The line contains the point (9,-9) and has the same y-intercept as y + 1 = 4 (x - 2). Write the equation of this line in slope-intercept form.

Answers

Answer 1

Answer:

The equation for this line, in slope-intercept form, is given by:

[tex]y = - 9[/tex]

Step-by-step explanation:

The equation of a line in the slope-intercept form has the following format:

[tex]y = ax + b[/tex]

In which a is the slope of the line and b is the y intercept.

Solution:

The line has the same y-intercept as [tex]y + 1 = 4 (x - 2)[/tex].

So, we have to find the y-intercept of this equation

[tex]y + 1 = 4 (x - 2)[/tex]

[tex]y = 4x - 8 - 1[/tex]

[tex]y = 4x - 9[/tex]

This equation, has the y-intercept = -9. Since this line has the same intercept, we have that [tex]b=-9[/tex].

Fow now, the equation of this line is

[tex]y = ax - 9[/tex]

The line contains the point [tex](9,-9)[/tex]

This means that when [tex]x = 9, y = -9[/tex]. We replace this in the equation and find a

[tex]y = ax - 9[/tex]

[tex]-9 = 9a - 9[/tex]

[tex]9a = 0[/tex]

[tex]a = \frac{0}{9}[/tex]

[tex]a = 0[/tex]

The equation for this line, in slope-intercept form, is given by:

[tex]y = - 9[/tex]


Related Questions


A manufacturer has a monthly fixed cost of $110,000 and a production cost of $14 for each unit produced. The product sells for $20 per unit.

(a) What is the cost function?

C(x) =

(b) What is the revenue function?

R(x) =

(c) What is the profit function?

P(x) =

(d) Compute the profit or loss corresponding to a production level of 12,000 and 23,000 units. (Input a negative value to indicate a loss.)

at 12,000 units $ ______

at 23,000 units $______

Answers

Answer:

Cost function C(x) == FC + VC*Q

Revenue function R(x) = Px * Q

Profit function P(x) =(Px * Q)-(FC + VC*Q)

P(12000) = -38000 Loss

P(23000) = 28000 profit

Step-by-step explanation:

Total Cost is Fixed cost plus Variable cost multiplied by the produce quantity.  

(a)Cost function

C(x) = FC + vc*Q

Where  

FC=Fixed cost

VC=Variable cost

Q=produce quantity

(b)

Revenue function

R(x) = Px * Q

Where  

Px= Sales Price

Q=produce quantity

(c) Profit function

Profit = Revenue- Total cost

P(x) =(Px * Q)-(FC + vc*Q)

(d) We have to replace in the profit function

at 12,000 units

P(12000) =($20 * 12,000)-($110,000 + $14*12,000)

P(12000) = -38000

at 23,000 units

P(x) =($20 * 23,000)-($110,000 + $14*23,000)

P(23000) = 28000

Why does changing a subrtraction problem to an addition with the complement of 9 work

Answers

Step-by-step explanation:

When we need to subtract a number from another number, in that case, we can take the complement of the first number to add it to the second number, the result will be the same. It is because when we take the complement of 9 of that number, it will represent the negative of that number. Hence, by adding the negative of a number we will get the same result as we get after subtraction.

For example:

Subtract 213 from 843

843 - 213 = 630

complement of 9 of 213= 999-213

                                       =786

Now, add 786 and 843

786+843=1629

We got the result in 4 digits so by adding the left-most digit to the right-sided three-digit number of the result, we will get

629+1 = 630

the earth rotates about its axis once every 23 hours, 56 minutes and 4 seconds. Approximate the number of radians the earth rotates in one second.

Answers

Answer:

[tex]\frac{\pi}{43082}\text{ radians per second}[/tex]

Step-by-step explanation:

Given,

Time taken in one rotation of earth = 23 hours, 56 minutes and 4 seconds.

Since, 1 minute = 60 seconds and 1 hour = 3600 seconds,

⇒ Time taken in one rotation of earth = (23 × 3600 + 56 × 60 + 4) seconds

= 86164  seconds,

Now,  the number of radians in one rotation = 2π,

That is, 86164 seconds = 2π radians

[tex]\implies 1\text{ second }=\frac{2\pi}{86164}=\frac{\pi}{43082}\text{ radians}[/tex]

Hence, the number of radians in one second is [tex]\frac{\pi}{43082}[/tex]

Final answer:

The Earth completes a 2π radian rotation about its axis in 23 hours, 56 minutes, and 4 seconds. After converting this time to 86,164 seconds, the number of radians the Earth rotates in one second can be calculated by dividing 2π by 86,164, giving a result of approximately 0.00007292115 radians.

Explanation:

The Earth completes one full rotation about its axis in 23 hours, 56 minutes and 4 seconds. This rotation can be converted into radians, using the principle that one complete rotation is equivalent to 2π radians. So first, convert the rotation time into seconds: (23 x 60 x 60) + (56 x 60) + 4 = 86,164 seconds. Therefore, the Earth rotates through 2π radians in this time.

Now, we want to find out how many radians the Earth rotates in one second. To calculate this, divide 2π (which represent a full rotation in radians), by the total number of seconds in one rotation: 2π/86,164. This will give you approximately 0.00007292115 radians, which is the angular velocity or the number of radians the Earth rotates in one second.

