Three polarizing filters are stacked, with the polarizing axis ofthe second and third filters at angles of 22.2^\circ and 68.0^\circ, respectively, to that of thefirst. If unpolarized light is incident on the stack, the light hasan intensity of 75.5 W/cm^2 after it passes through thestack.
a) If the incident intensity is kept constant, what is theintensity of the light after it has passed through the stack if thesecond polarizer is removed?

Answers

Answer 1

Answer:

I₂ = 25.4 W

Explanation:

Polarization problems can be solved with the malus law

     I = I₀ cos² θ

Let's apply this formula to find the intendant intensity (Gone)

Second and third polarizer, at an angle between them is

    θ₂ = 68.0-22.2 = 45.8º

    I = I₂ cos² θ₂

    I₂ = I / cos₂ θ₂

    I₂ = 75.5 / cos² 45.8

    I₂ = 155.3 W

We repeat for First and second polarizer

   I₂ = I₁ cos² θ₁

   I₁ = I₂ / cos² θ₁

   I₁ = 155.3 / cos² 22.2

   I₁ = 181.2 W

Now we analyze the first polarizer with the incident light is not polarized only half of the light for the first polarized

    I₁ = I₀ / 2

   I₀ = 2 I₁

   I₀ = 2 181.2

   I₀ = 362.4 W

Now we remove the second polarizer the intensity that reaches the third polarizer is

    I₁ = 181.2 W

The intensity at the exit is

    I₂ = I₁ cos² θ₂

    I₂ = 181.2 cos² 68.0

   I₂ = 25.4 W


Related Questions

A parallel beam of light in air makes an angle of 43.5 ∘ with the surface of a glass plate having a refractive index of 1.68. You may want to review (Pages 1080 - 1086) . For related problemsolving tips and strategies, you may want to view a Video Tutor Solution of Reflection and refraction.
a. What is the angle between the reflected part of the beam and the surface of the glass? θθ = nothing ∘
b. What is the angle between the refracted beam and the surface of the glass? θθ = nothing ∘

Answers

a. The angle between the reflected part of the beam and the surface of the glass is [tex]\(43.5^\circ\).[/tex]

b. The angle between the refracted beam and the surface of the glass is [tex]\(64.5^\circ\).[/tex]

To solve this problem, we need to apply the laws of reflection and refraction. Let's address each part separately.

Part (a): Angle Between the Reflected Beam and the Surface of the Glass

The law of reflection states that the angle of incidence is equal to the angle of reflection. The angle of incidence is given as 43.5° with respect to the surface of the glass. However, angles in optics are typically measured with respect to the normal (a line perpendicular to the surface).

So, the angle of incidence with respect to the normal (which we'll call [tex]\(\theta_i\)[/tex] ) is:

[tex]\[ \theta_i = 90^\circ - 43.5^\circ = 46.5^\circ \][/tex]

Since the angle of incidence equals the angle of reflection:

[tex]\[ \theta_r = \theta_i = 46.5^\circ \][/tex]

Therefore, the angle between the reflected part of the beam and the surface of the glass is:

[tex]\[ 90^\circ - \theta_r = 90^\circ - 46.5^\circ = 43.5^\circ \][/tex]

So, the angle between the reflected beam and the surface of the glass is:

[tex]\[ 43.5^\circ \][/tex]

Part (b): Angle Between the Refracted Beam and the Surface of the Glass

For the refracted beam, we need to apply Snell's Law, which is:

[tex]\[ n_1 \sin(\theta_i) = n_2 \sin(\theta_t) \][/tex]

Where:

- [tex]\( n_1 \)[/tex] is the refractive index of the first medium (air), [tex]\( n_1 = 1.00 \)[/tex],

- [tex]\( \theta_i \)[/tex] is the angle of incidence with respect to the normal, [tex]\( \theta_i = 46.5^\circ \),[/tex]

- [tex]\( n_2 \)[/tex] is the refractive index of the second medium (glass), [tex]\( n_2 = 1.68 \)[/tex],

- [tex]\( \theta_t \)[/tex] is the angle of refraction with respect to the normal.

Using Snell's Law, we can solve for [tex]\(\theta_t\):[/tex]

[tex]\[ 1.00 \sin(46.5^\circ) = 1.68 \sin(\theta_t) \][/tex]

[tex]\[ \sin(\theta_t) = \frac{\sin(46.5^\circ)}{1.68} \][/tex]

Calculating [tex]\(\sin(46.5^\circ)\):[/tex]

[tex]\[ \sin(46.5^\circ) \approx 0.723 \][/tex]

So,

[tex]\[ \sin(\theta_t) = \frac{0.723}{1.68} \approx 0.430 \][/tex]

Now we find [tex]\(\theta_t\):[/tex]

[tex]\[ \theta_t = \sin^{-1}(0.430) \approx 25.5^\circ \][/tex]

The angle between the refracted beam and the surface of the glass is:

[tex]\[ 90^\circ - \theta_t = 90^\circ - 25.5^\circ = 64.5^\circ \][/tex]

So, the angle between the refracted beam and the surface of the glass is:

[tex]\[ 64.5^\circ \][/tex]

A beam of x-rays with wavelength λ = 0.300 nm is directed toward a sample in which the x-rays scatter off of electrons that are effectively free. The wavelength of the outgoing electrons is measured as a function of scattering angle, where a scattering angle of 0 means the direction of the x-rays was unchanged when passing through the sample. When looking at all possible scattering angles, what are the longest and shortest wavelengths that the scattered x-rays can have?

Answers

Answer:

Explanation:

The problem relates to Compton Effect in which electrons are scattered due to external radiation . The electron is scattered out and photons relating to radiation also undergo scattering at angle θ .

The formula relating to Compton Effect is as follows

[tex]\lambda_f-\lambda_i=\frac{h}{m_0c} (1-cos\theta)[/tex]

Here [tex]\lambda_i[/tex]  = 3 0 x 10⁻¹¹

For longest [tex]\lambda_f[/tex] θ =180°

[tex]\lambda_f[/tex] = [tex]\lambda_i + \frac{2\times h}{m_0c}[/tex]

= .3 x 10⁻⁹ + [tex]\frac{2\times6.6\times 11^{-34}}{9\times10^{-31}\times3\times10^8}[/tex]

= .348 nm

For shortest wavelength θ = 0

Putting this value in the given formula

[tex]\lambda_f=\lambda_i[/tex]

[tex]\lambda_f[/tex] = .3 nm

Zirconium tungstate is an unusual material because its volume shrinks with an increase in temperature for the temperature range 0.3 K to 1050 K (where it decomposes). In fact, the volumetric coefficient of thermal expansion is –26.4 × 10–6/K. Determine the ratio ΔV/V0 for the above mentioned temperature range. Express your answer in percent.

