Which one of the following series of lines in the hydrogen spectrum arises from transitions down to n = 2?
A) 121, 102, 97, 95 nm
B) 655, 485, 433, 409 nm
C) 1872, 1279, 1092, 1003 nm
D) 4044, 2620, 2162, 1941 nm

Answers

Answer 1

Answer:

B) 655, 485, 433, 409 nm

Explanation:

655, 485, 433, 409 nm

The greater the energy change involved in a transition, the shorter the wavelength.

Transitions to n = 2 from n = 3, 4, 5 and 6 give lines of wavelength 655, 485, 433 and 409 nm. Other answer choices represent the Lyman. Brackett, and Pfund series.


Related Questions

At 330 K the vapor pressure of pure n-pentane is 1.92 atm and the vapor pressure of pure n-octane is 0.07 atm. If 330K is the normal boiling point for a solution of these two substances, what will the mole fractions of each substance be in that solution

Answers

Answer: mole fractions are

For n-pentane = 0.965

For n-octane = 0.035

Explanation: pressure exerted by each gas is,

n-pentane = 1.92atm

n-octane = 0.07atm

Total pressure exerted = 1.92 + 0.07

= 1.99atm.

Recall that the partial pressure exerted by each gas is the product of its mole fraction and the total pressure, that is,

Pres. n-pentane = n x pressure(total)

1.92 = n x 1.99

n = 1.92/1.99 = 0.965 for n-pentane

For n-octane,

n = 1 - 0.965 = 0.035 for n-octane.

Calculate the final concentration of ONPG (in mM) if you add 1.42 mL of 3.3 mM ONPG and dilute to a final volume of 10 mL with PBS buffer. Report your final answer to two places after the decimal.

Answers

Answer : The final concentration of ONGP is, 0.47 mM

Explanation :

Formula used :

[tex]M_1V_1=M_2V_2[/tex]

where,

[tex]M_1\text{ and }V_1[/tex] are the initial molarity and volume

[tex]M_2\text{ and }V_2[/tex] are the final molarity and volume

We are given:

[tex]M_1=3.3mM\\V_1=1.42mL\\M_2=?\\V_2=10mL[/tex]

Now put all the given values in above equation, we get:

[tex]3.3mM\times 1.42mL=M_2\times 10mL\\\\M_2=0.47mM[/tex]

Hence, the final concentration of ONGP is, 0.47 mM

The price of gold on April 15,2000 was $282/t.oz. How much did 100.0cm^3 of gold cost that day if 1.00 t.oz=28.4 grams?

Answers

Answer:

price ($) Au = $ 19183.94

Explanation:

april 15,2000:

∴ price Au = $ 282/t.oz

∴ 1.00 t.oz = 28.4 g

∴ V Au = 100.0 cm³  ⇒  price ($) = ?

∴ δ Au = 19.32 g/cm³

⇒ mass Au = (100.0 cm³)*(19.32 g/cm³)

⇒ m Au = 1932 g

⇒ price ($) = (1932 g Au)*(1.00 t.oz/28.4 g Au)*( $ 282/t.oz)

⇒ price ($) = $ 19183.94

Final answer:

To calculate the cost of 100.0cm3 of gold on April 15, 2000, convert the volume to grams, then to troy ounces, and multiply by the price per troy ounce.

Explanation:

To calculate the cost of 100.0cm3 of gold on April 15, 2000, we need to convert the volume of gold to grams and then to troy ounces. First, convert 100.0cm3 to grams by multiplying it by the density of gold (19.3 g/cm3). This gives us 1930 grams. Next, convert grams to troy ounces by dividing by the conversion factor of 28.4 grams per troy ounce. This gives us approximately 67.96 troy ounces. Finally, multiply the number of troy ounces by the price per troy ounce to find the cost. Therefore, 100.0cm3 of gold on April 15, 2000 would have cost $19,191.12.

Learn more about Calculating the cost of gold here:

https://brainly.com/question/31784557

#SPJ11

For Kinetic Trial 2, Alicia was distracted when the color change occurred but decided to record the time lapse read from her watch. Will this distraction cause an increase or decrease in he slop of the log (rate) vs log [I-]0? Explain.

Answers

Final answer:

The distraction during Kinetic Trial 2 will not affect the slope of the log (rate) vs log [I-]0. The relationship between the log of the rate and the log of the initial concentration of I- is determined by the reaction kinetics and is not influenced by external factors like distractions.

