positive if up the slope, negative if down the slope.

Answers

Explanation:

Mass of the crate, m = 68 kg

We need to find the resulting acceleration if :

(a) Force, P = 0

P = m a

⇒ a = 0

(b) P = 181 N

[tex]a=\dfrac{P}{m}[/tex]

[tex]a=\dfrac{181\ N}{68\ kg}[/tex]

[tex]a=2.67\ m/s^2[/tex]

(c) P = 352 N

[tex]a=\dfrac{P}{m}[/tex]

[tex]a=\dfrac{352\ N}{68\ kg}[/tex]

[tex]a=5.17\ m/s^2[/tex]

Hence, this is the required solution.

A car of mass 2800 kg collides with a truck of mass 4000 kg, and just after the collision the car and truck slide along, stuck together, with no rotation. The car's velocity just before the collision was <36, 0, 0> m/s, and the truck's velocity just before the collision was <-15, 0, 29> m/s. (a) Your first task is to determine the velocity of the stuck-together car and truck just after the collision. (d) What is the increase in internal energy of the car and truck (thermal energy and deformation)?

Answers

(a) The velocity of the car-truck system after collision is 18.08 m/s.

(b) The increase in internal energy of the car and truck is 2,835,031.2 J.

Velocity of the truck - car system after collision

The velocity of the system after collision is determined by applying the principle of conservation of linear momentum as shown below;

Final velocity in x - direction

m₁u₁ + m₂u₂ = v(m₁ + m₂)

2800(36) + 4000(-15) = vx(2800 + 4000)

40,800 = 6800vx

vx = 6 m/s

Final velocity in z - direction

m₁u₁ + m₂u₂ = v(m₁ + m₂)

2800(0) + 4000(29) = vz(2800 + 4000)

116,000 = 6800vz

vz = 17.06 m/s

Resultant velocity of the car-truck system after the collision [tex]v= \sqrt{v_x^2 + v_z^2} \\\\v = \sqrt{6^2 + 17.06^2} \\\\v = 18.08 \ m/s[/tex]Initial kinetic energy of the car and truck

K.E(car) = ¹/₂mv²

K.E(car) = ¹/₂ x (2800) x (36)²

K.E(car) = 1,814,400 J

v(truck) = √(15² + 29²) = 32.65

K.E(truck) = ¹/₂ x (4000) x (32.65)²

K.E(truck) = 2,132,045 J

K.E(total) =  1,814,400 J + 2,132,045 J = 3,946,445 J

Final kinetic energy of the system

K.E =  ¹/₂(m₁ + m₂)v²

K.E = ¹/₂ x (2800 + 4000) x (18.08)²

K.E = 1,111,413.8 J

Increase in internal energy

U = ΔK.E

U = 3,946,445 J - 1,111,413.8 J

U = 2,835,031.2 J

Learn more about conservation of linear momentum here: https://brainly.com/question/7538238

Final answer:

To determine the velocity of the stuck-together car and truck after the collision, apply the principle of conservation of momentum. Consider the change in kinetic energy and the production of thermal energy and deformation.

Explanation:

To determine the velocity of the stuck-together car and truck just after the collision, we can apply the principle of conservation of momentum. The total momentum before the collision is equal to the total momentum after the collision. We can find the final velocity by summing the momenta of the car and truck and dividing by their combined mass.

In this case, the car's momentum is the product of its mass and velocity, and the truck's momentum is the product of its mass and velocity. Adding these momenta together and dividing by the combined mass gives us the final velocity of the stuck-together car and truck just after the collision.

For the increase in internal energy of the car and truck, we need to consider the change in kinetic energy and the production of thermal energy and deformation. The change in kinetic energy can be calculated by finding the difference between the initial and final kinetic energies of the car and truck. The thermal energy and deformation depend on factors such as the materials involved and the severity of the collision.

A skateboarder shoots off a ramp with a velocity of 6.6 m/s, directed at an angle of 58 above the horizontal. The end of the ramp is 1.2 m above the ground. Let the x axis be parallel to the ground, the +y direction be vertically upward, and take as the origin the point on the ground directly below the top of the ramp. (a) How high above the ground is the highest point that the skateboarder reaches? (b) When the skateboarder reaches the highest point, how far is this point horizontally from the end of the ramp?

Answers

Answer:

a) Maximum height reached above ground = 2.8 m

b) When he reaches maximum height he is 2 m far from end of the ramp.

Explanation:

a) We have equation of motion v²=u²+2as

   Considering vertical motion of skateboarder.  

   When he reaches maximum height,

          u = 6.6sin58 = 5.6 m/s

          a = -9.81 m/s²

          v = 0 m/s

  Substituting

         0²=5.6² + 2 x -9.81 x s

          s = 1.60 m

  Height above ground = 1.2 + 1.6 = 2.8 m

b) We have equation of motion v= u+at

   Considering vertical motion of skateboarder.  

   When he reaches maximum height,

          u = 6.6sin58 = 5.6 m/s

          a = -9.81 m/s²

          v = 0 m/s

  Substituting

         0= 5.6 - 9.81 x t

          t = 0.57s

  Now considering horizontal motion of skateboarder.  

  We have equation of motion s =ut + 0.5 at²

          u = 6.6cos58 = 3.50 m/s

          a = 0 m/s²

          t = 0.57  

  Substituting

         s =3.5 x 0.57 + 0.5 x 0 x 0.57²

         s = 2 m

  When he reaches maximum height he is 2 m far from end of the ramp.

The highest point reached by the skateboarder is 1.612 meters above the ground. When the skateboarder reaches the highest point, the horizontal distance from this point to the end of the ramp is  3.568 meters.

Given:

Initial velocity (v₀) = 6.6 m/s

Launch angle (θ) = 58°

Height of the ramp (h) = 1.2 m

Acceleration due to gravity (g) = 9.8 m/s²

(a) To find the maximum height reached by the skateboarder:

Δy = v₀y² / (2g)

v₀y = v₀ × sin(θ)

v₀y = 6.6 × sin(58°)

v₀y = 5.643 m/s

Δy = (5.643 )² / (2 × 9.8)

Δy ≈ 1.612 m

Therefore, the highest point reached by the skateboarder is 1.612 meters above the ground.

(b) The time of flight can be calculated using the equation:

t = 2 × v₀y / g

t = 2 × 5.643  / 9.8

t = 1.153 s

Δx = v₀x × t

First, we need to find the initial horizontal velocity (v₀x):

v₀x = v₀ × cos(θ)

v₀x = 6.6 × cos(58°)

v₀x = 3.099 m/s

Δx = 3.099 * 1.153

Δx = 3.568 m

Therefore, when the skateboarder reaches the highest point, the horizontal distance from this point to the end of the ramp is  3.568 meters.