Answers

Answer:

2.771208%

Explanation:

[tex]\Delta V[/tex] = Change of volume

[tex]V_0[/tex] = Initial volume

[tex]\Delta T[/tex] = Change in temperature = (0.3-1050)

[tex]\beta[/tex] = Volumetric coefficient of thermal expansion = [tex]-26.4\times 10^{-6}\ /K[/tex]

Volumetric expansion of heat is given by

[tex]\frac{\Delta V}{V_0}=\beta \Delta T\\\Rightarrow \frac{\Delta V}{V_0}=-26.4\times 10^{-6}\times (0.3-1050)\\\Rightarrow \frac{\Delta V}{V_0}=0.02771208[/tex]

Finding percentage

[tex]\frac{\Delta V}{V_0}=0.02771208\times 100=2.771208\%[/tex]

The ratio of change of volume to initial volume is 2.771208%

Final answer:

To calculate the ratio ΔV/V0 for zirconium tungstate, the volume change can be determined using the volumetric coefficient of thermal expansion. The formula for the ratio is ΔV/V0 = (Volume change/Initial volume) × 100.

Explanation:

The ratio ΔV/V0 can be calculated using the formula:

ΔV/V0 = (Volume change/Initial volume) × 100

Given that the volumetric coefficient of thermal expansion for zirconium tungstate is -26.4 × 10^(-6)/K, we can use this value to calculate the volume change. The volume change can be found by multiplying the coefficient of thermal expansion by the change in temperature:

Volume change = (-26.4 × 10^(-6)/K) × (1050 K - 0.3 K)

Using this value, we can calculate the ratio ΔV/V0:

ΔV/V0 = (Volume change/Initial volume) × 100

Learn more about Volumetric coefficient of thermal expansion here:

https://brainly.com/question/34643540

#SPJ3

A plane wave with a wavelength of 500 nm is incident normally ona single slit with a width of 5.0 × 10–6 m.Consider waves that reach a point on a far-away screen such thatrays from the slit make an angle of 1.0° with the normal. Thedifference in phase for waves from the top and bottom of the slitis:
A) 0
B) 0.55 rad
C) 1.1 rad
D) 1.6 rad
E) 2.2 rad

Answers

To solve this exercise it is necessary to use the concepts related to Difference in Phase.

The Difference in phase is given by

[tex]\Phi = \frac{2\pi \delta}{\lambda}[/tex]

Where

[tex]\delta =[/tex] Horizontal distance between two points

[tex]\lambda =[/tex] Wavelength

From our values we have,

[tex]\lambda = 500nm = 5*10^{-6}m[/tex]

[tex]\theta = 1\°[/tex]

The horizontal distance between this two points would be given for

[tex]\delta = dsin\theta[/tex]

Therefore using the equation we have

[tex]\Phi = \frac{2\pi \delta}{\lambda}[/tex]

[tex]\Phi = \frac{2\pi(dsin\theta)}{\lambda}[/tex]

[tex]\Phi = \frac{2\pi(5*!0^{-6}sin(1))}{500*10^{-9}}[/tex]

[tex]\Phi= 1.096 rad \approx = 1.1 rad[/tex]

Therefore the correct answer is C.

Final answer:

The phase difference for waves from the top and bottom of the slit can be calculated by using the formula for calculating phase difference. With the provided values for wavelength, angle and slit width, the calculated phase difference is 0.55 rad.

Explanation:

The phase difference of the waves is directly related to the path difference between them and can be calculated by using the formula:

Φ = 2 π × (d / λ) × sin(θ).

Where φ is the phase difference, π is Pi, d is the slit width, λ is the wavelength and θ is the incident angle.

Let's plug the provided numbers into our formula:

Φ = 2 π × (5.0x10-6 m / 500x10-9 m) × sin(1.0°).

Φ = 2 π × 10 × sin(1.0°)= 0.55 rad.

So, the correct answer is (B) 0.55 rad.

Learn more about Phase difference here:

https://brainly.com/question/2396792

#SPJ3

Suppose you are selling apple cider for two dollars a gallon when the temperature is 3.3 degree C. The coefficient of volume expansion of the cider is 280*10^-6(C degree)^-1. How much more money (in pennies) would you make per gallon be refilling the container on a day when the temperature is 32 degrees C? Ignore the expansion of the container. Round your answer to 0.1 penny.

Answers

Answer:

1.6 penny

Explanation:

[tex]V_0[/tex] = Original volume = 1 gal (Assumed)

[tex]\Delta T[/tex] = Change in temperature

[tex]\beta[/tex] = Coefficient of volume expansion = [tex]280\times 10^{-6}\ /^{\circ}[/tex]

Change in volume is given by

[tex]\Delta_V=\beta V_0\Delta T\\\Rightarrow \Delta_V=280\times 10^{-6}\times 1\times (32-3.3)\\\Rightarrow \Delta_V=0.008036[/tex]

New volume would be

[tex]1+0.008036=1.008036\ gal[/tex]

The amount of money earned extra would be

[tex]0.008036\times 2=0.016072\ \$[/tex]

1.6 penny more would be earned if the temperature is 32°C

Final answer:

By refilling a container of apple cider at 32 degrees C instead of 3.3 degrees C, you would make approximately 1.6 pennies more per gallon due to thermal expansion of the cider.

Explanation:

To calculate how much more money you would make per gallon by refilling the container of apple cider when the temperature is 32 degrees C, as opposed to 3.3 degrees C, you need to determine the change in volume due to thermal expansion.

The formula for volume expansion is ΔV = βV₀ΔT, where ΔV is the change in volume, β is the coefficient of volume expansion, V₀ is the initial volume, and ΔT is the change in temperature.

The initial temperature T1 is 3.3°C, and the final temperature T2 is 32°C, thus ΔT = T2 - T1 = 32°C - 3.3°C = 28.7°C. The coefficient of volume expansion of the cider, given as β, is 280 x 10^-6 (C°)^-1.

Assuming that the initial volume V₀ of the cider is 1 gallon, the change in volume ΔV would be:

ΔV = 280 x 10^-6 x 1 x 28.7 = 0.008036 gallons

To convert gallons to liters, we use the fact that 1 gallon is approximately 3.78541 liters. So, the increase in volume in liters would be:

ΔV (liters) = 0.008036 x 3.78541 = 0.0304 liters

Since there are approximately 3.78541 liters in a gallon, and knowing that the price for one gallon is two dollars, we can calculate the additional revenue (in pennies) as follows:

Extra revenue = ΔV (liters) / 3.78541 x 200 pennies = 0.0304 / 3.78541 x 200 ≈ 1.6 pennies

Therefore, you would make approximately 1.6 pennies more per gallon by refilling the container at 32°C compared to 3.3°C.

Case 1: A 0.780-kg silver pellet with a temperature of 85 oC is added to 0.150 kg of water in a copper cup of unknown mass. The initial temperature of the water and the copper cup is 14 oC. The equilibrium temperature of the system (silver water copper cup) is measured to be 26.0 °C. Assume no heat is exchanged with the surroundings. The specific heats of silver, water and copper are: 234 J/(kg oC), 4186 J/(kg oC) and 387 J/(kg oC) , respectively. (a) Which substance releases heat

Answers

Answer: The silver pellet will release heat

Explanation:

Based on the case scenario, the silver pellet has a higher temperature that the system of water and copper cup and is thereby added to the system. Because of the higher kinetic energy of the molecules of silver in the silver pellet, some of energy will be released to the water and copper cup system because the system will aim to achieve thermal equilibrium.