Explanation:

The distraction that Alicia experienced when the color change occurred during Kinetic Trial 2 will not affect the slope of the log (rate) vs log [I-]0.

This is because the distraction only affected the timing of the color change, not the actual reaction rate.

The relationship between the log of the rate and the log of the initial concentration of I- is determined by the reaction kinetics and is not influenced by external factors like distractions.

Wavelength (nm)n2E (J) 404.7 435.8 546.1 579.0 Show your work (or send in a separate sheet with your work on it): Q1: A sodium vapor lamp is similar to a mercury vapor lamp. Sodium displays a single visible emission line at 589.3 nm. Why is it better to use a mercury vapor lamp for calibration purposes

Answers

Answer: Please see answer below

Explanation:

Mecury vapor lamp is better to use than Sodium vapor light, this is because  because

---The Filaments of the lamp in sodium  emit fast moving electrons, which causes valence electrons of the sodium atoms to excite to higher energy levels which when electrons after being excited, relax by emitting yellow light which concentrates on the the  monochromatic bright yellow part of the visible spectrum which is about  580-590 or about (589nm) which will fall incident on the calibrations making it difficult to see

While

In Mercury vapor lamp, The emitted  electrons from the filaments, after having been excited  by high voltage, hit the mercury atoms but the excited electrons of mercury atoms relax and emits an  ultraviolet  uv invisible lights falling on the mecury vapour lamp to produce white light  covering  a wide range of  (380-780 nm) which is visible that is why it is used for calibrations purposes in  lightening applications.

A tank at is filled with of dinitrogen difluoride gas and of carbon dioxide gas. You can assume both gases behave as ideal gases under these conditions. Calculate the mole fraction and partial pressure of each gas, and the total pressure in the tank. Be sure your answers have the correct number of significant digits. dinitrogen difluoride molar fraction: partial pressure: carbon dioxide mole fraction: partial pressure: Total pressure in tank:

Answers

Answer:

For N₂F₂:

Molar fraction = 0.84

Partial pressure = 1.12 atm

For SF₄:

Molar fraction = 0.16

Partial pressure = 0.208 atm

Explanation:

It seems your question is missing the values required to solve the problem. However, an internet search showed me the following values for your question. If the values in your problem are different, your answer will be different as well, however the solving method will remain the same:

" A 5.00L tank at 0.7°C is filled with 16.5g of dinitrogen difluoride gas and 5.00g of sulfur tetrafluoride gas. You can assume both gases behave as ideal gases under these conditions. "

First we calculate the moles of each gas, using their molar mass:

16.5 g N₂F₂ ÷ 66 g/mol = 0.25 mol N₂F₂5.00 g SF₄ ÷ 108 g/mol = 0.0463 mol SF₄

Total mol number = 0.25 + 0.0463 = 0.2963 mol

Mole Fraction N₂F₂ = 0.25/0.2963 = 0.84Mole Fraction SF₄ = 0.0463/0.2963 = 0.16

Now we use PV=nRT to calculate the partial pressure of each gas:

P = ?

V = 5.00 L

T = 0.7 °C ⇒ 0.7 + 273.16 = 273.86 K

For N₂F₂:

P * 5.00 L = 0.25 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 273.86 KP = 1.12 atm

For SF₄:

P * 5.00 L = 0.0463 mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 273.86 KP = 0.208 atm

Final answer:

To calculate the mole fraction, you divide the number of moles of a gas by the sum of the moles of all gases in the mixture. The partial pressure of a gas is the pressure that the gas would exert if it were alone in the container. The total pressure in the tank is the sum of the partial pressures of each gas.

Explanation:

The mole fraction of a gas is the ratio of the moles of that gas to the total moles of all gases in the mixture. To calculate the mole fraction of dinitrogen difluoride (N2F2), divide the moles of N2F2 by the sum of the moles of N2F2 and CO2:

Mole fraction of N2F2 = moles of N2F2 / (moles of N2F2 + moles of CO2)

To calculate the mole fraction of carbon dioxide (CO2), divide the moles of CO2 by the sum of the moles of N2F2 and CO2:

Mole fraction of CO2 = moles of CO2 / (moles of N2F2 + moles of CO2)

The partial pressure of a gas is the pressure that the gas would exert if it were alone in the container. To calculate the partial pressure of N2F2, multiply its mole fraction by the total pressure in the tank:

Partial pressure of N2F2 = mole fraction of N2F2 * total pressure

To calculate the partial pressure of CO2, multiply its mole fraction by the total pressure in the tank:

Partial pressure of CO2 = mole fraction of CO2 * total pressure

The total pressure in the tank is the sum of the partial pressures of N2F2 and CO2:

Total pressure = partial pressure of N2F2 + partial pressure of CO2

Balance the following unbalanced redox reaction (assume acidic solution if necessary): Cr2O72- + Cl- → Cl2 + Cr3+ Indicate the coefficient that will be used for Cl2 (g) in this reaction

Answers

Answer:

14 H⁺ + Cr₂O₇²⁻ + 6Cl⁻ → 3Cl₂ + 2Cr³⁺ + 7H₂O

The coefficient that will be used for Cl₂ in this reaction is 3

Explanation:

We use the method of electron-ion to the balance.

We assume that the redox reaction is happening at acidic medium.

Cr₂O₇²⁻ + Cl⁻ → Cl₂ + Cr³⁺

Chloride is raising the oxidation state from -1 in the chloride, to 0 in the chloride dyatomic. This is the half reaction of oxidation

2Cl⁻ → Cl₂ + 2e⁻         Oxidation

In the dichromate anion, chromium acts with +6 in oxidation state, and we have 2 Cr, so the global charge of the element is +12. To change to Cr³⁺ it has release 3 electrons, but we have 2 Cr, so it finally released 6 e-. The oxidation state was decreased, so this is the reduction half reaction.

14 H⁺ + Cr₂O₇²⁻ + 6e⁻ → 2Cr³⁺ + 7H₂O   Reduction

As we have 7 O in the product side, we add 7 water, to the opposite place. In order to balance the H (protons) we, add the amount of them, in the opposite side, again.

(2Cl⁻ → Cl₂ + 2e⁻) ₓ3        

(14 H⁺ + Cr₂O₇²⁻ + 6e⁻ → 2Cr³⁺ + 7H₂O)  ₓ1    

We multiply the half reactions, in order to remove the electrons and we sum, the equations:

14 H⁺ + Cr₂O₇²⁻ + 6e⁻ + 6Cl⁻ → 3Cl₂ + 6e⁻ + 2Cr³⁺ + 7H₂O

Now, that we have the same amount of electrons, they can cancelled, so the balanced redox reaction is:

14 H⁺ + Cr₂O₇²⁻ + 6Cl⁻ → 3Cl₂ + 2Cr³⁺ + 7H₂O

Final answer:

To balance the given redox reaction, follow the steps: assign oxidation states, balance the elements undergoing oxidation or reduction, balance the elements not involved in redox, balance the charge, balance oxygen atoms, combine H2O molecules, and finally, balance the equation. The coefficient for Cl2 (g) is 3.

Explanation:

To balance the redox reaction Cr2O72- + Cl- → Cl2 + Cr3+ in an acidic solution, we need to follow these steps:

Assign oxidation states to each element in the reaction. Chromium (Cr) in Cr2O72- is assigned an oxidation state of +6 on the left side and +3 on the right side. Chlorine (Cl) in Cl- has an oxidation state of -1 on the left side and 0 in Cl2 on the right side.Balance the elements that are undergoing oxidation or reduction first. In this case, Cr is being reduced from +6 to +3, so we need to add 3 electrons to the left side of the equation.Next, balance the elements that are not involved in redox reactions. In this case, Cl- stays the same on both sides.Finally, balance the charge by adding H+ ions to the side that needs it. In this case, we need to add 14 H+ ions to the left side.Balancing the oxygen atoms by adding H2O molecules. There are 7 oxygen atoms on the left side, so we add 7 H2O molecules to the right side.Combine the H2O molecules on the right side to form OH- ions, then cancel out the same ions present on both sides.Now, the equation is balanced in terms of atoms and charges. The coefficient for Cl2 (g) is 3.

Learn more about Balancing redox reaction here:

https://brainly.com/question/32431557

#SPJ3

Time and concentration data were collected for the reaction A ⟶ products A⟶products t (s) [A] (M) 0 0.52 0.52 20 0.43 0.43 40 0.35 0.35 60 0.29 0.29 80 0.23 0.23 100 0.19 0.19 The blue curve is the plot of the data. The straight orange line is tangent to the blue curve at t = 40 s. t=40 s. Approximate the instantaneous rate of this reaction at time t = 40 s.