Learn more about Angular Velocity of Earth here:

https://brainly.com/question/32821466

#SPJ3

use Taylor's Theorem with integral remainder and the mean-value theorem for integrals to deduce Taylor's Theorem with lagrange remainder

Answers

Answer:

As consequence of the Taylor theorem with integral remainder we have that

[tex]f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \int^a_x f^{(n+1)}(t)\frac{(x-t)^n}{n!}dt[/tex]

If we ask that [tex]f[/tex] has continuous [tex](n+1)[/tex]th derivative we can apply the mean value theorem for integrals. Then, there exists [tex]c[/tex] between [tex]a[/tex] and [tex]x[/tex] such that

[tex] \int^a_x f^{(n+1)}(t)\frac{(x-t)^k}{n!}dt = \frac{f^{(n+1)}(c)}{n!} \int^a_x (x-t)^n d t = \frac{f^{(n+1)}(c)}{n!} \frac{(x-t)^{n+1}}{n+1}\Big|_a^x[/tex]

Hence,

[tex] \int^a_x f^{(n+1)}(t)\frac{(x-t)^k}{n!}d t = \frac{f^{(n+1)}(c)}{n!} \frac{(x-t)^{(n+1)}}{n+1} = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} .[/tex]

Thus,

[tex] \int^a_x f^{(n+1)}(t)\frac{(x-t)^k}{n!}d t = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} [/tex]

and the Taylor theorem with Lagrange remainder is

[tex] f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}[/tex].

Step-by-step explanation:

For the following linear system, put the augmented coefficient matrix into reduced row-echelon form.

x1 − 2x2 + 3x3 + 2x4 + x5 = 10

2x1 − 4x2 + 8x3 + 3x4 + 10x5 = 7

3x1 − 6x2 + 10x3 + 6x4 + 5x5 = 27

Answers

Answer:

This is the reduced row-echelon form

[tex]\left[\begin{array}{cccccc}1&-2&0&0&3&5\\0&0&1&0&2&-3\\0&0&0&1&-4&7\end{array}\right][/tex]

from the augmented matrix

[tex]\left[\begin{array}{cccccc}1&-2&3&2&1&10\\2&-4&8&3&10&7\\3&-6&10&6&5&27\end{array}\right][/tex]

Step-by-step explanation:

To transform an augmented matrix to the reduced row-echelon form we need to follow this steps:

1. Write the system of equations as an augmented matrix.

The augmented matrix for a system of equations is a matrix of numbers in which each row represents the constants from one equation (both the coefficients and the constant on the other side of the equal sign) and each column represents all the coefficients for a single variable.

[tex]\left[\begin{array}{cccccc}1&-2&3&2&1&10\\2&-4&8&3&10&7\\3&-6&10&6&5&27\end{array}\right][/tex]

2. Make zeros in column 1 except the entry at row 1, column 1 (this is the pivot entry). Subtract row 1 multiplied by 2 from row 2 [tex]\left(R_2=R_2-\left(2\right)R_1\right)[/tex]

[tex]\left[\begin{array}{cccccc}1&-2&3&2&1&10\\0&0&2&-1&8&-13\\3&-6&10&6&5&27\end{array}\right][/tex]

3. Subtract row 1 multiplied by 3 from row 3 [tex]\left(R_3=R_3-\left(3\right)R_1\right)[/tex]

[tex]\left[\begin{array}{cccccc}1&-2&3&2&1&10\\0&0&2&-1&8&-13\\0&0&1&0&2&-3\end{array}\right][/tex]

4. Since element at row 2 and column 2 (pivot element) equals 0, we need to swap rows. Find the first non-zero element in the column 2 under the pivot entry. As can be seen, there are no such entries. So, move to the next column. Make zeros in column 3 except the entry at row 2, column 3 (pivot entry). Divide row 2 by 2 [tex]\left(R_2=\frac{R_2}{2}\right)[/tex]

[tex]\left[\begin{array}{cccccc}1&-2&3&2&1&10\\0&0&1&-1/2&4&-13/2\\0&0&1&0&2&-3\end{array}\right][/tex]

5. Subtract row 2 multiplied by 3 from row 1 [tex]\left(R_1=R_1-\left(3\right)R_2\right)[/tex]

[tex]\left[\begin{array}{cccccc}1&-2&0&7/2&-11&59/2\\0&0&1&-1/2&4&-13/2\\0&0&1&0&2&-3\end{array}\right][/tex]

6. Subtract row 2 from row 3 [tex]\left(R_3=R_3-R_2\right)[/tex]

[tex]\left[\begin{array}{cccccc}1&-2&0&7/2&-11&59/2\\0&0&1&-1/2&4&-13/2\\0&0&0&1/2&-2&7/2\end{array}\right][/tex]

7. Make zeros in column 4 except the entry at row 3, column 4 (pivot entry). Subtract row 3 multiplied by 7 from row 1 [tex]\left(R_1=R_1-\left(7\right)R_3\right)[/tex]

[tex]\left[\begin{array}{cccccc}1&-2&0&0&3&5\\0&0&1&-1/2&4&-13/2\\0&0&0&1/2&-2&7/2\end{array}\right][/tex]

8. Add row 3 to row 2 [tex]\left(R_2=R_2+R_3\righ)[/tex]

[tex]\left[\begin{array}{cccccc}1&-2&0&0&3&5\\0&0&1&0&2&-3\\0&0&0&1/2&-2&7/2\end{array}\right][/tex]

9. Multiply row 3 by 2 [tex]\left(R_3=\left(2\right)R_3\right)[/tex]

[tex]\left[\begin{array}{cccccc}1&-2&0&0&3&5\\0&0&1&0&2&-3\\0&0&0&1&-4&7\end{array}\right][/tex]

Proof by contradiction!
Prove that the following statement is true: the sum of two odd numbers is an even number

Answers

Answer:

The proposition: The sum of two odd numbers is an even number is true.

Step-by-step explanation:

A proof by contradiction is a proof technique that is based on this principle:

To prove a statement P is true, we begin by assuming P false and show that this leads to a contradiction; something that always false.

Facts that we need:

Any even number has the form 2nAny odd number has the form 2n + 1

Proposition. The sum of two odd numbers is an even number

Proof. Suppose this proposition is false in this case we assume that the sum of two odd numbers is not even. (That would mean that there are two odd numbers out there in the world somewhere that'll give us an odd number when we add them.)