A "biconvex" lens is one in which both surfaces of the lens bulge outwards. Suppose you had a biconvex lens with radii of curvature with magnitudes of |R1|=10cm and |R2|=15cm. The lens is made of glass with index of refraction nglass=1.5. We will employ the convention that R1 refers to the radius of curvature of the surface through which light will enter the lens, and R2 refers to the radius of curvature of the surface from which light will exit the lens.Part AIs this lens converging or diverging?Part BWhat is the focal length f of this lens in air (index of refraction for air is nair=1)?Express your answer in centimeters to two significant figures or as a fraction.

Answers

Final answer:

A biconvex lens with the given parameters is a converging lens. Using the Lens Maker's Equation with the radii of curvature and index of refraction for glass and air, the focal length of the lens is calculated to be approximately 12 cm.

Explanation:

A biconvex lens, where both surfaces of the lens bulge outwards, will bend light rays such that they converge at a focal point. With the parameters given (|R1|=10cm, |R2|=15cm, and nglass=1.5), we can deduce that this lens is a converging lens.

Part A: Since a biconvex lens makes parallel rays of light converge at a point after passing through the lens, it is classified as a converging lens.

Part B: To calculate the focal length (f) of the lens, we use the Lens Maker's Equation:

First, we convert the radii of curvature to the appropriate signs as per the lensmaker's convention (positive for convex surfaces when the outside medium is air). R1 = +10cm and R2 = -15cm, since the light exits from the second surface.Next, we plug the values into the equation (1/f) = (nglass - nair) ((1/R1) - (1/R2)) to get the reciprocal of the focal length.

Carrying out the calculation with the data given (nglass=1.5, nair=1, R1=+10cm, and R2=-15cm), we get:

(1/f) = (1.5 - 1) ((1/10cm) - (1/(-15cm)))

(1/f) = 0.5 * (0.1cm⁻¹ + 0.0667cm⁻¹)

(1/f) = 0.5 * 0.1667cm⁻¹

(1/f) = 0.08335cm⁻¹

Therefore, the focal length f is the reciprocal of 0.08335cm⁻¹ which is approximately:

f ≈ 12cm

Which of the following is a TRUE statement?
a. It is possible for heat to flow spontaneously from a hot body to a cold one or from a cold one to a hot one, depending on whether or not the process is reversible or irreversible.
b. It is not possible to convert work entirely into heat.
c. The second law of thermodynamics is a consequence of the first law of thermodynamics.
d. It is impossible to transfer heat from a cooler to a hotter body.
e. All of these statements are false.

Answers

Answer:

e. All of these statements are false.

Explanation:

As we know that heat transfer take place from high temperature to low temperature.

It is possible to convert all work into heat but it is not possible to convert all heat in to work some heat will be reject to the surrounding.

The first law of thermodynamics is the energy conservation law.

Second law of thermodynamics  states that it is impossible to construct a device which convert all energy into work without rejecting the heat to the surrounding.

By using heat pump ,heat can transfer from cooler body to the hotter body.

Therefore all the answer is False.

The true statement among the given options is that the entropy of a system can be reduced by cooling it.

The correct answer to the student's question regarding true statements about thermodynamics is option (c) It is always possible to reduce the entropy of a system, for instance, by cooling it. This statement aligns with the principles of thermodynamics, which affirm that entropy, a measure of disorder or randomness, can decrease in a system if energy is removed from the system, such as by lowering its temperature. However, this does not violate the second law of thermodynamics because entropy may still increase in the overall process when considering the surroundings.

In contrast, options (a) and (b) are false because they wrongly imply irreversibility in scenarios where reversibility is possible. Specifically, it is possible to reverse an entropy increase by cooling a system and it is also possible to convert some amount of thermal energy back into mechanical energy, although not with 100% efficiency due to inherent thermodynamic losses.

The second law also articulates that heat transfer occurs spontaneously from a higher to a lower temperature body and not in the reverse direction without external work, implying that a spontaneous flow of heat from a colder to a warmer body is impossible, as is complete conversion of heat to work in a cyclical process.

What is the distance from axis about which a uniform, balsa-wood sphere will have the same moment of inertia as does a thin-walled, hollow, lead sphere of the same mass and radius R, with the axis along a diameter, to the center of the balsa-wood sphere?

Answers

Answer:

[tex]D_{s}[/tex] ≈ 2.1 R

Explanation:

The moment of inertia of the bodies can be calculated by the equation

     I = ∫ r² dm

For bodies with symmetry this tabulated, the moment of inertia of the center of mass

Sphere               [tex]Is_{cm}[/tex] = 2/5 M R²

Spherical shell   [tex]Ic_{cm}[/tex] = 2/3 M R²

The parallel axes theorem allows us to calculate the moment of inertia with respect to different axes, without knowing the moment of inertia of the center of mass

    I = [tex]I_{cm}[/tex] + M D²

Where M is the mass of the body and D is the distance from the center of mass to the axis of rotation

Let's start with the spherical shell, axis is along a diameter

     D = 2R

    Ic = [tex]Ic_{cm}[/tex] + M D²

    Ic = 2/3 MR² + M (2R)²

    Ic = M R² (2/3 + 4)

    Ic = 14/3 M R²

The sphere

    Is =[tex]Is_{cm}[/tex] + M [[tex]D_{s}[/tex]²

    Is = Ic

    2/5 MR² + M [tex]D_{s}[/tex]² = 14/3 MR²

    [tex]D_{s}[/tex]² = R² (14/3 - 2/5)

    [tex]D_{s}[/tex] = √ (R² (64/15)

    [tex]D_{s}[/tex] = 2,066 R

A 60-kg woman stands on the very end of a uniform board, which is supported one-quarter of the way from one end and is balanced. What is the mass of the board?

a. 60 kg
b. 30 kg
c. 20 kg
d. 15 kg
e. 120 kg

Answers


B 30 kg because


One quarter =1/2
Kg=60

1/2 of Kg
1/2*60
30 kg

The correct option can be seen in Option A.

The diagrammatic expression of the question can be seen in the image attached below.

From the given question, we are being informed that the uniform board is balanced. As a result, the torque(i.e. a measurement about how significantly a force acts on a body for it to spin about an axis) acting on the right-hand side of the balance point should be equal to that of the left-hand side.

Mathematically;

[tex]\mathbf{\tau_{_{right}}= \tau_{_{left}}}[/tex]

Given that the mass of the woman = 60 kg

[tex]\mathbf{\tau =\dfrac{m\times g \times l}{\mu}}[/tex]

[tex]\mathbf{\tau_{left} =\dfrac{m\times g \times l}{\mu}}---(1)[/tex]

[tex]\mathbf{\tau_{_{right}} =\dfrac{60 \times g \times l}{\mu}}---(2)[/tex]

Equating both (1) and (2) together, we have:

[tex]\mathbf{\dfrac{m\times g \times l}{\mu} =\dfrac{60 \times g \times l}{\mu} }[/tex]

Dividing like terms on both side

mass (m) = 60 kg

As such, the correct option can be seen in Option A.

