which methods could you use to calculate the y-coordinate of the midpoint of a vertical line segment with endpoints at (0,0) and (0,15)

Which Methods Could You Use To Calculate The Y-coordinate Of The Midpoint Of A Vertical Line Segment

Answers

Answer 1

Answer:

Option D. Divide 15 by 2

Step-by-step explanation:

we know that

To find the y-coordinate of the midpoint of a vertical line, adds the y-coordinates of the endpoints and divide by two

we have the endpoints

(0,0) and (0,15)

The y-coordinate of the midpoint is (0+15)/2=15/2=7.5

therefore

Divide 15 by 2

Answer 2

Answer:

the answer is to count by hands ( A ) and divide 15 by 2 ( D )

Step-by-step explanation:


Related Questions

Washing his dad's car alone, eight-year-old Levi takes 2.5 hours. If his dad helps him, then it takes 1 hour. How long does it take Levi's dad to wash the car by himself

Answers

Answer:

1 hour and 40 minutes

Step-by-step explanation:

Levi's dad takes time to wash the car by himself is 1.667 hours which is 1 hour and 40 minutes.

What are ratio and proportion?

A ratio is an ordered couple of numbers a and b, written as a/b where b can not equal 0. A proportion is an equation in which two ratios are set equal to each other.

Washing his dad's car alone, eight-year-old Levi takes 2.5 hours. If his dad helps him, then it takes 1 hour.

Levi's dad take time to wash the car by himself will be

We know that the time is inversely proportional to the work.

Let t₁ is the time taken by Levi and t₂ is the time taken by Levi's dad.

We know that the formula

[tex]\begin{aligned} \dfrac{1}{t_1} + \dfrac{1}{t_2} &= 1\\\\\dfrac{1}{2.5} +\dfrac{1}{t_2} &= 1\\\\\dfrac{1}{t_2} &= 1 - \dfrac{1}{2.5}\\\\\dfrac{1}{t_2} &= \dfrac{3}{5}\\\\t_2 &= \dfrac{5}{3}\\\\t_2 &= 1.667 \end{aligned}[/tex]

Levi's dad takes time to wash the car by himself is 1.667 hours which is 1 hour and 40 minutes.

More about the ratio and the proportion link is given below.

https://brainly.com/question/14335762

Find the volume of the sphere.

Answers

Answer:

[tex]\frac{\pi }{6}[/tex]

Step-by-step explanation:

The volume of a sphere is [tex]\frac{4}{3} \pi r^{3}[/tex]

Just plug in 1/2 for r

[tex]\frac{4}{3} \pi (\frac{1}{2}) ^{3}[/tex]

The answer is [tex]\frac{\pi }{6}[/tex]

(WILL MARK BRAINIEST PLEASE ASSIST) Define the inverse secant function by restricting the domain of the secant function to the intervals: 0,π2 and π2,π and sketch the inverse function’s graph.

Answers

Answer:

  see the attachment

Step-by-step explanation:

The graph attached shows the secant function in red. The restriction to the interval [0, π/2] is highlighted by green dots, and the corresponding inverse function is shown by a green curve.

The restriction to the interval [π/2, π] is highlighted by purple dots, and the corresponding inverse function is shown in purple.

The dashed orange line at y=x is the line over which a function and its inverse are mirror images of each other.

In the system below, use equation (1) with equation (2) to eliminate x. Then use equation (1) with equation (3) to eliminate x. x-y-2z=4 (1) -x+3y-z=8 (2) -2x-y-4z=-1 (3) What is the new 2 × 2 system?

Answers

Answer:

2y -3z = 12-3y -8z = 7

Step-by-step explanation:

(1) +(2) ⇒ (x -y -2z) +(-x +3y -z) = (4) +(8)

  2y -3z = 12

__

2(1) +(3) ⇒ 2(x -y -2z) +(-2x -y -4z) = 2(4) +(-1)

  -3y -8z = 7

___

The reduced system of equations is ...

2y -3z = 12-3y -8z = 7

Answer:

2y - 3z = 12.

-3y - 8z = 7.

Step-by-step explanation:

x - y - 2z = 4     (1)

-x + 3y - z = 8    (2)

-2x - y - 4z = -1   (3)

Adding (1) + (2):

2y - 3z = 12.

2 * (1) + (3) gives:

-3y - 8z = 7.

What is the slope of the line passing through the points (2,-5) and(4,1)

Answers

[tex]\bf (\stackrel{x_1}{2}~,~\stackrel{y_1}{-5})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{1}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{1-(-5)}{4-2}\implies \cfrac{1+5}{2}\implies \cfrac{6}{2}\implies 3[/tex]

Select the correct answers in the table.