Answers

Answer:

instantaneous rate at 40 s= 0.0035 M /s.

Explanation:

Instantaneous rate at 40 s is the slope of the line (tangent to the curve)

=  Δp/Δt

From, the straight orange line

ΔP = (0.48 - 0.16) M.

Δt = (92 -0) s

Now, instantaneous rate at 40 s

=  0.48 - 0.16/92 - 0

instantaneous rate at 40 s= 0.0035 M /s.

Answer:

0.0035

Explanation:

check the picture

Suppose the surface-catalyzed hydrogenation reaction of an unsaturated hydrocarbon has a rate constant of 0.725 M/min. The reaction is observed to follow zero-order kinetics. If the initial concentration of the hydrocarbon is 5.90 M, what is the half-life of the reaction in seconds? *Please report 3 significant figures. Numbers only, no unit. No scientific notation.

Answers

Answer : The half-life of the reaction in seconds is, 244

Explanation :

The expression used for zero order reaction is:

[tex]t_{1/2}=\frac{[A_o]}{2k}[/tex]

where,

[tex]t_{1/2}[/tex] = half-life of the reaction = ?

[tex][A_o][/tex] = initial concentration = 5.90 M

k = rate constant = 0.725 M/min

Now put all the given values in the above formula, we get:

[tex]t_{1/2}=\frac{5.90}{2\times 0.725}[/tex]

[tex]t_{1/2}=4.069min=244.14s\approx 244s[/tex]

conversion used : (1 min = 60 s)

Thus, the half-life of the reaction in seconds is, 244

when the iron(III) oxide reacts with hydrochloric acid, iron (III) chloride and water are formed. How many gras of iron (III) chloride are formed from 10.0g of iron (III) oxide

Answers

Answer:

10.1 g of FeCl₃ are formed by the reaction

Explanation:

First step is to determine the reaction where the reactants are Fe₂O₃ and HCl  in order to produce FeCl₃ and H₂O.

Equation is: Fe₂O₃ + 6HCl → 2FeCl₃ + 3H₂O

We assume the acid is in excess, so the limiting reagent will be the oxide.

Let's work with mass:

1 mol of Fe₂O₃ is 159.7 g

2 mol of FeCl₃ is 162.2 g

So now we propose a rule of three:

159.7 g of oxide can produce 162.2 grams of chloride

Then, 10 g of oxide will produce (10 . 162.2) / 159.7 = 10.1 g of FeCl₃

Answer:

20.3 grams of FeCl3 will be formed

Explanation:

Step 1: Data given

iron(III) oxide = Fe2O3

hydrochloric acid = HCl

iron (III) chloride = FeCl3

water = H2O

Mass of Fe2O3 = 10.0 grams

Molar mass Fe2O3 = 159.69 g/mol

Step 2: The balanced equation

Fe2O3 +6HCl → 2FeCl3 + 3H2O

Step 3: Calculate moles Fe2O3

Moles Fe2O3 = mass Fe2O3 / molar mass Fe2O3

Moles Fe2O3 = 10.0 grams/ 159.69 g/mol

Moles Fe2O3 = 0.0626 moles

Step 4: Calculate moles of FeCl3

For 1 mol Fe2O3 we need 6 moles HCl to produce 2 moles FeCl3 and 3 moles H2O

For 0.0626 moles Fe2O3 we'll have 2*0.0626 = 0.1252 moles FeCl3

Step 5: Calculate mass FeCl3

Mass FeCl3 = moles FeCl3 * molar mass FeCl3

Mass FeCl3 = 0.1252 moles * 162.2 g/mol

Mass FeCl3 = 20.3 grams

20.3 grams of FeCl3 will be formed

What is the molarity of a solution containing 56 grams of solute in 959 mL of solution? (molar mass of solute is 26 g/mol)

Answers

Answer:

Molarity = 2.25M

Explanation:

n= m/M= 56/26=2.15mol, V= 959ml= 0.959L

n=C×V

2.15= C× 0.959

Simplify

C= 2.25M

Answer:

2.2M

Explanation:

A variation of the acetamidomalonate synthesis can be used to synthesize serine. The process involves the following steps: Ethoxide ion deprotonates diethyl acetamidomalonate, forming enolate anion 1; Enolate anion 1 makes a nucleophilic attack on formaldehyde, forming tetrahedral intermediate 2; Protonation of the oxyanion forms alcohol 3; Acid hydrolysis yields dicarboxyamino alcohol 4; Decarboxylation leads to the final amino acid. Write out the mechanism on a separate sheet of paper, and then draw the structure of dicarboxyamino alcohol 4.