To know  more about horizontal velocity:

https://brainly.com/question/14059839

#SPJ6

A car traveling at 105 km/h strikes a tree. The front end of the car compresses and the driver comes to rest after traveling 0.80 m. (a) What was the magnitude of the average acceleration of the driver during the collision? (b) Express the answer in terms of “g’s,” where 1.00 g = 9.80 m/s^2.

Answers

Answer:

Part a)

a = 531.7 m/s/s

Part b)

a = 54.25 g

Explanation:

Part a)

Initial speed of the car is given as

[tex]v = 105 km/h[/tex]

now we have

[tex]v = 29.2 m/s[/tex]

now we know that it stops in 0.80 m

now by kinematics we have

[tex]a = \frac{v_f^2 - v_i^2}{2d}[/tex]

so we will have

[tex]a = \frac{0 - 29.2^2}{2(0.80)}[/tex]

[tex]a = 531.7 m/s^2[/tex]

Part b)

in terms of g this is equal to

[tex]a = \frac{531.7}{9.80}[/tex]

[tex]a = 54.25 g[/tex]

Final answer:

The magnitude of the average acceleration of the driver during the collision is approximately -532.09 [tex]m/s^2[/tex], which is about 54.29 g's when expressed in terms of the acceleration due to gravity.

Explanation:

To calculate the magnitude of the average acceleration of the driver during the collision, we can use the following kinematic equation that relates velocity, acceleration, and distance:

[tex]v^2 = u^2 + 2a * s[/tex]

Where:
v is the final velocity (0 m/s, since the driver comes to a stop)

u is the initial velocity (105 km/h, which needs to be converted to m/s)

a is the acceleration (the quantity we want to find)

s is the stopping distance (0.80 m)

First, convert the velocity from km/h to m/s by multiplying by (1000 m/1 km)*(1 h/3600 s) to get approximately 29.17 m/s. Now we can solve for 'a' as follows:

[tex](0)^2 = (29.17 m/s)^2 + 2 * a * (0.80 m)-29.17^2 = 2 * a * 0.80a = -(29.17)^2 / (2 * 0.80)a = -532.09[/tex]

We find that the magnitude of the average acceleration is approximately [tex]-532.09 m/s^2[/tex]. To express this in terms of 'g's, we divide by the acceleration due to gravity [tex](9.80 m/s^2)[/tex]:

[tex]a_g = -532.09 / 9.80a_g =54.29 g's[/tex]

If the charge of a particle doubles, what happens to the force acting on it?

It doubles

It gets reduced by a factor of two

It stays the same

A charge exerts a negative force on another charge. Does that mean that:

Both charges are positive
Both charges are negative
the charges are of opposite signs
please explain this throughly! thanks

Answers

Explanation:

(1) The force that exists between charged particles is electrostatic force. It is given by :

[tex]F=k\dfrac{q_1q_2}{r^2}[/tex]

Where

q₁ and q₂ are charges

r is distance between charges

If the charge of a particle doubles, the electric force doubles. So, the correct option is (a) "It doubles".

(2) A charge exerts a negative force on another charge. Negative force denotes the force is attractive. It means that the charges are of opposite sign. So, the correct option is (c) "the charges are of opposite signs".

An object with a height of 4.31 cm is placed 12.6 cm from a concave mirror. Determine the radius of the mirror if the image appears 8.77 cm from the mirror. Also determine the image height. 4. Repeat question 6 but for a convex mirror.

Answers

Explanation:

Given that,

Height of object = 4.31 cm

Distance of the object = -12.6 cm

Distance of the image = -8.77 cm

For concave mirror,

Using mirror's formula

[tex]\dfrac{1}{f}=\dfrac{1}{u}+\dfrac{1}{v}[/tex]

[tex]\dfrac{1}{f}=\dfrac{1}{-12.6}-\dfrac{1}{8.77}[/tex]

[tex]\dfrac{1}{f}=-\dfrac{10685}{55251}[/tex]

[tex]f=-\dfrac{55251}{10685}[/tex]

[tex]f = -5.17\ cm[/tex]

Radius of the mirror is

[tex]f = |\dfrac{R}{2}|[/tex]

[tex]r=2f[/tex]

[tex]r=2\times5.17[/tex]

[tex]r=10.34\ cm[/tex]

The magnification of the mirror,

[tex]m=-\dfrac{v}{u}[/tex]

[tex]\dfrac{h_{i}}{h_{o}}=\dfrac{v}{u}[/tex]

[tex]h_{i}=-h_{o}\times\dfrac{v}{u}[/tex]

[tex]h_{i}=-4.31\times\dfrac{8.77}{12.6}[/tex]

[tex]h_{i}=-2.99\ cm[/tex]

Now, For convex mirror,

Using mirror's formula

[tex]\dfrac{1}{f}=\dfrac{1}{u}+\dfrac{1}{v}[/tex]

[tex]\dfrac{1}{f}=\dfrac{1}{-12.6}+\dfrac{1}{8.77}[/tex]

[tex]\dfrac{1}{f}=\dfrac{1915}{55251}[/tex]

[tex]f=\dfrac{55251}{1915}[/tex]

[tex]f = 28.85\ cm[/tex]

Radius of the mirror is

[tex]f = \dfrac{R}{2}[/tex]

[tex]r=2f[/tex]

[tex]r=2\times28.85[/tex]

[tex]r=57.7\ cm[/tex]

The magnification of the mirror,

[tex]m=-\dfrac{v}{u}[/tex]

[tex]\dfrac{h_{i}}{h_{o}}=\dfrac{v}{u}[/tex]

[tex]h_{i}=-h_{o}\times\dfrac{v}{u}[/tex]

[tex]h_{i}=4.31\times\dfrac{8.77}{12.6}[/tex]

[tex]h_{i}=2.99\ cm[/tex]

Hence, This is the required solution.

A 0.7 kg lab cart moving to the right at 0.15 m/s collides with a 0.5 kg lab cart moving to the right at 0.10 m/s. After the collision, the 0.7 kg cart is moving to the right at 0.08 m/s. Calculate the velocity of the 0.5 kg lab cart after the collision.

Answers

Answer:

0.198 m/s

Explanation:

m1 = 0.7 kg, u1 = 0.15 m/s,

v1 = 0.08 m/s

m2 = 0.5 kg, u2 = 0.1 m/s

Let the speed of 0.5 kg is v2 after the collision.