Thus, we can conclude that from the 60-kg woman who stands on the very end of a uniform board, the mass of the board on the other end is also 60 kg.

Learn more about mass here:

https://brainly.com/question/6240825?referrer=searchResults

A student pushes a 21-kg box initially at rest, horizontally along a frictionless surface for 10.0 m and then releases the box to continue sliding. If the student pushes with a constant 10 N force, what is the box's speed when it is released?

Answers

Answer:v=3.08 m/s

Explanation:

Given

mass of student [tex]m=21 kg[/tex]

distance moved [tex]d=10 m[/tex]

Force applied [tex]F=10 N[/tex]

acceleration of system during application of force is a

[tex]a=\frac{F}{m}=\frac{10}{21}=0.476 m/s^2[/tex]

using [tex]v^2-u^2=2 as[/tex]

where v=final velocity

u=initial velocity

a=acceleration

s=displacement

[tex]v^2-0=2\times 0.476\times 10[/tex]

[tex]v=\sqrt{9.52}[/tex]

[tex]v=3.08 m/s[/tex]

A liquid of density 1290 kg/m 3 1290 kg/m3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.83 m/s 9.83 m/s and the pipe diameter d 1 d1 is 12.1 cm 12.1 cm . At Location 2, the pipe diameter d 2 d2 is 17.7 cm 17.7 cm . At Location 1, the pipe is 8.35 m higher than it is at location 2. Ignoring viscosity, calculate the difference between fluid pressure at location 2 and the fluid pressure at location 1.

Answers

Answer:

[tex]\Delta P=1060184.8946\ Pa[/tex]

[tex]P_1=124651.2383\ Pa[/tex]

Explanation:

Given:

density of liquid, [tex]\rho=1290\ kg.m^{-3}[/tex]speed of flow at location 1, [tex]v_1=9.83\ m.s^{-1}[/tex]diameter of pipe at location 1, [tex]d_1=0.121\ m[/tex]diameter of pipe at location 2, [tex]d_2=0.177\ m[/tex]height of pipe at location 1, [tex]z_1=8.35\ m[/tex]

We know the Bernoulli's equation of in-compressible flow:

[tex]\frac{P}{\rho.g} +\frac{v^2}{2g} + z=constant[/tex] ........................(1)

Cross sectional area of pipe at location 2:

[tex]A_2=\pi \frac{d_2^2}{4}[/tex]

[tex]A_2=\pi\times \frac{0.177^2}{4}[/tex]

[tex]A_2=0.0246\ m^2[/tex]

Cross sectional area of pipe at location 1:

[tex]A_1=\pi \frac{d_1^2}{4}[/tex]

[tex]A_1=\pi\times \frac{0.121^2}{4}[/tex]

[tex]A_1=0.0115\ m^2[/tex]

Using continuity equation:

[tex]A_1.v_1=A_2.v_2[/tex]

[tex]0.0115\times 9.83=0.0246\times v_2[/tex]

[tex]v_2=4.5953\ m.s^{-1}[/tex]

Now apply continuity eq. on both the locations:

[tex]\frac{P_1}{\rho.g} +\frac{v_1^2}{2g} + z_1= \frac{P_2}{\rho.g} +\frac{v_2^2}{2g} + z_2[/tex]

[tex](P_2-P_1) = \rho.g [\frac{v_1^2}{2g} + z_1-\frac{v_2^2}{2g} ][/tex]

[tex]\Delta P=1290\times 9.8 [\frac{9.83^2}{19.6} + 8.35-\frac{4.5953^2}{19.6} ][/tex]

[tex]\Delta P=154266.016\ Pa[/tex]...................................Ans (a)

Now the mass flow rate at location 1:

[tex]\dot{m_1}=\rho\times \dot{V}[/tex]

[tex]\dot{m_1}=1290\times (0.0115\times 9.83)[/tex]

[tex]\dot{m_1}=145.828\ kg.s^{-1}[/tex]

Now pressure at location 1:

[tex]P_1=\frac{\dot{m_1}\times v_1}{A_1}[/tex]

[tex]P_1=\frac{145.828\times 9.83}{0.0115}[/tex]

[tex]P_1=124651.2383\ Pa[/tex] ...................................Ans (b)

The difference between fluid pressure at location 2 and fluid pressure at location 1 is mathematically given as

dP = 114 kPa

What is the difference between fluid pressure at location 2 and fluid pressure at location 1.?

Question Parameter(s):

Generally, the Bernoulli's equation   is mathematically given as

P + ρ*g*y + v² =pipe  constant

Where

A1*v1 = A2*v2

π*(0.105/2)²*9.91 = π*(0.167/2)²*v2

v2 = 3.9 m/s

Therefore

P1 + ρ*g*y1 + v1² = P2 + ρ*g*y2 + v2²

dP = 1290*9.8*9.01 + 9.91² - 3.9²

dP = 114 kPa

In conclusion, difference between fluid pressure is

dP = 114 kPa

Read more about Pressure

https://brainly.com/question/25688500

A thin flashlight beam traveling in air strikes a glass plate at an angle of 52° with the plane of the surface of the plate. If the index of refraction of the glass is 1.4, what angle will the beam make with the normal in the glass?

Answers

To solve this problem it is necessary to apply Snell's law and thus be able to calculate the angle of refraction.

From Snell's law we know that

[tex]n_1sin\theta_1 = n_2 sin\theta_2[/tex]

Where,

n_i = Refractive indices of each material

[tex]\theta_1[/tex] = Angle of incidence

[tex]\theta_2[/tex] = Refraction angle

Our values are given as,

[tex]\theta_1 = 38\°[/tex]

[tex]n_1 = 1[/tex]

[tex]n_2 = 1.4[/tex]

Replacing

[tex]1*sin38 = 1.4*sin\theta_2[/tex]

Re-arrange to find [tex]\theta_2[/tex]

[tex]\theta_2 = sin^{-1} \frac{sin38}{1.4}[/tex]

[tex]\theta_2 = 26.088°[/tex]

Therefore the  angle will the beam make with the normal in the glass is 26°

The return-air ventilation duct in a home has a cross-sectional area of 900 cm^2. The air in a room that has dimensions 5.0 m x 11.0 m ×x 2.4 m is to be completely circulated in a 50-min cycle.
1) What is the speed of the air in the duct? (Express your answer to two significant figures.)

Answers

To solve the problem it is necessary to apply the concepts related to the flow rate of a fluid.