Answers

Answer:

See detailed mechanism in the image attached

Explanation:

The mechanism shown in detail below is the synthesis of serine in steps.

The first step is the attack of the ethoxide ion base on the diethyl acetamidomalonate substrate giving the enolate and formaldehyde.

The second step is the protonation of the oxyanion from (1) above to form an alcohol as shown.

Acid hydrolysis of the alcohol formed in (3) above yields a tetrahedral intermediate, a dicarboxyamino alcohol.

Decarboxylation of this dicarboxyamino alcohol yields serine, the final product as shown in the image attached.

A 27g pancake (61 Calories) is burned in a calorimeter that contains 2.500 kg of water. How much does the temperature of the water increase if all of the energy from the pancake is transferred into the water?

Answers

If all of the energy from the pancake is transferred into the water, the temperature of the water will increase by 0.02 °C

Data obtained from the question

From the question given above, the following data were untainted:

Mass of pancake = 27 gEnergy of package released (Q) = 61 caloriesMass of water (M) = 2.5 Kg = 2.5 × 1000 = 250 g Specific heat capacity of water (C) = 1 cal/gºC Change in temperature of water (ΔT) =?

How to determine the increase in temperature

The increase in temperature can be obtained as follow:

Q = MCΔT

Divide both side by MC

ΔT = Q / MC

ΔT = 61 / (2500 × 1)

ΔT = 61 / 2500

ΔT = 0.02 °C

Thus, the temperature of the water will increase by 0.02 °C

Learn more about heat transfer:

https://brainly.com/question/6363778

#SPJ1

The 1H NMR spectrum of an unknown acid has the following peaks: δ (ppm) = 12.71 (1H, s), 8.04 (2H, d), 7.30 (2H, d), 2.41 (3H, s) Which structure best fits this spectral information?

Answers

Answer:

The most appropriate structure given the sparse spectral data is 4-acetyl benzoic acid (see attached).

Explanation:

It is difficult to accurately elucidate the structure of this compound without its chemical formula. But from the 1H NMR spectral data shows a total of 8 hydrogen atoms:

12.71 (1H. s) -  confirms presence of carboxylic acid proton, C=O-OH8.04 (2H, d) - confirms aromatic hydrogen7.30 (2H, d) - confirms aromatic hydrogen2.41 (3H,s) - confirms C=C hydrogen or ketone O=C-RCH3

The attached files show the structure and the neighboring hydrogen atoms.

The most likely structure i 4-acetyl benzoic acid

(h) The student made observations related to the contents of the Erlenmeyer flask during the titration. Identify an observation that could have led the student to conclude that a chemical change took place during the titration.

Answers

Answer:

Explanation:

During titration indicators are often used to identify chemical changes between reacting species.

For colorless solutions in which no noticeable changes can easily be seen, indicators are the best bet. Most titration processes involves a combination of acids and bases to an end point.

Indicators are substances whose color changes to signal the end of an acid-base reaction. Examples are methyl orange, methyl red, phenolphthalein, litmus, cresol red, cresol green, alizarin R3, bromothymol blue and congo red.

Most of these indicators have various colors when chemical changes occur.

Also, there are heat changes that accompanies most of these reactions. These are also indicators of chemical changes.

Final answer:

An observation indicative of a chemical change during titration could include temperature change, light emission, unexpected color change, or the formation of bubbles signaling the production of gas, any of which suggest that a new substance has been formed.

Explanation:

An observation that could have led the student to conclude that a chemical change took place during the titration includes the following:A temperature change such as the solution in the Erlenmeyer flask becoming warmer or cooler, indicating an exothermic or endothermic reaction.The emission of light which could suggest an energy release during a chemical reaction.An unexpected color change indicating the formation of a new substance.The formation of bubbles not caused by boiling, suggesting the production of a gas during the reaction.

For instance, if the student added an indicator to the acid and after titrating with a base, noticed a color change, this would be evidence of a chemical change. Similarly, if the student observed the solution fizzing but it was not reaching boiling temperature, it could indicate the formation of a gaseous product.