By using the conservation of momentum

Momentum before collision = momentum after collision

m1 u1 + m2 u2 = m1 v1 + m2 v2

0.7 x 0.15 + 0.5 x 0.1

= 0.7 × 0.08 + 0.5 × v2

0.099 = 0.5 v2

v2 = 0.198 m/s

Work is required to compress 5.00 mol of air at 20.00C and 1.00 atm to one-tenth of the original volume by an adiabatic process. How much work is required to produce this same compression?

Answers

Answer:46.03 KJ

Explanation:

no of moles(n)=5

temperature of air(T)=[tex]20^{\circ}[/tex]

pressure(p)=1 atm

final volume is [tex]\frac{V}{10}[/tex]

We know work done in adaibatic process is given by

W=[tex]\frac{P_iV_i-P_fV_f}{\gamma -1}[/tex]

[tex]\gamma[/tex] for air is 1.4

we know [tex]P_iV_i^{\gamma }= P_fV_f^{\gamma }[/tex]

[tex]1\left ( V\right )^{\gamma }[/tex]=[tex]P_f\left (\frac{v}{10}\right )^{\gamma }[/tex]

[tex]10^{\gamma }=P_f[/tex]

[tex]P_f=25.118 atm[/tex]

W=[tex]\frac{1\times 0.1218-25.118\times 0.01218}{1.4 -1}[/tex]

W=-46.03 KJ

it means work is done on the system

An electric field of magnitude 2.35 V/m is oriented at an angle of 25.0° with respect to the positive z-direction. Determine the magnitude of the electric flux througha rectangular area of 1.65 m2 in the xy-plane. N m2/C

Answers

Answer:

The magnitude of the electric flux is [tex]3.53\ N-m^2/C[/tex]

Explanation:

Given that,

Electric field = 2.35 V/m

Angle = 25.0°

Area [tex]A= 1.65 m^2[/tex]

We need to calculate the flux

Using formula of the magnetic flux

[tex]\phi=E\cdot A[/tex]

[tex]\phi = EA\cos\theta[/tex]

Where,

A = area

E = electric field

Put the value into the formula

[tex]\phi=2.35\times1.65\times\cos 25^{\circ}[/tex]

[tex]\phi=2.35\times1.65\times0.91[/tex]

[tex]\phi=3.53\ N-m^2/C[/tex]

Hence, The magnitude of the electric flux is [tex]3.53\ N-m^2/C[/tex]

A uniform disk of mass 20.0 kg and radius 20.0 cm has an additional rim of mass 20.0 kg as well as four symmetrically placed masses, each of mass 1/4th of the mass of the disk, fastened at positions having position vectors (10.0 i + 10.0 j) cm, (10.0 i - 10.0 j) cm, (-10.0i - 10.0 j cm, (-10.0 i + 10.0 j) cm (with respect to the center of the disk). What is the moment of inertia of the whole unit about an axis perpendicular to the disk and passing through its center?

Answers

Answer:

[tex]I = 1.6 kg m^2[/tex]

Explanation:

Moment of inertia of disc is given as

[tex]I = \frac{1}{2}mR^2[/tex]

now we have

m = 20 kg

R = 20.0 cm = 0.20 m

now we have

[tex]I_{disc} = \frac{1}{2}(20 kg)(0.20 m)^2[/tex]

[tex]I_{disc} = 0.4 kg m^2[/tex]

Now the additional mass of 20 kg is placed on its rim so it will behave as a ring so moment of inertia of that part of the disc is

[tex]I = mR^2[/tex]

m = 20 kg

R = 20 cm = 0.20 m

[tex]I_{ring} = 20(0.20^2)[/tex]

[tex]I_{ring} = 0.8 kg m^2[/tex]

Now four point masses each of the mass of one fourth of mass of disc is placed at four positions so moment of inertia of these four masses is given as

[tex]I_{mass} = 4( m'r^2)[/tex]

here we have

[tex]m' = \frac{m}{4}[/tex]

[tex]I_{mass} = 4(\frac{m}{4})(0.10^2 + 0.10^2)[/tex]

[tex]I_{mass} = 20(0.02) = 0.40 kg m^2[/tex]

Now total moment of inertia of the system is given as

[tex]I = I_{disc} + I_{ring} + I_{mass}[/tex]

[tex]I = 0.4 + 0.8 + 0.4 = 1.6 kg m^2[/tex]

A 9.0 µF capacitor is charged by a 13.0 V battery through a resistance R. The capacitor reaches a potential difference of 4.00 V at a time 3.00 s after charging begins. Find R.

Answers

Answer:

9.1 x 10⁵ ohm

Explanation:

C = Capacitance of the capacitor = 9 x 10⁻⁶ F  

V₀ = Voltage of the battery = 13 Volts  

V = Potential difference across the battery after time "t" = 4 Volts  

t = time interval = 3 sec  

T = Time constant

R = resistance  

Potential difference across the battery after time "t" is given as  

[tex]V = V_{o} (1-e^{\frac{-t}{T}})[/tex]

[tex]4 = 13 (1-e^{\frac{-3}{T}})[/tex]

T = 8.2 sec  

Time constant is given as  

T = RC  

8.2 = (9 x 10⁻⁶) R  

R = 9.1 x 10⁵ ohm

Final answer:

To determine the resistance R, the RC circuit charging equation is used with the given values. By rearranging the equation and solving, the resistance R is found to be approximately 7.97 kΩ.

Explanation:

To find the resistance R in the given circuit, we use the charging equation for a capacitor in an RC circuit:


V(t) = V_0(1 - e^{-t/RC})

Where V(t) is the voltage across the capacitor at time t, V_0 is the initial voltage provided by the battery, R is the resistance, C is the capacitance, and t is the time.

Plugging in the given values:

V(t) = 4.00 V

V_0 = 13.0 V

C = 9.0 µF

t = 3.00 s

We have:


4.00 = 13.0(1 - e^{-3/(9.0×10^{-6}R)})

Now solve for R:


1 - \frac{4.00}{13.0} = e^{-3/(9.0×10^{-6}R))}

Simplifying:


\frac{9.00}{13.00} = e^{-3/(9.0×10^{-6}R))}

Take the natural logarithm of both sides:


ln(\frac{9.00}{13.00}) = -\frac{3}{9×10^{-6}R}

Multiply by -9×10^{-6}R and divide by 3:


R = -\frac{9×10^{-6}ln(\frac{9.00}{13.00})}{3}

R ≈ 7.97 kΩ

Thus, the resistance R is approximately 7.97 kΩ.