The flow rate is defined as

[tex]Q = Av[/tex]

Where,

[tex]Q = Discharge (m^3/s)[/tex]

[tex]A = Area (m^2)[/tex]

v = Average speed (m / s)

And also as

[tex]Q = \frac{V}{t}[/tex]

Where,

V = Volume

t = time

Let's start by finding the total volume according to the given dimensions, that is to say

[tex]V = 5*11*2.4[/tex]

[tex]V = 132m^3[/tex]

The entire cycle must be completed in 50 min = 3000s

In this way we know that the [tex]132m ^ 3[/tex] must be filled in 3000s, that is to say that there should be a flow of

[tex]Q = \frac{V}{t}[/tex]

[tex]Q = \frac{132}{3000}[/tex]

[tex]Q = 0.044m^3/s[/tex]

Using the relationship to find the speed we have to

[tex]Q = Av[/tex]

[tex]v = \frac{Q}{A}[/tex]

Replacing with our values,

[tex]v = \frac{0.044}{900*10^{-4}m^2}[/tex]

[tex]v = 0.488m/s[/tex]

Therefore the air speed in the duct must be 4.88m/s

A 45.0-kg girl is standing on a 166-kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat, frictionless surface. The girl begins to walk along the plank at a constant velocity of 1.48 m/s to the right relative to the plank. (Let the direction the girl is moving in be positive. Indicate the direction with the sign of your answer.)
1. What is her velocity relative to the surface of the ice?
2. What is the velocity of the plank relative to the surface of ice?

Answers

Answer:

-0.31563 m/s

1.16437 m/s

Explanation:

[tex]m_1[/tex] = Mass of girl = 45 kg

[tex]m_2[/tex] = Mass of plank = 166 kg

[tex]v_1[/tex] = Velocity of girl relative to plank = 1.48 m/s

[tex]v_2[/tex] = Velocity of the plank relative to ice surface

In this system the linear momentum is conserved

[tex](m_1+m_2)v_2+m_1v_1=0\\\Rightarrow v_2=-\frac{m_1v_1}{m_1+m_2}\\\Rightarrow v_2=-\frac{45\times 1.48}{45+166}\\\Rightarrow v_2=-0.31563\ m/s[/tex]

Velocity of the plank relative to ice surface is -0.31563 m/s

Velocity of the girl relative to the ice surface is

[tex]v_1+v_2=1.48-0.31563=1.16437\ m/s[/tex]

Two horizontal curves on a bobsled run are banked at the same angle, but one has twice the radius of the other. The safe speed (no friction needed to stay on the run) for the smaller radius curve is v. What is the safe speed on the larger radius curve?

Answers

Answer:

safe speed for the larger radius track u= √2 v

Explanation:

The sum of the forces on either side is the same, the only difference is the radius of curvature and speed.

Also given that r_1= smaller radius

r_2= larger radius curve

r_2= 2r_1..............i

let u be the speed of larger radius curve

now, [tex]\sum F = \frac{mv^2}{r_1} =\frac{mu^2}{r_2}[/tex]................ii

form i and ii we can write

[tex]v^2= \frac{1}{2} u^2[/tex]

⇒u= √2 v

therefore, safe speed for the larger radius track u= √2 v

A truck horn emits a sound with a frequency of 238 Hz. The truck is moving on a straight road with a constant speed. If a person standing on the side of the road hears the horn at a frequency of 220 Hz, then what is the speed of the truck? Use 340 m/s for the speed of the sound.

Answers

Answer:

[tex]v_s=27.8m/s[/tex]

Explanation:

If the person hearing the sound is at rest, then the equation for the frequency heard [tex]f[/tex] given the emitted frequency [tex]f_0[/tex], the speed of the truck [tex]v_s[/tex] and the speed of sound [tex]c[/tex] will be:

[tex]f=f_0\frac{c}{c+v_s}[/tex]

Where [tex]v_s[/tex] will be positive if the truck is moving away from the person, and negative otherwise. We then do:

[tex]\frac{f}{f_0}=\frac{c}{c+v_s}[/tex]

[tex]\frac{f_0}{f}=\frac{c+v_s}{c}=1+\frac{v_s}{c}[/tex]

[tex]v_s=c(\frac{f_0}{f}-1)=(340m/s)(\frac{238Hz}{220Hz}-1)=27.8m/s[/tex]

A fairground ride spins its occupants inside a flying saucer-shaped container. If the horizontal circular path the riders follow has a radius of 5.17 m, at what angular velocity will the riders be subjected to a centripetal acceleration whose magnitude is equal to 1.50 times the acceleration due to gravity?

Answers

Answer:

Angular velocity will be 2.843 rad/sec

Explanation:

We have given the radius r = 5.17 m

Centripetal acceleration [tex]a_c=1.5g=1.5\times 9.8=14.7m/sec^2[/tex]

We know that centripetal acceleration is given by

[tex]a_c=\frac{v^2}{r}[/tex]

And linear velocity is given by [tex]v=\omega r[/tex]

[tex]a_c=\frac{(\omega r)^2}{r}=\omega ^2r[/tex]

[tex]14.7=\omega ^2\times 5.17[/tex]

[tex]\omega =2.843rad/sec[/tex]

A 40 kg slab rests on a frictionless floor. A 10 kg block rests on top of the slab (Fig. 6-58). The coefficient of static friction µstat beltween the block and the slab is 0.70, whereas their kinetic friction coefficient µkin is 0.40. The 10 kg block is pulled by a horizontal force with a magnitude of 100 N.

Answers

Answer:

[tex]\text { The "resulting action" on the slab is } 0.98 \mathrm{m} / \mathrm{s}^{2}[/tex]

Explanation:

Normal reaction from 40 kg slab on 10 kg block

M × g  = 10 × 9.8 = 98 N  

Static frictional force = 98 × 0.7 N

Static frictional force = 68.6 N is less than 100 N applied  

10 kg block will slide on 40 kg slab and net force on it  

= 100 N - kinetic friction  

[tex]=100-(98 \times 0.4)\left(\mu_{\text {kinetic }}=0.4\right)[/tex]

= 100 - 39.2

= 60.8 N

[tex]10 \mathrm{kg} \text { block will slide on } 40 \mathrm{kg} \text { slab with, } \frac{\mathrm{Net} \text { force }}{\text { mass }}[/tex]

[tex]10 \mathrm{kg} \text { block will slide on } 40 \mathrm{kg} \text { slab with }=\frac{60.8}{10}[/tex]

[tex]10 \mathrm{kg} \text { block will slide on } 40 \mathrm{kg} \text { slab with }=6.08 \mathrm{m} / \mathrm{s}^{2}[/tex]

[tex]\text { Frictional force on 40 kg slab by 10 kg block, normal reaction \times \mu_{kinetic } }[/tex]

Frictional force on 40 kg slab by 10 kg block = 98 × 0.4  

Frictional force on 40 kg slab by 10 kg block = 39.2 N  

[tex]40 \mathrm{kg} \text { slab will move with } \frac{\text { frictional force }}{\text { mass }}[/tex]

[tex]40 \mathrm{kg} \text { slab will move with }=\frac{39.2}{40}[/tex]

40 kg slab will move with = [tex]0.98 \mathrm{m} / \mathrm{s}^{2}[/tex]

[tex]\text { The "resulting action" on the slab is } 0.98 \mathrm{m} / \mathrm{s}^{2}[/tex]

A sinusoidal electromagnetic wave is propagating in a vacuum in the +z-direction.

Part A

If at a particular instant and at a certain point in space the electric field is in the +x-direction and has a magnitude of 3.40V/m , what is the magnitude of the magnetic field of the wave at this same point in space and instant in time?

Part B

What is the direction of the magnetic field?