Which of the following aqueous solutions are good buffer systems? . 0.37 M hydrocyanic acid + 0.24 M sodium cyanide 0.14 M sodium nitrite + 0.27 M nitrous acid 0.21 M hypochlorous acid + 0.13 M potassium hypochlorite 0.20 M nitric acid + 0.22 M potassium nitrate 0.32 M ammonium bromide + 0.31 M ammonia

Answers

Answer : The good buffer systems are, (a), (b), (c) and (e)

Explanation :

Buffer : It is a solution that prevent any changes in the pH of the solution on the addition of an acidic and basic components.

Or, it is a solution that maintain the pH of the solution by adding the small amount of acid or a base.

There are two types of buffer which are acidic buffer and basic buffer.

Acidic buffer : It is the solution that have the pH less than 7 and it contains weak acid and its salt. For example : Acetic acid (weak acid) and sodium acetate (salt).

Basic buffer : It is the solution that have the pH more than 7 and it contains weak base and its salt. For example : Ammonia (weak base) and ammonium chloride (salt).

The conditions for a good buffer system is:

(1) a weak acid and its conjugate base.

(2) a weak base and its conjugate acid.

(a) 0.37 M hydrocyanic acid + 0.24 M sodium cyanide

It is a combination of weak acid and its conjugate base. So, it is a good buffer.

(b) 0.14 M sodium nitrite + 0.27 M nitrous acid

It is a combination of weak acid and its conjugate base. So, it is a good buffer.

(c) 0.21 M hypochlorous acid + 0.13 M potassium hypochlorite

It is a combination of weak acid and its conjugate base. So, it is a good buffer.

(d) 0.20 M nitric acid + 0.22 M potassium nitrate

It is a combination of strong acid. So, it will not form buffer solution.

(e) 0.32 M ammonium bromide + 0.31 M ammonia

It is a combination of weak base and its conjugate acid. So, it is a good buffer.

Hence, the good buffer systems are, (a), (b), (c) and (e)

Final answer:

Good buffer systems are those that consist of a weak acid and its conjugate base or a weak base and its conjugate acid. The given combinations that are good buffer systems include hydrocyanic acid and sodium cyanide, sodium nitrite and nitrous acid, hypochlorous acid and potassium hypochlorite, and ammonium bromide and ammonia.

Explanation:

The aqueous solutions that are good buffer systems from the provided options are:

0.37 M hydrocyanic acid + 0.24 M sodium cyanide0.14 M sodium nitrite + 0.27 M nitrous acid0.21 M hypochlorous acid + 0.13 M potassium hypochlorite0.32 M ammonium bromide + 0.31 M ammonia

A good buffer system consists of a weak acid and its conjugate base or a weak base and its conjugate acid. These pairs are capable of neutralizing small amounts of added acid or base, thus maintaining a relatively stable pH in the solution. In contrast, solutions like 0.20 M nitric acid + 0.22 M potassium nitrate do not form a buffer because nitric acid is a strong acid and does not create a conjugate weak acid-base pair needed for buffering.

When of alanine are dissolved in of a certain mystery liquid , the freezing point of the solution is lower than the freezing point of pure . On the other hand, when of potassium bromide are dissolved in the same mass of , the freezing point of the solution is lower than the freezing point of pure . Calculate the van't Hoff factor for potassium bromide in . Be sure your answer has a unit symbol, if necessary, and is rounded to the correct number of significant digits.

Answers

Answer:

The factor is 2

Explanation:

Van't Hoff factor is defined as the ratio between the species of a solute before the addition to the solvent and particles produced when the substance is dissolved. It is used, principally, in colligative properties.

Before solution, potassium bromide, KBr, has just one specie, that is, KBr. When KBr is dissolved (As a salt):

KBr(aq) → K⁺(aq) + Br⁻(aq)

There are produced two species, K⁺ and Br⁻. By definition of Van't Hoff factor, for this salt, the factor is 2.

Gaseous ammonia (NH3) reacts with gaseous oxygen to form gaseous nitrogen monoxide and gaseous water. Express your answer as a chemical equation. Identify all of the phases in your answer.

Answers

Answer:

The chemical equation is given as:

[tex]4NH_3(g)+5O_2(g)\rightarrow 4NO(g)+6H_2O(g)[/tex]

Explanation:

When gaseous ammonia reacts with gaseous oxygen it gives nitrogen monoxide gas and water vapors as product.

The chemical equation is given as:

[tex]4NH_3(g)+5O_2(g)\rightarrow 4NO(g)+6H_2O(g)[/tex]

According to reaction, 4 moles of ammonia reacts with 5 moles of oxygen gas to give 4 moles of nitrogen monoxide gas and 6 moles of water vapor.