Let a, b be odd numbers. Then there exist numbers m, n, such that a = 2m + 1, b = 2n + 1 .Thus a + b = (2m + 1) + (2n + 1) = 2(m + n + 1) which is even. This contradicts the assumption that the sum of two odd numbers is not even.

Calculating conditional probabilities - random permutations. About The letters (a, b, c, d, e, f, g) are put in a random order. Each permutation is equally likely. Define the following events: A: The letter b falls in the middle (with three before it and three after it) B: The letter c appears to the right of b, although c is not necessarily immediately to the right of b. For example, "agbdcef" would be an outcome in this event. C: The letters "def occur together in that order (e.g. "gdefbca") Calculate the probability of each individual event. That is, calculate p(A), P(B), and p(c). What is p(AIC)? (c) What is p(BIC)? What is p(AIB)? (e) Which pairs of events among A, B, and C are independent? Feedback?

Answers

Answer:

P(A)=1/7

P(B)=1/2

P(C)=1/42

P(A|C)=1/10

P(B|C)=1/10

P(A|B)=1/7

A and B are independent

A and C aren't independent

B and C aren't independent

Step-by-step explanation:

A="b falls in the middle"

- b can fall in seven possible places, but only one is the middle. So, P(A)=1/7

B="c falls to the right of b"

X=i means "b falls in the i-th position"

Y=j means "c falls in the j-th position"

if b falls in the first place, c can fall in the 2nd, 3rd, 4th, 5th, 6th or 7th place.

if b falls in the 2nd place, c can fall in the 3rd, 4th, 5th, 6th or 7th place

 ...

If b falls in the 6th place, c can fall in the 7th place

then:

[tex][tex]P(B)=\displaystyle\sum_{i=1}^{6}( P(X=i)\displaystyle\sum_{j=i+1}^{7} P(Y=j))=\displaystyle\sum_{i=1}^{6}( \frac{1}{7}\displaystyle\sum_{j=i+1}^{7} \frac{1}{6})=\frac{1}{42}\displaystyle\sum_{i=1}^{6}(\displaystyle\sum_{j=i+1}^{7}1)=\frac{6+5+4+3+2+1}{42}=\frac{1}{2}[/tex][/tex]

- if d falls in the 1st place, e falls in the 2nd and f in the 3rd place

- if d falls in the 2nd place, e falls in the 3rd and f in the 4th place

- if d falls in the 3rd place, e falls in the 4th and f in the 5th place

- if d falls in the 4th place, e falls in the 5th and f in the 6th place

- if d falls in the 5th place, e falls in the 6th and f in the 7th place

X=i means "d falls in the i-th position"

Y=j means "e falls in the j-th position"

Z=k means "f falls in the k-th position"

[tex]P(C)=\displaystyle\sum_{i=1}^{5}( P(X=i)P(Y=i+1)P(Z=i+2))=\displaystyle\sum_{i=1}^{5}(\frac{1}{7}\times\frac{1}{6}\times\frac{1}{5})=\frac{1}{210}\displaystyle\sum_{i=1}^{5}(1)=\frac{1}{42}[/tex]

P(A|C)=P(A∩C)/P(C)=?

A∩C:

- d falls in the 1st place, e in the 2nd, f in the 3rd and b in the 4th place

- b falls in the 4th place, d in the 5th place, e in the 6th, f in the 7th place

P(A∩C)=2*(1/7*1/6*1/5*1/4)=1/420

P(A|C)=(1/420)/(1/42)=1/10

P(B|C)=P(B∩C)/P(C)=?

X=i means "d falls in the i-th position"

Y=j means "e falls in the j-th position"

Z=k means "f falls in the k-th position"

V=k means "b falls in the k-th position"

W=k means "c falls in the k-th position"

[tex]P(B\cap C)=\displaystyle\sum_{i=1}^{3} P(X=i)P(Y=i+1)P(Z=i+2)\displaystyle\sum_{j=i+3}^{6}P(V=j)P(W=j+1)[/tex]

[tex]P(B\cap C)=\displaystyle\sum_{i=1}^{3} \frac{1}{7}\times\frac{1}{6}\times\frac{1}{5}(\displaystyle\sum_{j=i+3}^{6}\frac{1}{4}\times\frac{1}{3})=\frac{1}{2520}\displaystyle\sum_{i=1}^{3} \displaystyle\sum_{j=i+3}^{6}1=\frac{1}{420}[/tex]

P(B|C)=(1/420)/(1/42)=1/10

P(A|B)=P(B∩A)/P(B)=?

B∩A:

- b falls in the 4th place and c in the 5th

- b falls in the 4th place and c in the 6th

- b falls in the 4th place and c in the 7th

P(B∩A)=3*(1/7*1/6)=1/14

P(A|B)=(1/14)(1/2)=1/7

If one event is independent of another, P(X∩Y)=P(X)P(Y)

So:

P(A∩B)=1/14=(1/7)*(1/2)=P(A)P(B), A and B are independent

P(A∩C)=1/420≠(1/7)*(1/42)=1/294=P(A)P(C), A and C aren't independent

P(B∩C)=1/420≠(1/2)*(1/42)=1/84=P(A)P(C), B and C aren't independent

using a directrixof y = -3 and a focus of (2, 1), what quadratic funtion is created

Answers

Answer:

The function is a parabola described by: [tex]y = 1 +\frac{(x-2)^{2}}{8}[/tex]

Step-by-step explanation:

Since a directrix and a focus are given, then we know that they are talking about a parabola.