Answers

Answer:

  see below

Step-by-step explanation:

To find miles per hour, divide miles by hours:

  (5 2/3 mi)/(2 2/3 h) = (17/3 mi)/(8/3 h) = (17/8) mi/h = 2 1/8 mi/h

Hours per mile is the reciprocal of that:

  1/(17/8 mi/h) = 8/17 h/mi

PLEASE HELP ME WITH THIS MATH QUESTION

Answers

Answer:

  C'(4, 4)

Step-by-step explanation:

We assume dilation is about the origin, so all coordinates are multiplied by the scale factor:

  C' = 2C = 2(2, 2) = (4, 4)

The area of rectangle ABCD is 72 square inches. A diagonal of rectangle ABCD is 12 inches and the diagonal of rectangle EFGH is 22 inches. Find the area of rectangle EFGH. Round to the nearest square inch if necessary.

Answers

Answer:

The area of rectangle EFGH is [tex]242\ in^{2}[/tex]

Step-by-step explanation:

For this problem I assume that rectangle ABCD and rectangle EFGH are similar

step 1

Find the scale factor

we know that

If two figures are similar, then the ratio of its corresponding sides is proportional, and this ratio is called the scale factor

Let

z ------> the scale factor

The scale factor is the ratio between the diagonals of rectangles

so

[tex]z=\frac{22}{12}=\frac{11}{6}[/tex]

step 2

Find the area of rectangle EFGH

we know that

If two figures are similar, then the ratio of its areas is the scale factor squared

Let

z------> the scale factor

x -----> area of rectangle EFGH

y ----> area of rectangle ABCD

so

[tex]z^{2}=\frac{x}{y}[/tex]

we have

[tex]z=\frac{11}{6}[/tex]

[tex]y=72\ in^{2}[/tex]

substitute and solve for x

[tex](\frac{11}{6})^{2}=\frac{x}{72}[/tex]

[tex]\frac{121}{36}=\frac{x}{72}[/tex]

[tex]x=\frac{121}{36}(72)[/tex]

[tex]x=242\ in^{2}[/tex]

The area of rectangle EFGH is approximately 242 square inches.

To find the area of rectangle EFGH given the diagonal lengths of both rectangles and the area of rectangle ABCD, we need to use the properties of rectangles and their diagonals.

Step 1: Analyze Rectangle ABCD

For rectangle ABCD:

- Area [tex]\(A_{ABCD} = 72\)[/tex] square inches

- Diagonal [tex]\(d_{ABCD} = 12\)[/tex] inches

We know the area of a rectangle is given by:

[tex]\[ \text{Area} = \text{length} \times \text{width} \][/tex]

Let the length be l and the width be w. So,

[tex]\[ l \times w = 72 \][/tex]

Also, for the diagonal of a rectangle, we use the Pythagorean theorem:

[tex]\[ d = \sqrt{l^2 + w^2} \]\\Given \(d_{ABCD} = 12\),\[ 12 = \sqrt{l^2 + w^2} \]\[ 144 = l^2 + w^2 \][/tex]

Step 2: Solve for l and w

We have two equations:

[tex]1. \( l \times w = 72 \)\\2. \( l^2 + w^2 = 144 \)[/tex]

We can solve these equations simultaneously. First, express \(w\) in terms of \(l\):

[tex]\[ w = \frac{72}{l} \]\\Substitute this into the second equation:\[ l^2 + \left(\frac{72}{l}\right)^2 = 144 \]\[ l^2 + \frac{5184}{l^2} = 144 \][/tex]

Multiply every term by [tex]\(l^2\)[/tex] to clear the fraction:

[tex]\[ l^4 + 5184 = 144l^2 \]\[ l^4 - 144l^2 + 5184 = 0 \]Let \(x = l^2\). Then the equation becomes:\[ x^2 - 144x + 5184 = 0 \][/tex]

Solve this quadratic equation using the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]\[ x = \frac{144 \pm \sqrt{144^2 - 4 \cdot 1 \cdot 5184}}{2 \cdot 1} \]\[ x = \frac{144 \pm \sqrt{20736 - 20736}}{2} \]\[ x = \frac{144 \pm 0}{2} \]\[ x = 72 \][/tex]

So, [tex]\( l^2 = 72 \) and \( w^2 = 72 \)[/tex]. Therefore:

[tex]\[ l = \sqrt{72} = 6\sqrt{2} \]\[ w = \sqrt{72} = 6\sqrt{2} \][/tex]