To write the skeletal equation, begin by writing the chemical formula for each reactant and product.

Reactants:

1. Ammonia's chemical formula is given as  NH3.

2. Gaseous oxygen exists as a diatomic molecule with the chemical formula  O2.

Products:

1. Nitrogen monoxide has the chemical formula of  NO.

2. The chemical formula for water is  H2O.

Therefore, the skeletal equation is written as:

NH3(g)+O2(g)→NO(g)+H2O(g)

Now count the number of each atom on each side of the equation to determine if the equation is balanced.

Reactants

1N atom

3H atoms

2O atoms

Products

1N atom

2H atoms

2O atoms

Begin by balancing the number of hydrogen atoms by adding a coefficient of 2 to  NH3 and a coefficient of 3 to  H2O. Next, balance the number of nitrogen atoms by adding a coefficient of 2 to  NO. Now there are two oxygen atoms on the reactant's side and five oxygen atoms on the product's side of the reaction. Since only whole number coefficients should be used, all coefficients need to be increased by a factor of two to balance the oxygen atoms. Thus the coefficient for  NH3 is 4, the coefficient for  H2O is 6, and the coefficient for  NO is 4. Finally, balance the oxygen atoms by adding a coefficient of 5 to  O2. The balanced equation is:

4NH3(g)+5O2(g)→4NO(g)+6H2O(g)

Consider the following half-reactions: Half-reaction E° (V) I2(s) + 2e- 2I-(aq) 0.535V 2H+(aq) + 2e- H2(g) 0.000V Zn2+(aq) + 2e- Zn(s) -0.763V (1) The weakest oxidizing agent is: Zn2+(aq) enter formula (2) The strongest reducing agent is: Zn(s) (3) The strongest oxidizing agent is: I2(s) (4) The weakest reducing agent is: I-(aq) (5) Will I-(aq) reduce Zn2+(aq) to Zn(s)? (6) Which species can be reduced by H2(g)? If none, leave box blank.

Answers

Answer:

The weakest oxidizing agent is Zn^2+(aq)

The strongest reducing agent is Zn(s)

The strongest oxidizing agent is I2(s)

The weakest reducing agent is I^-(aq)

I^- cannot reduce Zn^2+ to Zn(s)

I2(s) can be reduced by hydrogen gas

Explanation:

In looking at oxidizing and reducing agents, our primary guide is the reduction potentials of each specie. The more negative the reduction potential of a specie, the better its function as a reducing agent. Zn has a very negative reduction potential hence it a very good reducing agent. Similarly, iodine has a very positive reduction potential hence it is a good oxidizing agent.

Only a specie having a more negative reduction potential than zinc can reduce it in aqueous solution. Similarly, the reaction potential of hydrogen is less than that of iodine hence hydrogen gas can reduce iodine.

Final answer:

In electrochemistry, the strongest reducing agent is Zn(s) and the weakest oxidizing agent is Zn2+(aq). I2(s) is the strongest oxidizing agent, while I-(aq) is the weakest reducing agent. I-(aq) cannot reduce Zn2+(aq) to Zn(s), and none of the species provided can be reduced by H2(g).

Explanation:

To determine the oxidizing and reducing agents, we refer to their standard electrode potentials (E°). A strong oxidizing agent has a higher positive E° value, indicating a greater tendency to gain electrons and be reduced. Conversely, a strong reducing agent has a lower (more negative) E° value, reflecting a higher tendency to lose electrons and be oxidized.

The weakest oxidizing agent is Zn²+(aq) because it has the most negative E° value (-0.763V), meaning it is the least likely to gain electrons. The strongest reducing agent is Zn(s) because zinc in its solid state is more willing to be oxidized (lose electrons) as indicated by its half-reaction (Zn(s) → Zn²+(aq) + 2e⁻).

Similarly, the strongest oxidizing agent is I₂(s) due to its higher E° value (0.535V), which demonstrates its greater ability to take up electrons. The weakest reducing agent in this set is I⁻(aq) because it is derived from I₂(s), which is a strong oxidizer, thus its conjugate, I⁻, would be the weakest reducer.

Regarding whether I⁻(aq) can reduce Zn²+(aq) to Zn(s), the answer is no, because I⁻(aq) is the weakest reducing agent and Zn²+(aq) is not a strong oxidizer. Lastly, H₂(g) has an E° value of 0.000V, making it neutral in this context, and therefore it will not reduce any of the species provided in the question.