The addition of heat Q causes a metal object to increase in temperature from 4°C to 6°C . What is the amount of heat necessary to increase the object's temperature from 6°C to 12°C? 4Q 2Q Q 3Q

Answers

Answer:

The answer is 3Q

Explanation:

The metal temperature increases in a linear way, we could get a difference between final and initial temperature

[tex]DT=FinalTemperature-InitialTemperature[/tex]

We get a temperature difference of 2 degrees per each heat addition.  If we add the same heat 3 times more, it will increase to 12 degrees

Answer:

The quantity of heat required to increase the temperature of the object from  6°C to 12°C is 3Q

Explanation:

Heat capacity is the quantity of heat required to increase the temperature of an object.

Q = mcΔθ

where;

Q is the quantity of heat

m is the mass of the object

c is specific heat capacity of the object

Δθ is change in temperature = T₂ - T₁

For the first sentence of this question;

Q = mc(6-4)

Q = mc(2)

Q = 2mc

For the second sentence of this question;

Let Q₂ be the quantity of heat required to increase the temperature of the object from  6°C to 12°C

Q₂ = mcΔθ

Q₂ = mc(12-6)

Q₂ = mc(6)

Q₂ = 6mc

Q₂ = 3(2mc)

Recall, Q = 2mc

Thus, Q₂ = 3Q

A block is on a frictionless table, on earth. The block accelerates at 7.5 m/s when a 70 N horizontal force is applied to it. The block and table are set up on the moon. The acceleration due to gravity at the surface of the moon is 1.62 m/s. The weight of the block on the moon is closest to: O 9.5 N O 13 N O 11 N O 15 N O 7.7 N

Answers

Answer:

The weight of the block on the moon is 15 kg.

Explanation:

It is given that,

The acceleration of the block, a = 7.5 m/s²

Force applied to the box, F = 70 N

The mass of the block will be, [tex]m=\dfrac{F}{a}[/tex]

[tex]m=\dfrac{70\ N}{7.5\ m/s^2}[/tex]

m = 9.34 kg

The block and table are set up on the moon. The acceleration due to gravity at the surface of the moon is 1.62 m/s². The mass of the object remains the same. It weight W is given by :

[tex]W=m\times g[/tex]

[tex]W=9.34\ kg\times 1.62\ m/s^2[/tex]

W = 15.13 N

or

W = 15 N

So, the weight of the block on the moon is 15 kg. Hence, this is the required solution.

Final answer:

The mass of the block is approximately 9.33 kg, and when you multiply that by the acceleration due to gravity on the moon (1.62 m/s^2), you get a weight of approximately 15 N. Therefore, the closest answer is 15 N.

Explanation:

To solve this problem, we need to find the mass of the block first. We know on earth, Force (F) = mass (m) * acceleration (a). Given that the force is 70N, and the acceleration is 7.5 m/s, we can solve for m. So, m = F/a = 70N / 7.5 m/s = 9.33 kg (approximately).

Now, let's figure out the weight of the same block on the moon. Weight is calculated as mass times the acceleration due to gravity (Weight = m*g). On the moon, the acceleration due to gravity is 1.62 m/s^2, so Weight = 9.33 kg * 1.62 m/s^2 = 15.1 N (approximately).

So, the closest answer will be 15 N.

Learn more about Physics of Weight and Gravity here:

https://brainly.com/question/20324590

#SPJ3

You heat a 541cm^3 sample of a substance from 133°C to 273°C and find that its volume increases by 2.25 cm^3. Calculate the coefficient of volume expansion of this substance.

Answers

Answer:

[tex]\gamma = 2.97 \times 10^{-5} per ^0 C[/tex]

Explanation:

As we know by the theory of expansion the change in the volume of the object is directly proportional to change in temperature and initial volume.

So here we can say

[tex]\Delta V = V_0\gamma \Delta T[/tex]

here

[tex]\gamma[/tex] = coefficient of volume expansion

so we have

[tex]\gamma = \frac{\Delta V}{V_0 \Delta T}[/tex]

now plug in all values

[tex]\gamma = \frac{2.25 cm^3}{(541 cm^3)(273 - 133)}[/tex]

[tex]\gamma = 2.97 \times 10^{-5} per ^0 C[/tex]

A disk between vertebrae in the spine is subjected to a shearing force of 600 N. Find its shear deformation, taking it to have a shear modulus of 1x10^9 N/m^2. The disk is equivalent to a solid cylinder 0.700 cm high and 4.00 cm in diameter. a)3 μm
b)3 mm
c)3 cm
d)3 km

Answers

Answer:

The shear deformation is [tex]\Delta x=3.34\times10^{-6}\ m[/tex].

Explanation:

Given that,

Shearing force F = 600 N

Shear modulus [tex]S = 1\times10^{9}\ N/m^2[/tex]

length = 0.700 cm

diameter = 4.00 cm

We need to find the shear deformation

Using formula of shear modulus

[tex]S=\dfrac{Fl_{0}}{A\Delta x}[/tex]

[tex]\Delta x=\dfrac{Fl_{0}}{(\dfrac{\pi d^2}{4})S}[/tex]

[tex]\Delta x=\dfrac{4Fl_{0}}{\pi d^2 S}[/tex]

Put the value into the formula

[tex]\Delta x=\dfrac{4\times600\times0.700\times10^{-2}}{3.14\times1\times10^{9}\times(4.00\times10^{-2})^2}[/tex]

[tex]\Delta x=3.34\times10^{-6}\ m[/tex]

Hence, The shear deformation is [tex]\Delta x=3.34\times10^{-6}\ m[/tex].

Final answer:

The shear deformation experienced by the disc is calculated using a formula that takes into account the shear modulus, the force applied, and the cross-sectional area of the disk. The correct answer is found to be approximately 0.478 μm.

Explanation:

Solving this problem involves understanding the formula for shear deformation, which is the ratio of the applied force to the area of the disc over which it is applied, multiplied by the height of the disc and divided by the shear modulus.

First, we need to calculate the cross-sectional area of the disk. The formula for the area of a circle is πr², where r is the radius of the disc. Given the diameter of 4 cm, the radius is 2 cm or 0.02 m. So, the area = π * (0.02)² = 0.001256 m².

Substituting into the formula for shear deformation, we get τ = F / (G * A) which equals 600 N / (1x10^9 N/m² * 0.001256 m²) = 4.78x10^-7 m or approximately 0.478 μm.