Step 3: Analyze Rectangle EFGH

For rectangle EFGH:

- Diagonal [tex]\(d_{EFGH} = 22\)[/tex] inches

Let the length be L and the width be W. The relationship for the diagonal is:

[tex]\[ d_{EFGH} = \sqrt{L^2 + W^2} \]Given \(d_{EFGH} = 22\),\[ 22 = \sqrt{L^2 + W^2} \]\[ 484 = L^2 + W^2 \][/tex]

Step 4: Determine Area of Rectangle EFGH

Since the diagonals scale, we assume the rectangles are similar. Thus, the ratios of the corresponding sides (lengths and widths) are the same, and their areas scale with the square of the ratio of the diagonals:

[tex]\[ \text{Area ratio} = \left(\frac{d_{EFGH}}{d_{ABCD}}\right)^2 = \left(\frac{22}{12}\right)^2 = \left(\frac{11}{6}\right)^2 = \frac{121}{36} \][/tex]

So, the area of EFGH is:

[tex]\[ A_{EFGH} = A_{ABCD} \times \frac{121}{36} = 72 \times \frac{121}{36} = 72 \times 3.3611 \approx 242 \text{ square inches} \][/tex]

Thus, the area of rectangle EFGH is approximately 242 square inches.

There are 527 pencils,646 erasers and 748 sharpeners. These are to be put in separate packets containing the same number of items.find the maximum number of items possible in each packet.

Answers

Answer:

31 pencils38 erasers44 sharpeners

Step-by-step explanation:

The number of packets is the greatest common divisor of the given numbers of pencils, erasers, and sharpeners.

It can be helpful to look at the differences between these numbers:

  748 -646 = 102

  646 -527 = 119

The difference of these differences is 17, suggesting that will be the number of packets possible.

  527 = 17 × 31

  646 = 17 × 38

  748 = 17 × 44

The numbers 31, 38, and 44 are relatively prime (31 is actually prime), so there can be no greater number of packets than 17.

There will be 31 pencils, 38 erasers, and 44 sharpeners in each of the 17 packets.

_____

We may have worked the wrong problem. The way it is worded, the maximum number of items in each packet will be 527 pencils, 646 erasers, and 748 sharpeners in one (1) packet. The minimum number of items in each packet will be the number that corresponds to the maximum number of packets. Since 17 is the maximum number of packets, each packet's contents are as described above.

17 is the only common factor of the given numbers, so will be the number of groups (plural) into which the items can be arranged.

A circular jogging track forms the edge of a circular lake that has a diameter of 2 miles. Johanna walked once around the track at the average rate of 3 miles per hour. If t represents the number of hours it took Johanna to walk completely around the lake, which of the following is a correct statement?
A. 0.5
B. 1.75
C. 2.0
D. 2.5
E. 3

Answers

Answer:

Given:

Diameter of lake = 2 miles

∴ [tex]Radius = \frac{Diameter}{2}[/tex] = 1 miles  

The circumference of the lake can be computed as :

Circumference = 2πr

Circumference = 2×3.14×1 = 6.28 miles

This circumference is the total distance traveled by Johanna.

We are give the speed at which Johanna jogs, i.e. Speed = 3 miles/hour

∴ Time taken by Johanna to jog around the lake is given as :

[tex]Time = \frac{Distance}{Speed}[/tex]

Time = 2.093 hours

∴ The correct option is (c.)

HELLPPPPP!!!!
Which two of the functions shown here have identical graphs and why?

Answers

Answer:

Answer C

Step-by-step explanation:

Logs work that way. When you subtract one log from another, you can rewrite it as a fraction.

f and h, because the log of a quotient is the difference of the log.

The answer is option C.

Logs work that way. When you subtract one log from another, you can rewrite it as a fraction.

What do logs mean?

A logarithm is a power to which a range of should be raised for you to get a few different wide varieties (see segment 3 of this Math evaluate for extra approximately exponents). As an example, the bottom ten logarithms of a hundred is two because ten raised to the electricity of is one hundred: log a hundred = 2.

Learn more about logarithm here: https://brainly.com/question/25710806

#SP2

Consider the function f(x) = 2X and the function g(x).
How will the graph of g(x) differ from the graph of f(x)?

Answers

Answer:

(A)

Step-by-step explanation:

Answer:

Option A is correct.

Step-by-step explanation:

Given  : [tex]f(x) =2^{x}[/tex] and [tex]g(x) =2^{x+4}[/tex].