We know that the distance from any point in a parabola (x, y), to the focus is exactly the same as the distance to the directrix. Therefore, in order to find the required equation, first we will compute the distance from an arbitrary point on the parabola (x, y) to the focus (2, 1):

[tex]d_{pf} = \sqrt{(x-2)^2+(y-1)^2}[/tex]

Next, we will find the distance from an arbitrary point on the parabola (x, y) to the directrix (y= -3). Since we have an horizontal directrix, the distance is easily calculated as:

[tex]d_{pd}=y-(-3)=y+3[/tex]

Finally, we equate the distances in order to find the parabola equation:

[tex]\sqrt{(x-2)^2+(y-1)^2}=y+3[/tex]

[tex](x-2)^2+(y-1)^2=(y+3)^2[/tex]

[tex](x-2)^{2} +y^{2}-2y+1=y^{2}+6y+9[/tex]

[tex](x-2)^{2}-8=8y[/tex]

[tex]y = \frac{(x-2)^{2}}{8}-1[/tex]

fraction subtract 4/5-1/6​

Answers

Answer:

19/30

Explanation:

1. Exchange them to a common factor which happens to be 30 for both of them

2. Multiply by that factor on both the top and bottom to get the number equivalent to a fraction of that category

3. Subtract

4. Simplify, however in this case simplification isn't doable.


Write the base number for each expression: Please I need with steps

1. 5^12

2. 1.2^2

3. (1/3)^4

Answers

Answer:

1) Base - 5

2) Base - 1.2

3) Base - [tex]\frac{1}{3}[/tex]

Step-by-step explanation:

To find : Write the base number for each expression ?

Solution :

Base number is defined as the number written in exponent form [tex]a^n[/tex]

which tells you to multiply a by itself, so a is the base of power n.

1) [tex]5^{12}[/tex]

In number [tex]5^{12}[/tex] the base is 5 as the power is 12.

2) [tex]1.2^{2}[/tex]

In number [tex]1.2^{2}[/tex] the base is 1.2 as the power is 2.

3) [tex](\frac{1}{3})^{2}[/tex]

In number  [tex](\frac{1}{3})^{2}[/tex] the base is [tex]\frac{1}{3}[/tex] as the power is 4.

Final answer:

The base number for 5^12 is 5, for 1.2^2 is 1.095, and for (1/3)^4 is 0.577.

Explanation:To find the base number for 5^12, we need to determine what number raised to the 12th power gives us 5. Since 5 is a prime number, it cannot be expressed as a perfect power of another number. Therefore, the base number for 5^12 is 5.To find the base number for 1.2^2, we need to determine what number raised to the 2nd power gives us 1.2. We can rewrite 1.2 as 6/5. Taking the square root of 6/5 gives us approximately 1.095. Therefore, the base number for 1.2^2 is 1.095.To find the base number for (1/3)^4, we need to determine what number raised to the 4th power gives us 1/3. We can rewrite 1/3 as 3^(-1). Taking the 4th root of 3^(-1) gives us approximately 0.577. Therefore, the base number for (1/3)^4 is 0.577.

Learn more about Exponents here:

https://brainly.com/question/5497425

#SPJ12

Use a definition, postulate, or theorem to find the value of x In the figure described
SV is an angle bisector of ZRST. IfmZRSV = (2x +9)° and mZRST = (6x - 26)°, find x.
Select each definition, postulate, or theorem you will use.
A
Angle Addition Postulate
definition of midpoint
C
definition of angle bisector
D
Linear Palr Theorem
The solution is x =

Answers

You’re using the definition of an angle bisector. A bisector is a ray that cuts an angle in half, so to solve for x you set the two values equal to one another.
2x+9=6x-26 (subtract 2x from both sides)
9=4x-26 (add 26 to both sides)
35=4x (divide by 4)
X=8.75

A patient is to receive 2 tablets po ACHS for 30 days. How many tablets should you dispense? DO NOT include units

Answers

Answer:  We should dispense 60 tablets.

Step-by-step explanation:

Given : A patient is to receive 2 tablets po ACHS for 30 days.

i.e. Dose for each day = 2 tablets

Number of days = 30

If a patient takes 2 tablets each day , then the number of tablets he require for 30 days will be :-

[tex]2\times30=60[/tex]   [Multiply 2 and 30]

Therefore, the number of tablets we should dispense = 60

In a recent year, 17.7% of household watched the finals of a popular reality series. There are 110.2 million households in the United States. How many households watched the finals?


This is Find the percent of a number.

Answers

For this case we propose a rule of three:

110.2 million -------------> 100%

x --------------------------------------> 17.7%

Where the variable "x" represents the number of households (in millions) that watched the finals of a popular reality series.

[tex]x =  \frac {17.7 * 110.2} {100}\\x = \frac {1950.54} {100}\\x = 19.5054[/tex]

Thus, a total of 19.5054 million homes watched the finals of a popular reality series.

Answer:

19.5054 million homes watched the finals of a popular reality series.

In an arithmetic​ sequence, the nth term an is given by the formula An=a1+(n−1)d​, where a1is the first term and d is the common difference.​ Similarly, in a geometric​ sequence, the nth term is given by an=a1•rn−1.

Use these formulas to determine the indicated term in the given sequence.

The 19th term of 19​,42​,65​,88​,...

Answers

Answer: 433

Step-by-step explanation:

The given sequence : 19​,42​,65​,88​,...

Here we can see that the difference in each of the two consecutive terms is 23.  [88-65=23, 65-42=23, 42-19=23]

i.e. it has a common difference of 23.

Therefore, it is an arithmetic sequence .

In an arithmetic​ sequence, the nth term an is given by the formula[tex]A_n=a_1+(n-1)d[/tex] , where [tex]a_1[/tex] is the first term and d is the common difference.​

For the given sequence , [tex]a_1=19[/tex]  and [tex]d=23[/tex]

Then,  to find the 19th term of  the sequence, we put n= 19 in the above formula:-

[tex]A_{19}=19+(19-1)(23)=19+(18)(23)=19+414+433[/tex]

Hence, the 19th term of  the sequence = 433

Final answer:

To find the 19th term of the arithmetic sequence 19, 42, 65, 88, ..., the common difference (23) is determined from the sequence and applied in the arithmetic sequence formula. Substituting the values into the formula, the 19th term is calculated to be 433.