This indicates that none of the initial answers are correct. The closest incorrect answer is 3 μm but the correct answer is 0.478 μm.

Learn more about Shear Deformation here:

https://brainly.com/question/32904832

#SPJ3

Compute the diameter of a square link subjected to a compres- sive load of 27,000 lbs. Modulus of elasticity 30 x 106 psi. Proportionality limit 38,000 psi, working stress - 7000 psi, length of the link 55 in.

Answers

Answer:

The diameter of a square link is 0.0233 inch.

Explanation:

Given that,

Load = 27000 lbs

Modulus of elasticity [tex]E= 30\times10^{6}\ psi[/tex]

Working stress [tex]\sigma=7000\ psi[/tex]

length l = 55 in

We need to calculate the diameter of a square link

Using formula of stress

[tex] \sigma=\dfrac{Force}{Area}[/tex]

[tex]7000=\dfrac{27000}{\pi\times d\times L}[/tex]

Put the value into the formula

[tex]d=\dfrac{27000}{7000\times3.14\times55}[/tex]

[tex]d=0.0223\ inch[/tex]

Hence, The diameter of a square link is 0.0233 inch.

A 1kg ball is dropped (from rest) 100m onto a spring with spring constant 125N/m. How much does the spring compress?

Answers

Answer:

3.95 m

Explanation:

m = 1 kg, h = 100 m, k = 125 N/m

Let the spring is compressed by y.

Use the conservation of energy

potential energy of the mass is equal to the energy stored in the spring

m x g x h = 1/2 x ky^2

1 x 9.8 x 100 = 0.5 x 125 x y^2

y^2 = 15.68

y = 3.95 m

Two banked curves have the same radius. Curve A is banked at 12.7 °, and curve B is banked at an angle of 15.1°. A car can travel around curve A without relying on friction at a speed of 19.1 m/s. At what speed can this car travel around curve B without relying on friction?

Answers

Final answer:

The speed of the car on Curve B is obtained by solving for the radius in Curve A's equation, then substituting that into the formula for Curve B. The formula involved is based on principles of circular motion and forces.

Explanation:

The subject of this question is Physics, specifically the principles of circular motion and the forces at play within. Given the information from Curve A, we can ascertain that the speed of the car on Curve B can be found using principles of physics. The formula to find the speed at which the car can travel around a banked curve without relying on friction is: v = sqrt[rgtan(Θ)]. Where v is the speed, r is the radius of the curve, g is the acceleration due to gravity, and Θ is the angle of the banked curve.

Since the radius is the same for both curves, and the speed is known for Curve A, we can set it up so: 19.1 = sqrt[r * 9.8 * tan(12.7)]. We then solve for r (the radius), and apply it to Curve B: v = sqrt[r * 9.8 * tan(15.1)]. By substituting in the value of r obtained from the first equation, we can calculate the speed for Curve B.

Learn more about Banked Curves here:

https://brainly.com/question/31667845

#SPJ12

Final answer:

To find the speed at which the car can travel around curve B without relying on friction, we can use the same formula but with a banked angle of 15.1°.

Explanation:

The speed at which a car can travel around a banked curve without relying on friction can be calculated using the ideal banking angle formula. The formula is given by v = √(g * r * tan(θ)), where v is the speed, g is the acceleration due to gravity, r is the radius of the curve, and θ is the banked angle. In this case, curve A is banked at 12.7° and the car can travel at a speed of 19.1 m/s. To find the speed at which the car can travel around curve B without relying on friction, we can use the same formula but with a banked angle of 15.1°.

Plugging in the values into the formula, v = √(9.8 * r * tan(15.1)). Since the radius is the same for both curves, we can solve for v: 19.1 = √(9.8 * r * tan(12.7))

Solving the equation for v, we find that the car can travel around curve B without relying on friction at a speed of approximately 21.2 m/s.

Learn more about banked curve here:

https://brainly.com/question/20385799

#SPJ3

A ball is dropped from rest. What will be its speed when it hits the ground in each case. a. It is dropped from 0.5 meter above the ground. b. It is dropped from 5 meters above the ground. c. It is dropped from 10 feet above the ground.

Answers

Answer:

(a) 3.13 m/s

(b) 9.9 m/s

(c) 7.73 m/s

Explanation:

u = 0 m/s, g = 9.8 m/s^2

Let v be the velocity of ball as it hit the ground.

(a) h = 0.5 m

Use third equation of motion.

v^2 = u^2 + 2 g h

v^2 = 0 + 2 x 9.8 x 0.5

v^2 = 9.8

v = 3.13 m/s

(b) h = 5 m

Use third equation of motion.

v^2 = u^2 + 2 g h

v^2 = 0 + 2 x 9.8 x 5

v^2 = 98

v = 9.9 m/s

(c) h = 10 feet = 3.048 m

Use third equation of motion.

v^2 = u^2 + 2 g h

v^2 = 0 + 2 x 9.8 x 3.048

v^2 = 59.74

v = 7.73 m/s

The blackbody radation emmitted from a furnace peaks at a wavelength of 1.9 x 10^-6 m (0.0000019 m). what is the temperature inside the furnace?

Answers

Answer:

Temperature, T = 1542.10 K

Explanation:

It is given that,

The black body radiation emitted from a furnace peaks at a wavelength of, [tex]\lambda=1.9\times 10^{-6}\ m[/tex]

We need to find the temperature inside the furnace. The relationship between the temperature and the wavelength is given by Wein's law i.e.

[tex]\lambda\propto \dfrac{1}{T}[/tex]

or

[tex]\lambda=\dfrac{b}{T}[/tex]

b = Wein's displacement constant

[tex]\lambda=\dfrac{2.93\times 10^{-3}}{T}[/tex]

[tex]T=\dfrac{2.93\times 10^{-3}}{\lambda}[/tex]

[tex]T=\dfrac{2.93\times 10^{-3}}{1.9\times 10^{-6}\ m}[/tex]

T = 1542.10 K

So, the temperature inside the furnace is 1542.10 K. Hence, this is the required solution.

Final answer:

Using Wien's Displacement Law, the temperature inside a furnace emitting radiation that peaks at a wavelength of 1.9 x 10^-6 m is approximately 1525 Kelvin.