To find : How will the graph of g(x) differ from the graph of f(x).

Solution : We have given that  

[tex]f(x) =2^{x}[/tex] and g(x)   [tex]g(x) =2^{x+4}[/tex]

By the transformation Rule : If f(x) →→ f(x +h) if mean graph of function shifted to left by h units .

Then  graph of [tex]g(x) =2^{x+4}[/tex] is the graph of [tex]f(x) =2^{x}[/tex] is shifted by 4 unt left.

Therefore, Option A is correct.

A grocer wants to make a 10-pound mixture of peanuts and cashews that he can sell for $4.75 per pound. If peanuts cost $4.00 per pound and cashews cost $6.50 per pound, how many pounds of each should he use?

Answers

Answer:

3lbs of Cashews

Step-by-step explanation:

lbs of Cashews, and 7 lbs of Peanuts

$4.00P + 6.50C = ($4.75/lbs)(10lbs)

$4.00(7) + $6.50(3) = $47.50

$28.00 + $19.50 = $47.50

$47.50 = $47.50

Therefore it's 3lbs of Cashews

Answer:

3lbs of Cashews

hope it helps! x

brainliest plus 10 points! simplify
6y^2-6/8y^2+8y÷3y-3/4y^2+4

Answers

Answer:

  (y² +1)/y

Step-by-step explanation:

Invert the denominator fraction and multiply. Factor the difference of squares.

[tex]\displaystyle\frac{\left(\frac{6y^2-6}{8y^2+8y}\right)}{\left(\frac{3y-3}{4y^2+4}\right)}=\frac{6(y^2-1)}{8y(y+1)}\cdot\frac{4(y^2+1)}{3(y-1)}\\\\=\frac{24(y+1)(y-1)(y^2+1)}{24y(y+1)(y-1)}=\frac{y^2+1}{y}[/tex]

An employee who earned $550 a week working 35 hours had her pay increased by 5 percent. Later, her hours were reduced to 30 per week, but the new hourly rate of pay was retained. What was her new amount of weekly pay?

Answers

Answer:

  $495

Step-by-step explanation:

After the 5% raise, her weekly pay was ...

  $550 × 1.05 = $577.50

If she works 35 hours for that pay, her hourly rate is

  $577.50/35 = $16.50

Then, working 30 hours, her weekly pay will be ...

  30 × $16.50 = $495.00

Final answer:

To find the new amount of weekly pay, multiply the increase in pay by the new number of hours. The new amount is $577.50.

Explanation:

To find the new amount of weekly pay, we need to calculate the increase in pay and then multiply it by the new number of hours.

The employee's pay increased by 5 percent. This means the pay increased by 5% of $550, which is equal to 0.05  imes 550 = $27.50.

Her new hourly rate of pay is the same, so it remains at $550 + $27.50 = $577.50.

Finally, we need to calculate the new amount of weekly pay, taking into account the reduced number of hours. The new pay per hour is $577.50 / 30 = $19.25. Multiply this by the new number of hours to get the new amount of weekly pay: $19.25  imes 30 = $577.50.

Jason considered two similar televisions at a local electronics store. The generic version was based on the brand name and was 35 the size of the brand name. If the generic television set is 16 inches by 40 inches, what are the dimensions of the brand name television?

List the dimensions of the brand name television.

Show your work.

Answers

Answer:

The dimensions of the brand name television are [tex]26\frac{2}{3}\ in[/tex] by  [tex]66\frac{2}{3}\ in[/tex]

Step-by-step explanation:

we know that

The generic version was based on the brand name and was 3/5 the size of the brand name

Let

x----> the length of the size of the brand name

y----> the width of the size of the brand name

Find the length of the size of the brand name

we know that

[tex]40=\frac{3}{5}x[/tex] -----> equation A

Solve for x

Multiply by 5 both sides

[tex]5*40=3x[/tex]

Rewrite and divide by 3 both sides

[tex]x=200/3\ in[/tex]

Convert to mixed number

[tex]200/3=(198/3)+(2/3)=66\frac{2}{3}\ in[/tex]

Find the width of the size of the brand name

we know that

[tex]16=\frac{3}{5}y[/tex] -----> equation B

Solve for y

Multiply by 5 both sides

[tex]5*16=3y[/tex]

Rewrite and divide by 3 both sides

[tex]x=80/3\ in[/tex]

Convert to mixed number

[tex]80/3=(78/3)+(2/3)=26\frac{2}{3}\ in[/tex]

PLEASE HELLLPPP!!!! WILL GET BRAINIEST!!
Solve the equation for 0 ≤ x < 360.


tan(x) + 1 = -1

45 degrees
63 degrees
Both A and B
Does not exist.