Explanation:

To find the 19th term, we must first determine the common difference, d, of the sequence. Observing the given sequence, we see that the difference between consecutive terms is 42 - 19 = 23. Therefore, the common difference is 23.

Next, we apply the formula for the nth term of an arithmetic sequence which is An = a1 + (n-1)d. Here, a1 is the first term, n is the term number, and d is the common difference.

Substituting the values for the 19th term, we have: A19 = 19 + (19-1) × 23 = 19 + 18 × 23 = 19 + 414 = 433. Therefore, the 19th term of the sequence is 433.

A medical device is sterilized by gamma radiation at 2.5 megarads (Mrad). Express the equivalent quantity in rads.

Answers

Answer:

2 500 000 rad.

Step-by-step explanation:

Mega is the metric prefix for [tex]10^{6}[/tex], therefore you just need to multiply by 1 000 000 to find the value in rads.

In a sample of 408 new websites registered on the Internet, 37 were anonymous (i.e., they shielded their name and contact information). (a) Construct a 95 percent confidence interval for the proportion of all new websites that were anonymous. (Round your answers to 4 decimal places.)

Answers

Answer: [tex](0.0628,\ 0.1186)[/tex]

Step-by-step explanation:

Given : Significance level : [tex]\alpha:1-0.95=0.05[/tex]

Critical value : [tex]z_{\alpha/2}=\pm1.96[/tex]

Sample size : n= 408

Proportion of new websites registered on the Internet were anonymous :

[tex]\hat{p}=\dfrac{37}{408}\approx0.0907[/tex]

The formula to find the confidence interval for population proportion is given by :-

[tex]\hat{p}\pm z_{\alpha/2}\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]

i.e. [tex]0.0907\pm (1.96)\sqrt{\dfrac{0.0907(1-0.0907)}{408}}[/tex]

[tex]=0.0907\pm0.0278665515649\\\\\approx 0.0907\pm0.0279\\\\=(0.0907-0.0279,\ 0.0907+0.0279)\\\\=(0.0628,\ 0.1186)[/tex]

Hence,  the 95 percent confidence interval for the proportion of all new websites that were anonymous = [tex](0.0628,\ 0.1186)[/tex]

If sin phi sin theta = 0.2 and sin phi cos theta = -0.3 and sin phi > 0 what is theta ? Repeat for sin phi < 0.

Answers

Answer:

θ = -33.69°

Step-by-step explanation:

For Φ>0 and Φ<0  (in general Φ≠nπ  where n is an integer), sin(Φ) ≠ 0

Dividing both equations:

[tex]\frac{sin(\phi) sin(\theta)}{sin(\phi)cos(\theta)} = tan(\theta) = 0.2/(-0.3)=-2/3\\[/tex]

Therefore:

arctan(θ) = -2/3

  θ = -33.69°

The answer does not depend on the sign of Φ, in fact we just need that the sine does not become zero, which occurs when Φ is equal to an integer times π (radians) or 180 (degrees)

Have a nice day!

Final answer:

To find theta (θ) given that sin phi (φ) sin theta (θ) = 0.2 and sin phi (φ) cos theta (θ) = -0.3 with sin phi (φ) being positive or negative, one must first eliminate sin phi (φ) by manipulating the given equations, then solve for theta (θ) using trigonometric identities and inverse functions based on the signs of sin and cos.

Explanation:

We have two equations involving sin φ and θ (theta): sin φ sin θ = 0.2 and sin φ cos θ = -0.3. Also, it is given that sin φ > 0 or sin φ < 0. To find θ, first, we need to derive an equation involving only θ by eliminating sin φ. We can do this by squaring and adding both equations.

∑: (sin φ sin θ)^2 + (sin φ cos θ)^2 = 0.2^2 + (-0.3)^2 = 0.04 + 0.09 = 0.13

Using the Pythagorean identity sin^2 θ + cos^2 θ = 1, we can rewrite ∑ as sin^2 φ = 0.13. To solve for θ, we can take either of the initial equations, say sin φ sin θ = 0.2, and substitute sin^2 φ from ∑ giving sin θ = (0.2 / √0.13) or cos θ = (-0.3 / √0.13). Both positive and negative values of sin φ lead to the calculation for different θ values. The actual values of θ are determined by using the arc functions (arcsin, arccos) for both positive and negative scenarios of sin φ, taking into account the range of θ based on the signs of sin and cos.

Can 5/8 be estimated to 1/2

Answers

Answer:

Step-by-step explanation:

Estimated because there is no number that can go into 5 and 8 evenly

For the function, f(x) = 8x + 5x, find the following. (a) f(5) D NUD K (b) f(-2) orea (c) f(4.2) muca (d) f(-4.2)

Answers

Answer:

(a) 65

(b) -26

(c) 54.6

(d) -54.6

Step-by-step explanation:

(a) [tex]f(5)=8(5)+5(5)=40+25=65[/tex]

(b) [tex]f(-2)=8(-2)+5(-2)=-16-10=-26[/tex]

(c) [tex]f(4.2)=8(4.2)+5(4.2)=33.6+21=54.6[/tex]

(d) [tex]f(-4.2)=8(-4.2)+5(-4.2)=-33.6-21=-54.6[/tex]

Compare the numbers 26^39 and 39^26. Which one is bigger? Are they the same? No calculators.

Answers

Answer:

[tex]26^{39}[/tex] is greater.

Step-by-step explanation:

Given numbers,

[tex]26^{39}\text{ and }39^{26}[/tex]

∵ HCF ( 26, 39 ) = 13,

That is, we need to make both numbers with the exponent 13.