Answers

Answer:

a) 1.13 10-8 T.  b) +y direction

Explanation:

a)

For an electromagnetic wave propagating in a vacuum, the wave speed is c = 3. 108 m/s.

At a long distance from the source, the components of the wave (electric and magnetic fields) can be considered as plane waves, so the equations for them can be written as follows:

E(z,t) = Emax cos (kz-ωt-φ) +x

B(z,t) = Bmax cos (kz-ωt-φ) +y

In an electromagnetic wave, the magnetic field and the electric field, at any time, and at any point in space, as the perturbation is propagating at a speed equal to c (light speed in vacuum), are related by this expression:

Bmax = Emax/c

So, solving for Bmax:

Bmax = 3.4 V/m / 3 108 m/s = 1.13 10-8 T.

b) As we have already said, in an electromagnetic wave, the electric field and the magnetic field are perpendicular each other and to the propagation direction, so in this case, the magnetic field propagates in the +y direction.

Why is fusion an appealing energy source?

Fusion products are generally not radioactive.

Extremely high temperatures are required.

The reaction can be confined by available structural materials.

Extremely high pressures are required.

Answers

To take place the process of nuclear fusion basically seeks to reach heavy nuclei through light nuclei. Reaching this process implies a release of energy that is what makes this process attractive because it is possible to obtain significant volumes of energy. The procedure to arrive at this process also implies a high cost concerning high temperatures and exorbitant pressures as it is necessary to be able to overcome the barrier of electrostatic repulsion.

This process does not generate any type of radioactive waste like other processes, therefore it is not as dangerous as nuclear fission. For this reason the correct answer is A. Fusion products are generally not radioactive.

As a civil engineer for your city, you have been assigned to evaluate the purchase of spring-loaded guard rails to prevent cars from leaving the road. In response to a request for proposals*, one company states their guard rails are perfect for the job. Each section of their guard rails consists of two springs, each having a force constant 3.13400 105 N/m with a maximimum distance of compression of 0.614 m. (According to the manufacturer, beyond this compression the spring loses most of its ability to absorb an impact elastically.) The largest vehicle the guardrails are expected to stop are trucks of mass 4550.000 kg. What is the maximum speed at which these guard rails alone can be expected to bring such vehicles to a halt within the stated maximum compression distance? (Assume the vehicles can strike the guard rail head on and that the springs are perfectly elastic.)
____ m/s
Given your result which section of road often features such a speed
School Zone
Large Road
Highway
Guard rails are pointless if the acceleration they create seriously injures passengers. One important safety factor is the acceleration experienced by passengers during a collision. Calculate the maximum acceleration of the vehicle during the time in which it is in contact with the guard rail.
_____ m/s^2
If the highway department considers 20 g\'s the maximum safe acceleration, is this guard rail safe in regards to acceleration?

Answers

Answer:

a) v = 7,207 m / s

, b) a = 42.3 m / s²

Explanation:

We will solve this exercise using the concept of mechanical energy, We will write it in two points before the car touches the springs and in point of maximum compression

Initial

    Em₀ = K = ½ m v²

Final  

    [tex]Em_{f}[/tex] = 2 Ke = ½ k x²

The two is placed because each barred has two springs and each does not exert the same force

    Emo = [tex]Em_{f}[/tex]

     ½ m v² = 2 ½ k x²

     v = √(2k/m) x

     v = √ (2 3,134 10⁵/4550) 0.614

     v = 7,207 m / s

Let's take this speed to km / h

     v = 5,096 m / s (1km / 1000m) (3600s / 1h)

     v = 25.9 km / h

This speed is common in school zones

Let's use kinematics to calculate the average acceleration

      vf² = v₀² - 2 a x

       0 = v₀² - 2 a x

       a = v₀² / 2 x

       a = 7,207²/2 0.614

       a = 42.3 m / s²

We buy this acceleration with the acceleration of gravity

       a / g = 42.3 / 9.8

       a / g = 4.3

This acceleration is well below the maximum allowed

A parallel plate capacitor is connected to a battery that maintains a constant potential difference between the plates. If the plates are pulled away from each other, increasing their separation, what happens to the amount of charge on the plates?
a. The amount of the charge decreases, because the capacitance increases.
b. Nothing happens; the amount of charge stays the same.
c. The amount of the charge increases, because the capacitance increases.
d. The amount of the charge increases, because the capacitance decreases.
e. The amount of the charge decreases, because the capacitance decreases.

Answers

When the separation between the plates of a parallel plate capacitor is increased, the amount of charge on the plates decreases due to the decrease in capacitance (option e), with the voltage remaining constant.

When parallel plate capacitor plates are pulled away from each other while connected to a battery maintaining a constant potential difference, the capacitance decreases. This is because the capacitance is inversely proportional to the distance between the plates. As the capacitance decreases, the charge on the plates also decreases since the voltage (V) remains constant, and the relation between charge (Q), capacitance (C), and voltage (V) is given by Q = CV. Therefore, the amount of charge on the plates decreases because the capacitance decreases (option e).

Unpolarized light is passed through an optical filter that is oriented in the vertical direction.
If the incident intensity of the light is 46 W/m2 , what is the intensity of the light that emerges from the filter? (Express your answer to two significant figures.)

Answers

In order to solve this problem it is necessary to apply the concepts related to intensity and specifically described in Malus's law.

Malus's law warns that

[tex]I = I_0 cos^2\theta[/tex]

Where,

[tex]\theta=[/tex] Angle between the analyzer axis and the polarization axis

[tex]I_0 =[/tex]Intensity of the light before passing through the polarizer

The intensity of the beam from the first polarizer is equal to the half of the initial intensity

[tex]I = \frac{I_0}{2}[/tex]

Replacing with our the numerical values we get

[tex]I = \frac{46}{2}[/tex]

[tex]I = 23W/m^2[/tex]

Therefore the  intensity of the light that emerges from the filter is [tex]23W/m^2[/tex]

Model the concrete slab as being surrounded on both sides (contact area 24 m2) with a 2.1-m-thick layer of air in contact with a surface that is 5.0 ∘C cooler than the concrete. At sunset, what is the rate at which the concrete loses thermal energy by conduction through the air layer?

Answers

Final answer:

The rate at which the concrete loses thermal energy by conduction through the air layer can be calculated using Fourier's Law of Heat Conduction. The formula involves the thermal conductivity, area, temperature difference, and thickness of the air layer. However, without the thermal conductivity value for air, the calculation cannot be completed.

Explanation:

To calculate the rate at which the concrete slab loses thermal energy by conduction through the surrounding air layer at sunset, we can apply Fourier's Law of Heat Conduction. This law states that the heat transfer rate (Q) through a material is directly proportional to the temperature difference across the material (ΔT), the area through which heat is being transferred (A), and the thermal conductivity (k), and inversely proportional to the thickness of the material (L).

The formula to calculate the rate of heat loss is given by Q = k*A*(ΔT/L), where ΔT is the temperature difference between the two sides of the material, A is the contact area, k is the thermal conductivity of the material, and L is the thickness of the material.