Answers

Answer:

  x = 117°, 297°

Step-by-step explanation:

Subtract 1 from both sides of the equation and you have ...

  tan(x) = -2

Then the arctangent function tells you ...

  x = arctan(-2) ≈ 116.5651°, 296.5651°

  x ≈ 117° or 297°

a jet fighter accelerates at 17.7 m/s^2 increasing its velocity from 119 m/s to 233 m/s how much time does that take

Answers

If its acceleration is constant, then it is equal to the jet's average velocity, given by

[tex]a=a_{\rm ave}=\dfrac{\Delta v}{\Delta t}[/tex]

Then it takes

[tex]17.7\dfrac{\rm m}{\mathrm s^2}=\dfrac{233\frac{\rm m}{\rm s}-119\frac{\rm m}{\rm s}}{\Delta t}\implies\Delta t=\boxed{6.44\,\mathrm s}[/tex]

Answer:

The time taken by the jet is 6.44 seconds.

Step-by-step explanation:

It is given that,

Acceleration of the jet, [tex]a=17.7\ m/s^2[/tex]

Initial velocity of the jet, u = 119 m/s

Final velocity of the jet, v = 233 m/s

Acceleration of an object is given by :

[tex]a=\dfrac{v-u}{t}[/tex]

[tex]t=\dfrac{v-u}{a}[/tex]

[tex]t=\dfrac{233-119}{17.7}[/tex]

t = 6.44 seconds

So, the time taken by the jet is 6.44 seconds. Hence, this is the required solution.

A wholesaler requires a minimum of 4 items in each order from its retail customers. The manager of one retail store is considering ordering a certain number of sofas, x, and a certain number of pillows that come in pairs, y. Which graph represents the possible combinations of sofa and pillow orders the manager can have?

Answers

Answer:

Option D

Step-by-step explanation:

We have the following variable definitions:

sofas: x

pillows: y

Pillows come in pairs so we have 2y pillows

The total order for all the possible combinations is:

[tex]x+2y[/tex]

The wholesaler requires a minimum of 4 items in each order from its retail customers. This means the retailers can order 4 or more.

Therefore the inequality is:

[tex]x+2y\ge4[/tex]

To graph this inequality, we graph the corresponding linear equation, [tex]x+2y=4[/tex]  with a solid line and shade above.

The correct choice is D

See attachment

Answer:The last graph is the right one

What is the sum of the geometric series?
4
E (-2)(-3)^n-1
n=1

A. –122
B. –2
C. 40
D. 54

Answers

[tex]

\Sigma_{n=1}^{4}-2\cdot(-3)^{n-1} \\

(-2)(-3)^{1-1}+(-2)(-3)^{2-1}+(-2)(-3)^{3-1}+(-2)(-3)^{4-1} \\

-2+6-18+54 \\

\boxed{40}

[/tex]

So the answer is C,

[tex]\Sigma_{n=1}^{4}-2\cdot(-3)^{n-1}=40[/tex]

Hope this helps.

r3t40

The sum of the finite geometric series (-2)(-3)ⁿ⁻¹ for n=1 to n=4 is 40, calculated using the geometric series sum formula.So,option C is correct.

The sum of a finite geometric series with a general term given as (-2)(-3)ⁿ⁻¹ where 'n' ranges from 1 to 4. To find the sum of a geometric series, we need to identify the first term (a) and the common ratio (r), and then use the formula Sₙ = a(1 - rⁿ) / (1 - r), where n is the number of terms.

The first term of the series can be found by substituting n = 1 into the general expression, yielding a = (-2)(-3)¹⁻¹ = -2. The second term, with n = 2, is (-2)(-3)²⁻¹ = -6(-3) = 18, indicating a common ratio of -3.

Thus, the sum of the series for the first four terms can be calculated as:

S₄ = (-2)(1 - (-3)⁴) / (1 - (-3))

S₄= (-2)(1 - 81) / (1 + 3)

S₄= (-2)(-80) / 4

S₄ = 160 / 4

S₄ = 40

Therefore, the sum of the given geometric series is 40.

HELP!!
Type the correct answer in each box. Round the vector’s magnitude to the nearest tenth.
Vector u has its initial point at (14, -6) and its terminal point at (-4, 7). Write the component form of u and find its magnitude.