[tex]26^{39}=((13\times 2)^3)^{13}=(13^3\times 2^3)^{13}=(13^3\times 8)^{13}=(13^2\times 104)^{13}[/tex]

[tex](\because (a)^{mn}=(a^m)^n\text{ and }(ab)^m=a^m.a^n)[/tex]

[tex]39^{26}=((13\times 3)^2)^{13}=(13^2\times 3^2)^{13}=(13^2\times 9)^{13}[/tex]

Since,

[tex]13^2\times 104>13^2\times 9[/tex]

[tex]\implies (13^2\times 104)^{13} > (13^2\times 9)^{13}[/tex]

[tex]\implies 26^{39} > 39^{26}[/tex]

In a certain region of the country it is known from past experience that the probability of selecting an adult over 40 years of age with cancer is 0.05. If the probability of a doctor correctly diagnosing a person with cancer as having the disease is 0.78 and the probability of incorrectly diagnosing a person without cancer as having the disease is 0.06, what is the probability that an adult over 40 years of age is diagnosed as having cancer?

Answers

Answer: Our required probability is 0.406.

Step-by-step explanation:

Since we have given that

Probability of selecting an adult over 40 years of age with cancer = 0.05

Probability of a doctor correctly diagnosing a person with cancer as having the disease = 0.78

Probability of incorrectly diagnosing a person without cancer as having the disease = 0.06

Let A be the given event i.e. adult over 40 years of age with cancer. P(A) = 0.05.

So, P(A')=1-0.05 = 0.95

Let C be the event that having cancer.

P(C|A)=0.78

P(C|A')=0.06

So, using the Bayes theorem, we get that

[tex]P(A|C)=\dfrac{P(A).P(C|A)}{P(A).P(C|A)+P(A')P(C|A')}\\\\P(A|C)=\dfrac{0.78\times 0.05}{0.78\times 0.05+0.06\times 0.95}\\\\P(A|C)=0.406[/tex]

Hence, our required probability is 0.406.

the amount of carbon 14 still present is a sample after t years
is given by the function C(t)=
Coe-.00012t
where co is the initial anong . estimate the age of a sample of
wood discoverd by a arecheologist if the carbon level in the sample
is only 20% of it orginal carbon 14 level.

Answers

Answer:

The age of this sample is 13,417 years.

Step-by-step explanation:

The amount of carbon 14 present in a sample after t years is given by the following equation:

[tex]C(t) = C_{0}e^{-0.00012t}[/tex]

Estimate the age of a sample of wood discoverd by a arecheologist if the carbon level in the sampleis only 20% of it orginal carbon 14 level.

The problem asks us to find the value of t when

[tex]C(t) = 0.2C_{0}[/tex]

So:

[tex]C(t) = C_{0}e^{-0.00012t}[/tex]

[tex]0.2C_{0} = C_{0}e^{-0.00012t}[/tex]

[tex]e^{-0.00012t} = \frac{0.2C_{0}}{C_{0}}[/tex]

[tex]e^{-0.00012t} = 0.2[/tex]

[tex]ln e^{-0.00012t} = ln 0.2[/tex]

[tex]-0.00012t = -1.61[/tex]

[tex]0.00012t = 1.61[/tex]

[tex]t = \frac{1.61}{0.00012}[/tex]

[tex]t = 13,416.7[/tex]

The age of this sample is 13,417 years.


You wish to ship six crude oil samples from your drill site to your laboratory. Each sample has a density of 0.8240 kg/L and fills a 1.090e-4 m3container. How much mass, X g , of crude oil will you be shipping?

(HINT: |X| is near an order of magnitude of 102 g ).

Answers

Answer:

total mass of 6 samples = 538.896 g

in terms of X = 5.283 g

Step-by-step explanation:

Given:

Number of crude oil samples = 6

Density of each sample = 0.8240 kg/L

Volume filled by each sample = 1.09 × 10⁻⁴ m³

now,

1 m³ = 1000 L

thus,

1.09 × 10⁻⁴ m³ = 1.09 × 10⁻⁴ m³ × 1000 = 0.109 L

also,

Mass = Density × Volume

or

Mass of each sample = 0.8240 × 0.109 = 0.089816 kg

Thus,

total mass of 6 samples = Mass of each sample × 6

or

total mass of 6 samples = 0.089816 kg × 6 = 0.538896 kg

or

total mass of 6 samples = 538.896 g

or

in X = [tex]\frac{\textup{total mass of 6 samples}}{\textup{102}}[/tex]

= 5.283 g

When the piper increased his volume, the number of rats increased 160 percent. If he ended up with 6578 rats, how many rats did he have before the volume was increased?

Answers

Answer:

i think the answer is 1,000

Step-by-step explanation:

Final answer:

Before the piper increased his volume, there were approximately 2530 rats. The final total (6578 rats), represents a 160 percent increase over this original amount.

Explanation:

The question is asking about the original number of rats before a 160 percent increase. In this scenario, you must remember that 6578 rats is equal to the original number of rats plus an extra 160 percent of the original number. Hence, 6578 rats signifies 260% of the original quantity of rats because inherently 100% represents the original quantity. To find the original number of rats, we'd divide the final quantity by 2.6. So, the original number of rats would be calculated by: 6578 ÷ 2.6 = 2530 rats approximately. Therefore, before the piper increased his volume, there were approximately 2530 rats.

Learn more about Percent increase here:

https://brainly.com/question/5449967

#SPJ2

Calculate: (Round two decimals places for the final answer):

1880 milliliter (mL)=_____ pints (pts) ?

Answers

Answer:

1880 milliliter (mL) = 3.97 pints (pts)

Step-by-step explanation:

This problem can be solved as a rule of three problem.

In a rule of three problem, the first step is identifying the measures and how they are related, if their relationship is direct of inverse.