Explanation:

The temperature of the furnace can be determined using Wien's Displacement Law, which states that the product of the temperature of a black body and the wavelength at which the radiation it emits is most intense is approximately equal to 2.898 x 10^-3 m.K. In this specific case, the peak wavelength of the energy emitted from the furnace is given as 1.9 x 10^-6 m. Therefore, the temperature inside the furnace can be calculated using the formula: T = Amax / λ, where Amax = 2.898 x 10^-3 m.K and λ = 1.9 x 10^-6 m. Calculating from the given formula, T ≈ 1525 K. Therefore, the temperature inside the furnace is approximately 1525 Kelvin.

Learn more about Blackbody Radiation here:

https://brainly.com/question/32765280

#SPJ11

A 1 cm^3 block with a density of 0.92 g/cm^3 is floating in a container of water (d =1g/ cm^3). You may ignore any air pressure throughout this problem. What buoyant force is necessary to keep the block from sinking?

Answers

Answer:

980 dyne

Explanation:

Volume = 1 cm^3, d = 0.92 g / cm^3, D = 1 g/cm^3

In the equilibrium condition, the buoyant force is equal to the weight of the block.

Buoyant force = Volume of block x density of water x g

Buoyant force = 1 x 1 x 980 = 980 dyne

Light is refracted as it travels from a point A in medium 1 to a point B in medium 2. If the index of refraction is 1.33 in medium 1 and 1.51 in medium 2, how much time does it take for light to go from A to B, assuming it travels 331 cm in medium 1 and 151 cm in medium 2?

Answers

Answer: [tex]0.000001475s=1.475\mu s[/tex]

Explanation:

The index of refraction [tex]n[/tex] is a number that describes how fast light propagates through a medium or material.  

Being its equation as follows:  

[tex]n=\frac{c}{v}[/tex] (1)

Where [tex]c=3(10)^{8}m/s[/tex] is the speed of light in vacuum and [tex]v[/tex] its speed in the other medium.

So, from (1) we can find the velocity at which the light travels and then the time it requires to travel : [tex]v=\frac{c}{n}[/tex] (2)

For medium 1:

[tex]n_{1}=1.33[/tex]

[tex]v_{1}=\frac{c}{n_{1}}[/tex] (3)

[tex]v_{1}=\frac{3(10)^{8}m/s}{1.33}=225563909.8m/s[/tex] (4)

For medium 2:

[tex]n_{2}=1.51[/tex]

[tex]v_{2}=\frac{c}{n_{2}}[/tex] (5)

[tex]v_{2}=\frac{3(10)^{8}m/s}{1.51}=198675496.7m/s[/tex] (6)

On the other hand, the velocity [tex]v[/tex] is the distance [tex]d[/tex] traveled in a time [tex]t[/tex]:

[tex]v=\frac{d}{t}[/tex] (7)

We can isolate [tex]t[/tex] from (7) and find the value of the required time:

[tex]t=\frac{d}{v}[/tex] (8)

In this case the total time will be:

[tex]t=t_{1}+t_{2}=\frac{d_{1}}{v_{1}}+\frac{d_{2}}{v_{2}}[/tex] (9)

Where:

[tex]d_{1}=331cm=3.31m[/tex] is the distance the light travels in medium 1

[tex]d_{2}=151cm=1.51m[/tex] is the distance the light travels in medium 2

[tex]v_{1}=225563909.8m/s[/tex] is the velocity of light in medium 1

[tex]v_{2}=198675496.7m/s[/tex] is the velocity of light in medium 2

[tex]t=t_{1}+t_{2}=\frac{3.31m}{225563909.8m/s}+\frac{1.51m}{198675496.7m/s}[/tex] (10)

Finally:

[tex]t=0.000001475s=1.475(10)^{-6}s=1.475\mu s[/tex] (10)

Final answer:

Light takes different amounts of time to travel through different media due to refraction. The time can be calculated by dividing the distance traveled in each medium by the speed of light in that medium.

Explanation:

When light travels from one medium to another, it changes direction, a phenomenon called refraction. The time it takes for light to travel from point A to point B in this case can be calculated by dividing the distance traveled in each medium by the speed of light in that medium. In medium 1, the distance traveled is 331 cm and the index of refraction is 1.33. In medium 2, the distance traveled is 151 cm and the index of refraction is 1.51.

Using the equation time = distance / speed, we can calculate the time it takes for light to travel in each medium.

In medium 1: time1 = 331 cm / speed1

In medium 2: time2 = 151 cm / speed2

An unmarked police car traveling a constant 95.0 km/h is passed by a speeder traveling 110 km/h . Precisely 2.00 s after the speeder passes, the police officer steps on the accelerator; if the police car's acceleration is 2.00 m/s^2 , how much time passes before the police car overtakes the speeder after the speeder passes (assumed moving at constant speed)?

Answers

Answer:

So police car will overtake the speeder after 5.64 s

Explanation:

Initially the distance between police car and the speeder when police car is about to accelerate

[tex]d = (v_1 - v_2)t[/tex]

[tex]v_1 = 110 km/h = 110 \times \frac{1000}{3600}m/s = 30.55 m/s[/tex]

[tex]v_2 = 95 km/h = 95 \times \frac{1000}{3600}m/s = 26.39 m/s[/tex]

[tex]d = (30.55-26.39)(2) = 8.32 m[/tex]

now we have

now velocity of police with respect to speeder is given as

[tex]v_r = v_2 - v_1 = 26.39 - 30.55 = -4.17 m/s[/tex]

relative acceleration of police car with respect to speeder

[tex]a_r = a = 2 m/s^2[/tex]

now the time taken to cover the distance between police car and speeder is given as

[tex]d = v_i t + \frac{1}{2}at^2[/tex]

[tex]8.32 = -4.17 t + \frac{1}{2}(2)(t^2)[/tex]

[tex]t^2 -4.17 t - 8.32 = 0[/tex]

[tex]t = 5.64 s[/tex]

Answer: t = 7.61s

Explanation: The initial speed of the police's car is Vp = 95 km/h.

The initial speed of the car is Vc = 110km/h

The acceleration of the police's car is 2m/s^2

Now, we should write this the quantities in the same units, so lets write the velocities in meters per second.

1 kilometers has 1000 meters, and one hour has 3600 seconds, so we have that:

Vp = 95*1000/3600 m/s = 26.39m/s

Vc = 110*1000/3600 m/s = 30.56m/s

now, after the police car starts to accelerate, the velocity equation will be now.

The positions of the cars are:

P(t) = (a/2)*t^2 + v0*t + p0

Where a is the acceleration, v0 is the initial velocity, and p0 is the initial position.

We know that the difference in the velocity of the cars is two seconds, so after those the speeding car is:

(30.56m/s - 26.39m/s)*2s = 8.34m/s

Now we can write the position equations as:

Pp = 1m/s*t^2 + 26.39m/s*t + 0

Here i assume that the initial position of the car is at the 0 units in one axis.