Unfortunately, without the thermal conductivity value for air in the provided data, we cannot calculate the exact rate of heat loss for this specific scenario. Thermal conductivity is required to solve this problem, and it's typically obtained from tables in textbooks or scientific references.

An aircraft component is fabricated from an aluminum alloy that has a plane strain fracture toughness of 39 . It has been determined that fracture results at a stress of 208 MPa when the maximum (or critical) internal crack length is 2.82 mm. a) Determine the value of for this same component and alloy at a stress level of 270 MPa when the maximum internal crack length is 1.41 mm.

Answers

Answer:

[tex]27.57713\ MPa\sqrt{m}[/tex]

Explanation:

Y = Fracture parameter

a = Crack length

[tex]\sigma[/tex] = Stress in part

Plane strain fracture toughness is given by

[tex]K_I=Y\sigma\sqrt{\pi a}\\\Rightarrow Y=\frac{K_I}{\sigma\sqrt{\pi a}}\\\Rightarrow Y=\frac{39}{270\times \sqrt{\pi 0.00282}}\\\Rightarrow Y=1.53462[/tex]

When a = 1.41 mm

[tex]K_I=Y\sigma\sqrt{\pi a}\\\Rightarrow K_i=1.53462\times 270\sqrt{\pi 0.00141}\\\Rightarrow K_I=27.57713\ MPa\sqrt{m}[/tex]

The value of plane strain fracture toughness is [tex]27.57713\ MPa\sqrt{m}[/tex]

Water flows through a horiztonal pipe at a rate of 94 ft3/min. A pressure gauge placed on a 3.3 inch diameter section of the pipe reads 15 psi.

What is the gauge pressure in a section of pipe where the diameter is 5.2 inches?

Answers

Answer:

The gauge pressure is 1511.11 psi.

Explanation:

Given that,

Flow rate = 94 ft³/min

Diameter d₁=3.3 inch

Diameter d₂ = 5.2 inch

Pressure P₁= 15 psi

We need to calculate the pressure on other side

Using Bernoulli equation

[tex]P_{1}+\dfrac{1}{2}\rho v_{1}^2=P_{2}+\dfrac{1}{2}\rho v_{2}^2[/tex]

We know that,

[tex]V=Av[/tex]

[tex]v=\dfrac{V}{A}[/tex]

Where, V = volume

v = velocity

A = area

Put the value of v into the formula

[tex]P_{1}+\dfrac{1}{2}\rho (\dfrac{V}{A_{1}})^2=P_{2}+\dfrac{1}{2}\rho (\dfrac{V}{A_{2}})^2[/tex]

Put the value into the formula

[tex]15+\dfrac{1}{2}\times0.36\times(\dfrac{2707.2\times4}{\pi\times(3.3)^2})^2=P_{2}+\dfrac{1}{2}\times0.36\times(\dfrac{2707.2\times4}{\pi\times(5.2)^2})^2[/tex]

[tex]P_{2}=15+\dfrac{1}{2}\times0.036\times(\dfrac{2707.2\times4}{\pi\times(3.3)^2})^2-\dfrac{1}{2}\times0.036\times(\dfrac{2707.2\times4}{\pi\times(5.2)^2})^2[/tex]

[tex]P_{2}=1525.8\ psi[/tex]

We need to calculate the gauge pressure

Using formula of gauge pressure

[tex]P_{g}=P_{ab}-P_{atm}[/tex]

Put the value into the formula

[tex]P_{g}=1525.8-14.69[/tex]

[tex]P_{g}=1511.11\ psi[/tex]

Hence, The gauge pressure is 1511.11 psi.

Given: G = 6.67259 × 10−11 N m2 /kg2 . A 438 kg geosynchronous satellite orbits a planet similar to Earth at a radius 1.94 × 105 km from the planet’s center. Its angular speed at this radius is the same as the rotational speed of the Earth, and so they appear stationary in the sky. That is, the period of the satellite is 24 h . What is the force acting on this satellite? Answer in units of N.

Answers

Answer:

449.37412 N

Explanation:

G = Gravitational constant = 6.67259 × 10⁻¹¹ m³/kgs²

m = Mass of satellite = 438 kg

M = Mass of planet

T = Time period of the satellite = 24 h

r = Radius of planet = [tex]1.94\times 10^8\ m[/tex]

The time period of the satellite is given by

[tex]T=2\pi\sqrt{\frac{r^3}{GM}}\\\Rightarrow M=4\pi^2\frac{r^3}{T^2G}\\\Rightarrow M=4\pi^2\times \frac{(1.94\times 10^8)^3}{(24\times 3600)^2\times 6.67259\times 10^{-11}}\\\Rightarrow M=5.78686\times 10^{26}\ kg[/tex]

The gravitational force is given by

[tex]F=G\frac{Mm}{r^2}\\\Rightarrow F=6.67259\times 10^{-11}\times \frac{5.78686\times 10^{26}\times 438}{(1.94\times 10^8)^2}\\\Rightarrow F=449.37412\ N[/tex]

The force acting on this satellite is 449.37412 N

Gravity, is often known as gravitation. The gravitational force between the planet and the satellite can be written as 0.4332 N.

What is gravitational force?

Gravity, often known as gravitation, is the universal force of attraction that acts between all matter in mechanics. It is the weakest known force in nature, and so has no bearing on the interior properties of ordinary matter.

[tex]F =G\dfrac{m_1m_2}{r^2}[/tex]

As it is given that the value of the gravitational constant is G = 6.67259 × 10−11 N m² /kg², while the radius of the planet is 1.94×10⁵. And the time taken by the satellite to revolve around the planet is 24 hours. therefore, the Mass of the planet can be written as,

The Time period of the satellite is given as:

[tex]T = 2\pi \sqrt{\dfrac{r^3}{GM}}[/tex]

Substitute the values in the formula,

[tex]24 = 2\pi \sqrt{\dfrac{(1.94 \times 10^5)^3}{6.67259 \times 10^{-11}M}}\\\\M = 5.78686 \times 10^{17}\rm\ kg[/tex]

Thus, the mass of the planet can be written as 5.5786×10¹⁷ kg.

Now, the gravitational force can be written as,

[tex]F = G\dfrac{Mm}{r^2}\\\\F = 6.67259\times 10^{-11} \times \dfrac{5.5786 \times 10^{17} \times 438}{1.94 \times 10^5}\\\\ F = 0.4332\rm\ N[/tex]

Hence, the gravitational force between the planet and the satellite can be written as 0.4332 N.

Learn more about Gravitational Force:

https://brainly.com/question/2759569

A 44.0 kg uniform rod 4.90 m long is attached to a wall with a hinge at one end. The rod is held in a horizontal position by a wire attached to its other end. The wire makes an angle of 30.0° with the horizontal, and is bolted to the wall directly above the hinge. If the wire can withstand a maximum tension of 1450N before breaking, how far from the wall can a 69.0kg person sit without breaking the wire?