When the relationship between the measures is direct, as the value of one measure increases, the value of the other measure is going to increase too.

When the relationship between the measures is inverse, as the value of one measure increases, the value of the other measure will decrease.

Unit conversion problems, like this one, is an example of a direct relationship between measures.

1 milliliter (mL) is equal to 0.002 pints. How many pints are 1880 milliliter (mL)? We have the following rule of three

1 mL - 0.002 pints

1880 mL - x pints

x = 1880*0.002

x = 3.97 pints

There are 3.97 pints in 1880 milliliters.

A set contains eleven elements. How many subsets can be formed from this​ set?

Finite Math question.

Answers

Final answer:

To determine the number of subsets that can be formed from a set containing eleven elements, we use the formula [tex]2^n,[/tex] yielding [tex]2^11[/tex] = 2048 possible subsets.

Explanation:

The question is about finding the number of subsets that can be formed from a set containing eleven elements. To determine this, we employ the principle that for any set with n elements, the number of possible subsets is 2n. This includes both the empty set and the set itself as subsets.

Therefore, for a set with 11 elements, the number of possible subsets is 211 = 2048. This calculation reveals that one can form 2048 different subsets from a set of eleven elements. This includes all possible combinations of elements within the set, ranging from choosing no elements (the empty set) to choosing all eleven elements (the set itself).

Step 3: write an equivalent expression for sin4x that does not contain powers of trigonometric functions greater than 1.

Answers

Answer: I don't know if you wanted to write sin(4x) or [tex]sin^{4} (x)[/tex] , but here we go:

ok, sin(4x) = sin(2x + 2x), and we know that:

sin (a + b) = sin(a)*cos(b) + sin(b)*cos(a)

then sin (2x + 2x) = sin(2x)*cos(2x) + cos(2x)*sin(2x) = 2cos(2x)*sin(2x)

So 2*cos(2x)*sin(2x) is equivalent of sin(4x)

If you writed [tex]sin^{4} (x)[/tex] then:

[tex]sin^{4} (x) = sin^{2} (x)*sin^{2} (x)[/tex]

and using that: [tex]sins^{2} (x) = \frac{1-cos(2x)}{2}[/tex]

we have: [tex]sin^{2} (x)*sin^{2} (x) = \frac{(1-cos(2x))*(1-cos(2x))}{4} = \frac{1-2cos(2x) + cos^{2}(2x) }{4}[/tex]

and using that: [tex]cos^{2} (x) = \frac{1 + cos(2x)}{2}[/tex]

[tex]\frac{1-2cos(2x) + cos^{2}(2x) }{4} = \frac{1-2cos(2x) + \frac{1+cos(4x)}{2} }{4}[/tex]

You can keep simplifying it, but there is your representation of [tex]sin^{4} (x)[/tex]  that does not contain powers of trigonometric functions greater than 1.

Final answer:

To write an equivalent expression for sin(4x) without powers of trigonometric functions greater than 1, use the trigonometric identity sin(2x) = 2sin(x)cos(x). Apply this identity twice to get 4sin(x)cos(x)(cos^2(x) - sin^2(x)).

Explanation:

To write an equivalent expression for sin(4x) that does not contain powers of trigonometric functions greater than 1, we can use the trigonometric identity sin(2x) = 2sin(x)cos(x). By applying this identity twice, we get:

sin(4x) = sin(2(2x)) = 2sin(2x)cos(2x)Using the identity sin(2x) = 2sin(x)cos(x) again, we have 2sin(2x)cos(2x) = 2(2sin(x)cos(x))(cos^2(x) - sin^2(x))Simplifying further, we obtain 2(2sin(x)cos(x))(cos^2(x) - sin^2(x)) = 4sin(x)cos(x)(cos^2(x) - sin^2(x))

Therefore, an equivalent expression for sin(4x) that does not contain powers of trigonometric functions greater than 1 is 4sin(x)cos(x)(cos^2(x) - sin^2(x)).

Learn more about Trigonometric identities here:

https://brainly.com/question/24377281

#SPJ11

For the statement "if Fury is the director of SHIELD then Hill and Coulson are SHIELD agents" (a) Write the contrapositive (b) Write the converse (c) Write the inverse (d) Write the negation

Answers

Step-by-step explanation:

Consider the provided information.

If Fury is the director of SHIELD then Hill and Coulson are SHIELD agents"

For the condition statement [tex]p \rightarrow q[/tex] or equivalent "If p then q"

The rule for Converse is: Interchange the two statements. [tex]q \rightarrow p[/tex]The rule for Inverse is: Negative both statements. [tex]\sim p \rightarrow \sim q[/tex]The rule for Contrapositive is: Negative both statements and interchange them. [tex]\sim q \rightarrow \sim p[/tex]The rule for Negation is: If p then q" the negation will be: p and not q. [tex]p \rightarrow q=\sim p\vee q=p\vee \sim q[/tex]

Part (A) Write the contrapositive.

Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

Contrapositive: If Hill and Coulson are not SHIELD agents, then Fury is not the director of SHIELD.

Part (b) Write the converse.

Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

Converse: If Hill and Coulson are SHIELD agents, then Fury is the director of SHIELD.

Part (c) Write the inverse.

Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

Inverse: If Fury is not the director of SHIELD then Hill and Coulson are not SHIELD agents

Part (D) Write the negation.

Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

Negation: Fury is the director of SHIELD and Hill and Coulson are not SHIELD agents"

Step-by-step explanation:

Consider the provided information.

If Fury is the director of SHIELD then Hill and Coulson are SHIELD agents." For the condition statement  or equivalent "If p then q"

The rule for Converse is: Interchange the two statements.

The rule for Inverse is: Negative both statements.

The rule for Contrapositive is: Negative both statements and interchange them.

The rule for Negation is: If p then q" the negation will be: p and not q.