Answers

Answer:

Component form of u is (-18,13)

The magnitude of u is 22.2

Step-by-step explanation:

The component form of a vector is an ordered pair that describe the change is x and y values

This is mathematically expressed as (Δx,Δy) where Δx=x₂-x₁ and Δy=y₂-y₁

Given ;

Initial points of the vector as (14,-6)

Terminal point of the vector as (-4,7)

Here x₁=14,x₂=-4, y₁=-6 ,y₂=7

The component form of the vector u is (-4-14,7--6) =(-18,13)

Finding Magnitude of the vector

║u=√(x₂-x₁)²+(y₂-y₁)²

║u=√-18²+13²

║u=√324+169

║u=√493

║u=22.2

To travel 80 miles, it takes Sue, riding a moped, 2 hours less time than it takes Doreen to travel 60 miles riding a bicycle. Sue travels 10 miles per hour faster than Doreen. Find the times and rates of both girls.

Answers

Answer:

Time taken by Doreen is 6 hours and speed is 10 miles per hour.

Time taken by Sue is 4 hours and speed is 20 miles per hour.

Step-by-step explanation:

Let the speed of Doreen be x

According to the question  speed of Sue   is = x+10

time  taken By Sue to cover 80 miles = [tex]\frac{80}{x+10}[/tex]

time taken by Doreen to travel 60 miles = [tex]\frac{60}{x}[/tex]

According to question Sue take two hours less than Doreen takes

therefore

[tex]\frac{60}{x}[/tex] - [tex]\frac{80}{x+10}[/tex] =2

[tex]\frac{60(x+10)-80x}{x(x+10)}[/tex] =2

60(x+10) -80x = 2(x(x+10)

60x+600-80x = [tex]2x^2+20x\\[/tex]

simplifying it ,we get

[tex]2x^2+40x-600=0\\[/tex]

Dividing both sides by 2 ,we get

[tex]x^2+20x-300=0\\[/tex]

solving it for x ,we get

(x+30)(x-10) =0

x =-30 which is not possible

x =10 miles per hour

Speed of Doreen = 10 miles per hour

Speed of Sue = 10+10 = 20 miles per hour

Time taken by Doreen = 60 divided by 10 = 6 hours

Time taken  by Sue = 80 divided by 20 = 4 hours

Final answer:

In conclusion, Doreen travels at a speed of 30 mph, taking her 4 hours to travel 60 miles. Sue, on the other hand, travels at a speed of 40 mph, taking her 2 hours to travel 80 miles.

Explanation:

This problem is a classic example of distance, rate, and time relations in mathematics. Let's start by denoting Sue's speed as x mph, the Doreen's speed would then be x-10 mph. We know that time is equal to distance divided by speed. So, the time it takes Sue to travel 80 miles would be 80/x hours and the time it takes Doreen to travel 60 miles would be 60/(x-10) hours. The question states that Sue's travel time is 2 hours less than Doreen's. Therefore, we can form the equation: 60/(x-10) = 80/x + 2. Solving this equation, we find that x equals 40 mph, which is Sue's speed and Doreen's speed is 30 mph. Consequently, the time it takes Sue to travel 80 miles is 2 hours and for Doreen to travel 60 miles is 4 hours.

Learn more about Distance, Rate, Time Relations here:

https://brainly.com/question/4480564

#SPJ11

In the figure below, if angle T measures 130 degrees, what is the measure of angle Q?

Answers

Circle theorem:

The angle at the centre (T) is double the angle at the circumference (Q)

---> That also means that:

The angle at the circumference (Q) is half the angle at the centre (T)

Since T = 130 degrees;

Q = 130 divided by 2

   = 65°

___________________________________

Answer:

∠Q = 65°

Answer:

m<Q = 65°

Step-by-step explanation:

It is given that <T = 130°

To find the <Q

From the figure we can see that <T is the central angle made by the arc RS

And <Q is the angle made by the arc RS on minor arc.

We know that m<Q = (1/2)m<T

We have m<T = 130°

Therefore m<Q = 130/2 = 65°

PLEASE HELP ME!! D:

Use the graph of the line to answer the questions.

What is an equation of the line in point-slope form?

How can the point-slope form be written in function notation?

Answers

Answer:

Point-slope form:

[tex]y-0=\frac{1}{3} (x-1)\\f(x)-0=\frac{1}{3}(x-1)[/tex]

Slope-intercept form:

[tex]y=\frac{1}{3}x-\frac{1}{3} \\f(x)=\frac{1}{3} x-\frac{1}{3}[/tex]

Step-by-step explanation:

You have points on that line at (-2, -1) and (1, 0). To find your slope using those points, use the slope formula.