Pc = 30.56m/s*t + 8.34m/s

Now we want to find the time at wich both positions are the same, and after that time the police car will go ahead of the speeding car.

1m/s*t^2 + 26.39m/s*t  = 30.56m/s*t + 8.34m/s

t^2 + (26.39 - 30.56)*t - 8.34 = 0

t^2 - 4.15*t - 8.34 = 0

Now we need to solve this quadratic equation:

t = (4.15 +/- √(4.15^2 - 4*1*(-8.34))/2 = (4.15 +/- 7.11)/2

From here we have two solutions, one positive and one negative, and we need to take the positive one:

t = (4.15 + 7.11)/2s = 11.26/2 s= 5.61s

And remember that the police car started accelerating two secnods after that the speeding car passed it, so the actual time is:

t = 5.61s + 2s = 7.61s

Lonnie pitches a baseball of mass 0.20 kg. The ball arrives at home plate with a speed of 40 m/s and is batted straight back to Lonnie with a return speed of 60 m/s. If the bat is in contact with the ball for 0.050 s what is the impulse experienced by the ball? A. 360 N.s B. 20 N.s C. 400 N.s D. 9.0 N.s

Answers

Answer:

B) 20N.s is the correct answer

Explanation:

The formula for the impulse is given as:

Impulse = change in momentum

Impulse = mass × change in speed

Impulse = m × ΔV

Given:

initial speed  = 40m/s

Final speed = -60 m/s (Since the the ball will now move in the opposite direction after hitting the bat, the speed is negative)

mass = 0.20 kg

Thus, we have

Impulse = 0.20 × (40m/s - (-60)m/s)

Impulse = 0.20 × 100 = 20 kg-m/s or 20 N.s

The impulse experienced by the ball is,

[tex]\rm Impulse = 20\; Nsec[/tex]

Given :

Mass = 0.20 Kg

Initial Speed = 40 m/sec

Final Speed = -60 m/sec (minus sign shows that ball move in opposite direction)

Solution :

We know that the formula of Impulse is,

[tex]\rm Impulse = m\times \Delta V[/tex]

where, m is the mass and [tex]\rm \Delta V[/tex] is change in velocity.

[tex]\rm Impulse = 0.20\times(40-(-60))[/tex]

[tex]\rm Impulse = 20\; Nsec[/tex]

For more information, refer the link given below

https://brainly.com/question/9441152?referrer=searchResults

A solid sphere of mass 4.0 kg and radius 0.12 m starts from rest at the top of a ramp inclined 15°, and rolls to the bottom. The upper end of the ramp is 1.2 m higher than the lower end. What is the linear speed of the sphere when it reaches the bottom of the ramp

Answers

The Linear speed of the sphere is mathematically given as

v = 4.1 m/s

What is the linear speed of the sphere when it reaches the bottom of the ramp?

Question Parameter(s):

A solid sphere of mass 4.0 kg and radius of 0.12 m starts from rest at the top of a ramp inclined 15°

Generally, the equation for the conservation of energy   is mathematically given as

[tex]mgh = \frac{1}{2}mv^2 + \frac{1}{2}Iw^2[/tex]

Therefore

[tex]mgh = \frac{1}{2}mv^2 + \frac{1}{2}(\frac{2}{5}mR^2)(\frac{v^2}{R^2})\\\\mgh = \frac{7}{10}mv^2[/tex]

In conclusion, the Speed is

[tex]v^2 = \sqrt{\frac{10}{7}(9.8)(1.2)}[/tex]

v = 4.1 m/s

Read more about Speed

https://brainly.com/question/4931057

The linear speed of the sphere when it reaches the bottom of the ramp is approximately[tex]\( 4.85 \, \text{m/s} \).[/tex]

At the top of the ramp, the potential energy U  of the sphere is given by:

[tex]\[ U = mgh \][/tex]

where m  is the mass of the sphere, g is the acceleration due to gravity (approximately[tex]\( 9.8 \, \text{m/s}^2[/tex], and  h is the height of the ramp.

At the bottom of the ramp, the kinetic energy K of the sphere is given by:

[tex]\[ K = \frac{1}{2}mv^2 \][/tex]

where  v  is the linear speed of the sphere.

Since energy is conserved, we have:

U = K

[tex]\[ mgh = \frac{1}{2}mv^2 \][/tex]

We can solve for  v  by canceling the mass m from both sides and multiplying through by 2:

[tex]\[ 2gh = v^2 \][/tex]

Taking the square root of both sides gives us the linear speed  v :

[tex]\[ v = \sqrt{2gh} \][/tex]

Given that the height  h  is 1.2 m and the acceleration due to gravity  g  is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex], we can plug in these values:

[tex]\[ v = \sqrt{2 \times 9.8 \, \text{m/s}^2 \times 1.2 \, \text{m}} \][/tex]

[tex]\[ v = \sqrt{23.52 \, \text{m}^2/\text{s}^2} \][/tex]

[tex]\[ v \ =4.85 \, \text{m/s} \][/tex]

The three-dimensional motion of a particle on the surface of a right circular cylinder is described by the relations r = 2 (m) θ = πt (rad) z = sin24θ (m) Compute the velocity and acceleration of the particle at t=5 s.

Answers

Answer:

[tex]V_{rex}=75.65m/s[/tex] and [tex]a_{res}=0[/tex] at t=5 secs

Explanation:

We have r =2m

[tex]\therefore \frac{dr}{dt}=0\\\\=>V_{r}=0[/tex]

Similarly

[tex]=>V_{\theta }=\omega r\\\\\omega =\frac{d\theta }{dt}=\frac{d(\pi t)}{dt}=\pi \\\\\therefore V_{\theta }=\pi r=2\pi[/tex]

Similarly

[tex]=>V_{z }=\frac{dz}{dt}\\\\V_{z}=\frac{dsin(24\pi t)}{dt}\\\\V_{z}=24\pi cos(24\pi t)[/tex]

Hence

at t =5s [tex]V_{\theta}=2\pi m/s[/tex]

[tex]V_{z}=24\pi cos(120\pi)[/tex]

[tex]V_{z}=24\pi m/s[/tex]

[tex]V_{res}=\sqrt{V_{\theta }^{2}+V_{z}^{2}}[/tex]

Applying values we get

[tex]V_{res}=75.65m/s[/tex]

Similarly

[tex]a_{\theta }=\frac{dV_{\theta }}{dt}=\frac{d(2\pi) }{dt}=0\\\\a_{z}=\frac{d^{2}(sin(24\pi t))}{dt^{2}}\\\\a_{z}=-24^{2}\pi^{2}sin(24\pi t)\\\\\therefore t=5\\a_{z}=0[/tex]

What is the magnetic flux density (B-field) at a distance of 0.36 m from a long, straight wire carrying a current of 3.8 A in air? Give your answer in units of tesla.