Answers

Answer:

x ≤ 3.6913 m

Explanation:

Given

Mrod = 44.0 kg

L = 4.90 m

Tmax = 1450 N

Mman = 69 kg

A: left end of the rod

B: right end of the rod

x = distance from the left end to the man

If we take torques around the left end as follows

∑τ = 0   ⇒   - Wrod*(L/2) - Wman*x + T*Sin 30º*L = 0

⇒   - (Mrod*g)*(L/2) - (Mman*g)*x + Tmax*Sin 30º*L = 0

⇒  -  (44*9.8)*(4.9/2) - (69*9.8)*x + (1450)*(0.5)*(4.9) = 0

⇒ x ≤ 3.6913 m

Planets are not uniform inside. Normally, they are densest at the center and have decreasing density outward toward the surface. Model a spherically symmetric planet, with the same radius as the earth, as having a density that decreases linearly with distance from the center. Let the density be 1.30×104 kg/m3 at the center and 2100 kg/m3 at the surface. Part A What is the acceleration due to gravity at the surface of this planet?

Answers

Final answer:

The acceleration due to gravity at the surface of a planet depends on its mass and radius, and assumes a uniform density. Since your model has a density that decreases linearly from the center to the surface, the exact value for gravity would require integration over the volume of the planet to account for mass distribution. This arrangement involves advanced calculus.

Explanation:

The acceleration due to gravity at the surface of any planet, including Earth, is determined by a constant (G), the mass of the planet (M), and the radius of the planet (R). The formula is g = GM/R². However, this calculation assumes a uniform density throughout the planet, which is often not the case. In reality, like in your model where the density decreases linearly from the center to the surface, finding the precise acceleration due to gravity at the surface becomes more complicated and involves integration over the entire volume of the planet to account for how the mass is distributed.

Given that you provided the densities at the center and surface of the modeled planet, and these densities decrease linearly, one can utilize the formula for the linear density ρ(r) = ρ_center - r(ρ_center - ρ_surface)/R, where R is the radius of the planet, r is the distance from the center, and ρ_center and ρ_surface are the density at the center and surface, respectively. Then, integrate over the volume of the planet to find the total mass.

Once you have the mass, you can use the formula g = GM/R² again to find the acceleration due to gravity at the surface. However, this calculation goes beyond a basic understanding of gravity and requires knowledge of calculus. Without specific numbers for the mass and the integration result, I cannot provide the exact value for surface gravity in this case.

Learn more about Gravity here:

https://brainly.com/question/31321801

#SPJ12

Final answer:

The acceleration due to gravity at a planet's surface depends on the planet's radius, mass and the linear decrease of density from center to surface. The formula of this acceleration is G×M/r², considering that M is the planet's mass obtained by the product of volume and average density. However, as the density changes linearly, the force of gravity also decreases linearly from the center to the surface.

Explanation:

To calculate the acceleration due to gravity at the surface of the planet, we have to consider the planet's radius, mass and density. Given the density at the center and surface, we can calculate the average density which is the total mass of the planet divided by the total volume. In this spherically symmetric planet model, we can use the formula for the volume of a sphere, which is 4/3πr³, with r being the Earth's radius. We consider that mass (M) equals density (ρ) times volume (V), and the force of gravity (F) is G×(M1×M2)/r², where G is the gravitational constant. In this case, M1 is the mass of the planet and M2 is the mass of the object where we want to know the acceleration, and r is the distance between the centers of the two masses, or in this case the radius of the planet. As force is also mass times acceleration, we can replace F in the formula with M2 times a (acceleration), and find that acceleration is G×M1/r². However, as the density changes linearly from the center to the surface, the force of gravity will also decrease linearly, affecting the acceleration.

Learn more about Acceleration due to gravity here:

https://brainly.com/question/21775164

#SPJ11

Other Questions
In washingtons farewell address, he warned about potential dangers facing the future of the untied states. what are some of the dangers When Shelly downloaded an arcade game from an unknown Internet Web site, an unauthorized connection unknown to Shelly was established with her computer. The arcade game is most likely to be ________. A. adware B. a Trojan horse C. spyware D. encryption E. a worm. The area of a triangle is 72 cm2. The height of the triangle is 8 cm. What is the measure of the base of the triangle? A. 18 cm B. 36 cm C. 27 cm D. 32 cm 3x +10 < 3 or 2x -5 > 5 Combustion of hydrocarbons such as butane () produces carbon dioxide, a "greenhouse gas." Greenhouse gases in the Earth's atmosphere can trap the Sun's heat, raising the average temperature of the Earth. For this reason there has been a great deal of international discussion about whether to regulate the production of carbon dioxide. Write a balanced chemical equation, including physical state symbols, for the combustion of gaseous butane into gaseous carbon dioxide and gaseous water. 2. Suppose 0.360 kg of butane are burned in air at a pressure of exactly 1 atm and a temperature of 20.0 C. Calculate the volume of carbon dioxide gas that is produced Be sure your answer has the correct number of significant digits. Which of the following was not a part of the Niagara Movement's platform? Calculate the standard enthalpy change for the reaction at 25 25 C. Standard enthalpy of formation values can be found in this list of thermodynamic properties. Mg ( OH ) 2 ( s ) + 2 HCl ( g ) MgCl 2 ( s ) + 2 H 2 O ( g ) The Pacific halibut fishery has been modeled by the differential equation dy dt = ky 1 y K where y(t) is the biomass (the total mass of the members of the population) in kilograms at time t (measured in years), the carrying capacity is estimated to be K = 9107 kg, and k = 0.75 per year. (a) If y(0) = 2107 kg, find the biomass a year later. (Round your answer to two decimal places.) 107 kg (b) How long will it take for the biomass to reach 4107? (Round your answer to two decimal places.) years Compare and Contrast the ways that Fredrick Douglass and Satchel Paige helped to achieve positive changes for African Americans? Why is there higher starch content in unripe bananas What is the purpose of the united states bill of rights? The standard or amount of evidence necessary to affect the arrest of an individual or that induces the belief in the minds of a reasonable officer that the accused probably committed a crime is known as ________. Consider a rod of length L rotated about one of its ends instead of about its center of mass. If the mass of the rod is 5 kg, and the length is 2 meters, calculate the magnitude of the moment of inertia (I). To synthesize DNA, what does telomerase use as a template?A. It uses RNA that is already a component of telomerase.B. It uses the 3' OH of an RNA primer on the opposite strand of DNA.C. It uses the DNA in the 3' overhang of the DNA.D. It uses RNA in the 3' overhang of the DNA.E. Telomerase does not synthesize DNA. How far does a ca4 go A display of 12 letters is flashed on a screen in front of you, followed by a tone. You attempt to recall a portion of the display based on the specific tone you heard. What aspect of your memory is this experiment designed to assess? A. primary memory B. sensory memory C. long-term memory D. short-term memory Round 8.795 to the nearest cent You want lose an average of 4 pounds per month on a new weight loss program. In the first 3 months, you lost 3 pounds, 7 pounds and 4 pounds. How much weight must you lose during the fourth month to maintain an average weight loss to 4 pounds per month Greta wants to do a study on how self-efficacy changes over the life span. Her primary concerns are economic she needs to do the study in the way that will cost the least in terms of time and money. Given these concerns, she is probably going to be best served doing a(n) ____study. Can someone please add a simile or metaphor to these sentences.Please ASAP