[tex]\frac{y2-y1}{x2-x1} \\\\\frac{0-(-1)}{1-(-2)} \\\\\frac{0+1}{1+2} \\\\\frac{1}{3}[/tex]

Now that we have your slope, you can use your slope and one of your points to write an equation in point-slope form.

[tex]y-y1=m(x-x1)\\y-0=\frac{1}{3} (x-1)\\y=\frac{1}{3} x-\frac{1}{3}[/tex]

To put it in function notation, substitute y for f(x).

[tex]f(x)-0=\frac{1}{3} (x-1)\\f(x)=\frac{1}{3} x-\frac{1}{3}[/tex]

First answer is y+1=(1/3) (x+2)

Second answer is f(x) =(1/3) x-(1/3)

Find the values of x in this equation: x – 15 / x = 2.


A) -7, 3

B) -5, 2

C) -7, 5

D) -2, 5

E) -3, 5

Answers

Answer:

E) -3, 5

Step-by-step explanation:

x – 15 / x = 2

x^2 - 15 = 2x

x^2 - 2x - 15 = 0

(x - 5)(x + 3) = 0

x - 5 = 0; x = 5

x + 3 = 0; x = -3

Solutions: -3, 5

For this case we must solve the following equation:

[tex]x- \frac {15} {x} = 2[/tex]

We manipulate the equation algebraically:

[tex]\frac {x ^ 2-15} {x} = 2\\x ^ 2-15 = 2x\\x ^ 2-2x-15 = 0[/tex]

To solve, we factor the equation. We must find two numbers that when multiplied by -15 and when summed by -2. These numbers are:

+3 and -5.

[tex](x + 3) (x-5) = 0[/tex]

So, the roots are:

[tex]x_ {1} = - 3\\x_ {2} = 5[/tex]

Answer:

Option E

What is the product?

Answers

Answer:

=20s³+50s²+32s+6

Step-by-step explanation:

We multiply each of the term in the initial expression by the the second expression as follows:

4s(5s²+10s+3)+2(5s²+10s+3)

=20s³+40s²+12s+10s²+20s+6

Collect like terms together.

=20s³+50s²+32s+6

Find the value of Y [Inscribed Angle]

Answers

Check the picture below.

Answer:

x = 60°

Step-by-step explanation:

From ΔOPQ,

∠OPQ = 120°   [ angle at the center inscribed by arc PQ ]

PQ ≅ OQ

so opposite angles to PQ and OQ will be equal

∠OPQ  ≅ ∠OQP

∠OPQ + ∠OQP + ∠POQ = 180°

∠OPQ + ∠OPQ + 120 = 180°

2∠OPQ = 180 - 120 = 60°

∠OPQ = 30°

Since radius OP is perpendicular to tangent.

so ∠OPQ + Y = 90°

y + 30° = 90°

y = 90 - 30 = 60°

Answer x = 60°

y=2x^2 y^2=x^2+6x+9 What is a possible solution for x in the system of equations above?

Answers

Answer:

So we have the two real points (3/2 , 9/2)  and (-1,2).

(Question: are you wanting to use the possible rational zero theorem? Please let me know if I didn't answer your question.)

Step-by-step explanation:

y=2x^2

y^2=x^2+6x+9

is the given system.

So my plain here is to look at y=2x^2 and just plug it into the other equation where y is.

(2x^2)^2=x^2+6x+9

(2x^2)(2x^2)=x^2+6x+9

4x^4=x^2+6x+9

I'm going to put everything on one side.

Subtract (x^2+6x+9) on both sides.

4x^4-x^2-6x-9=0

Let's see if some possible rational zeros will work.

Let' try x=-1.

4-1+6-9=3+(-3)=0.

x=-1 works.

To find the other factor of 4x^4-x^2-6x-9 given x+1 is a factor, I'm going to use synthetic division.

-1   |  4     0     -1     -6    -9

    |         -4     4     -3      9

    |________________ I put that 0 in there because we are missing x^3

        4    -4     3     -9      0

The the other factor is 4x^3-4x^2+3x-9.

1 is obviously not going to make that 0.

Plug in -3 it gives you 4(-3)^3-4(-3)^2+3(-3)-9=-162 (not 0)

Plug in 3 gives you 4(-3)^3-4(-3)^2+3(-3)-9=72 (not 0)

Plug in 3/2 gives you 4(3/2)^2-4(3/2)^2+3(3/2)-9=0 so x=3/2 works as a solution.

Now let's find another factor

3/2  |     4       -4           3        -9

      |                6           3          9

      |________________________

            4          2           6        0

So we have 4x^2+2x+6=0.