Answers

Answer:

The magnetic flux density is [tex]2.11\times10^{-6}\ T[/tex]

Explanation:

Given that,

Distance = 0.36 m

Current = 3.8 A

We need to calculate the magnetic flux density

Using formula of magnetic field

[tex]B =\dfrac{\mu_{0}I}{2r}[/tex]

Where,

r = radius

I = current

Put the value into the formula

[tex]B =\dfrac{4\pi\times10^{-7}\times3.8}{2\times\pi\times0.36}[/tex]

[tex]B=2.11\times10^{-6}\ T[/tex]

Hence, The magnetic flux density is [tex]2.11\times10^{-6}\ T[/tex]

A rock is thrown from the top of a 20-m building at an angle of 53° above the horizontal. If the horizontal range of the throw is equal to the height of the building, with what speed was the rock thrown? What is the velocity of the rock just before it strikes the ground?

Answers

Final answer:

By using equations from physics pertaining to projectile motion and manipulation of initial velocity, final velocity components, and combined final velocity, we can calculate the initial speed at which the rock was thrown and its velocity just before striking the ground.

Explanation:

The subject of this question is projectile motion, a branch of physics. Given that the horizontal range of the throw is equal to the height of the building, we can apply the equation for range in projectile motion: R = (v² sin 2α) / g, where R is the range (20m), v is velocity, α is the angle (53 degrees), and g is acceleration due to gravity (approx. 9.8 m/s²).

Firstly, solve the equation for v which gives v = sqrt(R * g / sin 2α). This gives the starting speed of the rock.

To find the final velocity just before hitting the ground, we need to find vertical and horizontal components of velocity. Vertical component can be obtained by using: v_f = sqrt(v_i² + 2*g*h), h is the height(20m). Horizontal component remains constant which is v_i*cosα. The final velocity is then, sqrt(v_h² + v_f²).

Learn more about Projectile Motion here:

https://brainly.com/question/29545516

#SPJ12

How much heat is required to convert 50 g of ice at -5 degrees Celsius to steam?

Answers

Answer:

15435 J

Explanation:

Latent heat of fusion, Lf = 334 J/g

Specific heat of ice, ci = 2.1 J / g C

Latent heat of vaporisation, Lv = 2230 J/g

Specific heat of water, cw = 4.18 J / g C

mass, m = 50 g, T = - 5 degree C

There are following steps

(i) - 5 degree C ice converts into 0 degree C ice

H1 = m x ci x ΔT = 50 x 2.1 x 5 = 525 J

(ii) 0 degree C ice converts into 0 degree C water

H2 = m x Lf = 5 x 334 = 1670 J

(iii) 0 degree C water converts into 100 degree C water

H3 = m x cw x ΔT = 5 x 4.18 x 100 = 2090 J

(iv) 100 degree C water converts into 100 degree C steam

H4 = m x Lv = 5 x 2230 = 11150 J

Total heat required

H = H1 + H2 + H3 + H4

H = 525 + 1670 + 2090 + 11150 = 15435 J

Other Questions
A man earns #6000 every month, he spends 1/5 of his salary on children's education and 5/8 on his aged mother and unemployed sister. How much does he have left? Which of these does NOT stimulate aldosterone production? A. high plasma Na+B. high plasma K+ C. Angiotensin II D. high plasma He+ an object in uniform circular motion must be changing its speed in order move in a circular path Is there a difference in how Microsoft Edge reading mode and safari reader display their content? A floor refinishing company charges $1.83 per square foot to strip and refinish a tile floor for up to 1000 square feet. There is an additional charge of $350 for toxic waste disposal for any job which includes more than 150 square feet of tile.A) Express the cost, y, of refinishing a floor as a function of the number of square feet, x, to be refinished.b) Graph the function, give the domain and range. Witch inequality represents the sentence below two or more than a number is less than 14 HELPPPPPPPP During the 1980s, America attempted to prevent the spread of communism to which of the following nations?A: China and South AfricaB: El Salvador and NicaraguaC: Iran and AfghanistanD: Lebanon and Grenada Match the subtraction expressions with their answers. The functions q and r are defined as follows.q(x) = -2x +1r(x) = 2x^2 - 1Find the value of . q(r(4)) Why does magnesium oxide have a high melting point? Please give as much information as possible? Please answer this correctly What is the center of the circle shown below? If P is parentheses and M is Multiplication and S is subtraction, what is EDA In PEMDAS? Very confused! In financial analysis ,which type of degree is usually the standard requirement for employment?Bachelor'sB.master'sC.doctorate what are the full forms of RADAR and SONAR In movies that focus on war (e.g., Born on the Fourth of July, Apocalypse Now, First Blood), soldiers who have returned from the frontlines often struggle with overwhelming anxiety, hypervigilance, depression, and flashbacks. In many cases, these characters abuse alcohol, are suicidal, and have a strained or angry relationship with spouses. These characters have? Which best descnbes how the excerpt appeals to readers'emotions ?Read the excerpt from "Save the Redwoods."Another, one of the finest in the grove, more than threehundred feet high, was skinned alive to a height of onehundred and sixteen feet from the ground and the barksent to London to show how fine and big that Calaverastree was as sensible a scheme as skinning our great menwould be to prove their greatnessThe excerpt provides facts about the tree, whichimpresses readers' scientific mindsThe excerpt describes how the tree traveled to London,which excites the readers' sense of adventureThe excerpt compares the tree to a person, whichmakes readers feel sympathetic toward the treeThe excerpt explains how to skin a tree, which makesreaders feel awed at the height of the tree. In an apartment the interior air temperature is 20C and exterior air temperatures is 5C. The wall has inner and outer surface temperatures of 16C and 6C, respectively. The inner and outer convection heat transfer coefficients are 5 and 20 W/m2.K, respectively. Calculate the heat flux from the interior air to the wall, from the wall to the exterior air, and from the wall to the interior air. Is the wall under steady-state conditions? Which graph represents the function f(x) = x^2 + 5? Federal courts usually hear disputes between family members or cases involving traffic accidents.TrueFalse