- Part (A) Write the contrapositive.

.Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

Contrapositive: If Hill and Coulson are not SHIELD agents, then Fury is not the director of SHIELD.

- Part (b) Write the converse.

 .Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

 .Converse: If Hill and Coulson are SHIELD agents, then Fury is the director of SHIELD.

- Part (c) Write the inverse.

 .Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

 .Inverse: If Fury is not the director of SHIELD then Hill and Coulson are not SHIELD agents

- Part (D) Write the negation.

 .Here p is Fury is the director of SHIELD, and q is Hill and Coulson are SHIELD agents.

 .Negation: Fury is the director of SHIELD and Hill and Coulson are not SHIELD agents"

The dot plot below shows the average fuel efficiency of a number of mid- size sedans for a particular year model.



The variability of each year model's average miles per gallon is 1.68. The difference between the median miles per gallon each year model's line up is approximately how many times the variability?


A. 4

B. 7

C. 6

D. 3

Answers

I think the answer is a I might be incorrect

You deposit the same $10,000 into a bank account at 4% annual interest. How long will it take for the $10,000 to compound to $30,000?

N= I/Y= PV= PMT= FV= P/Y=

Answers

Answer:

time = 28 years

Step-by-step explanation:

Given,

principal amount = $10,000

rate = 4%

total amount = $30,000

According to compound interest formula

[tex]A\ =\ P(1+r)^t[/tex]

where, A = total amount

            P = principal amount

            r = rate

            t = time in years

so, from the question we can write,

[tex]30000\ =\ 10000(1+0.04)^t[/tex]

[tex]=>\ \dfrac{30000}{10000}\ =\ (1+0.04)^t[/tex]

[tex]=>\ 3\ =\ (1.04)^t[/tex]

by taking log on both sides, we will get

=> log3 = t.log(1.04)

[tex]=>\ t\ =\ \dfrac{log3}{log1.04}[/tex]

=> t = 28.01

So, the time taken to get the amount from 10000 to 30000 is 28 years.

Other Questions
At the instant the traffic light turns green, a car starts with a constant acceleration of 3.00 ft/s^2. At the same instant a truck, traveling with a constant speed of 70.0 ft/s, overtakes and passes the car. How far from the starting point (in feet) will the car overtake the truck? At just under 30,000 feet, mount Everest is the world's tallest mountain. Olympus Mon, which is on Mars, is the tallest mountain in the solar system. What is the height of Olympus Mons? What enzyme complex is responsible for DNA replication?a. DNA polymerase b. RNA polymerase c. hexokinased. amylase The nurse is preparing a child for discharge following a sickle cell crisis. The mother makes the following statements to the nurse. Which statement by the mother indicates a need for further teaching?a) "She loves popsicles, so I'll let her have them as a snack or for dessert."b) "I put her legs up on pillows when her knees start to hurt."c) "She has been down, but playing in soccer camp will cheer her up."d) "I bought the medication to give to her when she complains of pain." Colin works for his dad during summer vacation.his dad pays him $5.20 per hour and works 20 hours per week. How much will Colin earn during his 8 week summer vacation Ramona is conducting research that examines the softest sound that the average human can hear from 20 feet away. This is most similar to the earlier research conducted by ________. One possible danger of a rationalist view of human nature is that... What is the solution to the linear equation? StartFraction 2 Over 5 EndFraction plus p equals StartFraction 4 Over 5 EndFraction plus StartFraction 3 Over 5 EndFraction p. + p = + p p = 1 p = 2 p = 8 p = 10 Which of the following errors would cause the adjusted trial balance to be unequal? a. The adjustment for prepaid insurance was omitted. b. The adjustment for unearned revenue was omitted. c. The adjustment for depreciation of $3,545 was journalized as debit to Depreciation Expense for $3,454 and a credit to Accumulated Depreciation of $3,545. d. The adjustment for accrued fees of $16,340 was journalized as a debit to Accounts Payable for $16,340 and a credit to Fees Earned of $16,340. What is the entropy change of a 29.8 g ice cube that melts completely in a bucket of water whose temperature is just above the freezing point of water? Bub Fizz Inc. manufactures chewing gum. Through marketing research, it was learned that most of its customers use the chewing gum as mouth freshener. Hence, it modified its formula to manufacture gums that have a long-lasting flavor. In this scenario, which of the following was responsible for the change in the product?a. Green marketingb. Cause-related marketingc. Promotion strategyd. Consumer behavior If we are performing a two-tailed test of whether mu = 100, the probability of detecting a shift of the mean to 105 will be ________ the probability of detecting a shift of the mean to 110. Solve by factorisation 2x^2+3x-20 Choose the correct translation of the following question. What time is it? In Spanish.A. Como te llamas?B. Como estas? C. Que hora es?D. Que tal? Which would usually influence a reaction rate more? OH os O H&S O Neither H nors How can a nonlinear plot differ from a linear plot? Classify these properties of the metal lithium as physical or chemical. Physical Chemical light enough to float on water silvery gray in color changes from silvery gray to black when placed in moist air can be cut with a sharp knife in the liquid state, it boils at 1317 C reacts violently with chlorine to form a white solid in the liquid state, it reacts spontaneously with its glass container, producing a hole in the container burns in oxygen with a bright red flame Which statements about Earths crust are true? Check all that apply. The crust includes soil, rock, and water. There are three different kinds of crust. The crust is thickest under the ocean. The ocean crust is made of young rocks. The ocean crust is denser than continental crust. Which of the following locations would most likely have the least wind erosion?Sahara DesertAmazon JungleGobi DesertRocky Mountains For the reaction ? C6H6 + ? O2 ? CO2 + ? H2O 42.5 grams of C6H6 are allowed to react with 113.1 grams of O2. How much CO2 will be produced by this reaction? Answer in units of grams