The discriminant is b^2-4ac which in this case is (2)^2-4(4)(6). Simplifying this gives us (2)^2-4(4)(6)=4-16(6)=4-96=-92.  This is negative number which means the other 2 solutions are complex (not real).

So the other real solutions that satisfy the system is for x=3/2 or x=-1.

Since y=2x^2 then for x=3/2 we have y=2(3/2)^2=2(9/4)=9/2 and for x=-1 we have y=2(1)^2=2.

So we have the two real points (3/2 , 9/2)  and (-1,2)

I would like some help with this question plz

Answers

Answer:

Step-by-step explanation:

As the value of a increases, the radical function sweeps out higher, increasing the range of the function.  The k value moves it up or down.  A "+k" moves up (for example, +3 moves the function up 3 from the origin).  The h value moves it side to side.  A positive h value moves to the right and a negative h value moves to the left.  For example, √x-3 moves 3 to the right and √x+3 moves 3 to the left.

In summary, a and k affect the range of the function, k being the "starting point" and a being the "ending point"; h affects the domain of the function.

which function is a linear function a. 1-3x^2 b. y+7=5x c. x^3 + 4 = y d. 9(x^2-y) = 3 e.y-x^3=8

Answers

Answer:

b. y+7=5x

Step-by-step explanation:

a. 1-3x^2     is a quadratic

b. y+7=5x    is a linear function:  y = 5x - 7

c. x^3 + 4 = y   is a cubic function

d. 9(x^2-y) = 3    is a quadratic function

e.y-x^3=8   is a cubic function

Other Questions
The chair of the board of the local Humane Society chose the bank where the organization keeps its money; however, the office manager is the primary person who makes deposits, writes checks, and balances the account every month. The office manager is the ________ in the buying center for the bank account. The slope of the line passing through the points (-1, 5) and (3,5) is the degree of the polynomial 3x^3+0x^4+8 (A) 4(B) 1(C) 3(D) 2 find the gcd and lcm of 20 and 56 The lengths of two sides of a right triangle are 12 inches and 15 inches. What is the difference between the two possible lengths of the third side of the triangle? Round your answer to the nearest tenth. 10.2 inches 24.0 inches 28.2 inches 30.0 inches Drag each label to the correct location on the image.Identify the different elements in the excerpt from Trifles by Susan Glaspell. Professor N. Timmy Date has 31 students in his Calculus class and 17 students in his Discrete Mathematics class.(a) Assuming that there are no students who take both classes, how many students does Professor Date have?(b) Assuming that there are five students who take both classes, how many students does Professor Date have? g The size of the atom in Rutherfords model is about 8 1011 m. Determine the attractive electrostatics force between a electron and a proton separated by this distance. Answer in units of N. An urn contains 11 numbered balls, of which 6 are red and 5 are white. A sample of 4 balls is to be selected. How many samples contain at least 3 red balls? What is shock incarceration SUPER EASY WILL GIVE BRAINLEIST IF DONE BEFORE 10 P.M. PLS HURRY. IF U HAVE TIME PLS HELP ME ON OTHER QUESTIONS THANK YOU Identify the discontinuity and zero of the function f(x)= 4x/x^2-16 A person receives an O allele and an A allele for blood type. What is the individuals blood type? type A type B type AB type O Starting with the atom and ending with the biosphere, record the Levels of Organization found in life. A slider of mass 0.25 kg on a string, 0.5 m long is rotating around a pivot on a frictionless table. The velocity of the slider is initially 0.05 m/s. When the string is pulled into a radius of 0.125 m how fast is the mass spinning? Determine the number of x-intercepts that appear on a graph of each function. f(x)= (x-6)^2(x+2)^2 If the profit is $8000 and the profit % is 4%, what are net sales? Suppose that a company's annual sales were $1,200,000 in 1999. The annual growth rate of sales from 1999 to 2000 was 16 percent, from 2000 to 2001 it was ?5 percent, and from 2001 to 2002 it was 22 percent. The geometric mean growth rate of sales over this three-year period is calculated as 10.37 percent. Use the geometric mean growth rate and determine the forecasted sales for 2004. Central University uses $123,000 of a particular toner cartridge for laser printers in the student computer labs each year. The purchasing director of the university estimates the ordering cost at $45 and thinks that the university can hold this type of inventory at an annual storage cost of 22% of the purchase price. How many months' supply should the purchasing director order at one time to minimize the total annual cost of purchasing and carrying? Trans fatty acids are associated with