How many mL of 0.50 M NaOH solution are required to completely titrate 15.0 mL of 0.20 M HNO3 solution?

Answers

Answer:6.0 ML

Explanation:

Ethers react with HI to form two cleavage products. One of the products might react further with HI. In the first box below draw the two major products that could be recovered after treatment with one equivalent of HI. In the second box draw the two major products that could be recovered after treatment with excess HI. (If a product of the first step does not undergo additional reaction with excess HI, repeat its structure in the second box.)

Answers

Answer:

Explanation:

the solution is solved below

When ethers react with HI, treatment with one equivalent of HI produces an alcohol and an alkyl iodide as major products. Treatment with excess HI yields both alkyl iodides as major products.

Ethers react with HI to form two cleavage products. When treated with one equivalent of HI, the major products that could be recovered are an alcohol and an alkyl iodide. The alcohol is formed by the substitution of the ether oxygen with a hydrogen atom from HI, and the alkyl iodide is formed by the substitution of one of the alkyl groups of the ether with iodine.

When treated with excess HI, the major products that could be recovered are both alkyl iodides. The initial products from the first step do not further react but are still recovered.

Learn more about Ethers reacting with HI here:

https://brainly.com/question/33791556

#SPJ3

Magnesium metal reacts with gaseous oxygen in a combination reaction. Write a balanced equation to describe this reaction. Include states of matter in your answer. Click in the answer box to open the symbol palette.

Answers

Answer: 2Mg (s) + O2 (g) ----> 2MgO (s)

Explanation:

Lets write the equation of the reaction.

Mg(s) + O2 (g) ----> MgO (s)

Counting the number of atoms for each element we have:

Left hand side: Mg =1 O = 2

Right hand side : Mg = 1, O =2

To balance this equation input "2" as coefficient for "MgO" on the right hand side and "2", as coefficient for "Mg" on the left hand side of the equation. Hence our balanced equation will be

2Mg (s) + O2 (g) -----> 2MgO (s)

Final answer:

The balanced chemical equation for the combination reaction between magnesium metal and gaseous oxygen to form magnesium oxide is: 2Mg (s) + O₂(g) → 2MgO (s). This reaction follows the conservation of mass.

Explanation:

The reaction between magnesium metal and gaseous oxygen is a combination reaction in which magnesium is oxidized. When magnesium (Mg) combines with oxygen (O₂), it forms magnesium oxide (MgO). The equation representing this exothermic reaction is written as:

2Mg (s) + O₂(g) → 2MgO (s)

This reaction adheres to the law of conservation of mass, meaning the total mass of the reactants equals the total mass of the products. During the reaction, magnesium atoms lose electrons (are oxidized) and the oxygen molecule gains electrons.

A 1.31 mol sample of CO2 gas is confined in a 31.4 liter container at 19.0 �C.

If the volume of the gas sample is decreased to 15.7 L holding the temperature constant, the number of molecule-wall collisions per unit area per unit timewill

A. remain the same

B. not enough information to answer the question

C. increase

D. decrease

2. A 1.18 mol sample of CO2 gas is confined in a 27.8 liter container at 14.5 �C.


If the volume of the gas sample is increased to 55.7 L holding the temperature constant, the average kinetic energy will

A. remain the same

B. decrease

C. increase

D. not enough information to answer the question

3.A 0.855 mol sample of Xe gas is confined in a 20.5 liter container at 19.6 �C.


If the volume of the gas sample is decreased to 10.3 L, holding the temperature constant, the pressure will increase. Which of the following kinetic theory ideas apply?

Choose all that apply.

A. With less available volume, the molecules hit the walls of the container more often.

B. At lower volumes molecules have higher average speeds.

C. With higher average speeds, on average the molecules hit the walls of the container with more force.

D. For a given gas at constant temperature, the force per collision is constant. Some other factor must cause the pressure increase.

E. None of the Above

Answers

Ideal gas law is valid only for ideal gas not for vanderwaal gas. The equation used for ideal gas is PV=nRT. The  number of molecule-wall collisions per unit area per unit time will remain the same.

What is ideal gas equation?

Ideal gas equation is the mathematical expression that relates pressure volume and temperature.

Mathematically the relation between Pressure, volume and temperature can be given as

PV=nRT

where,

P = pressure of gas

V= volume of gas

n =number of moles of gas

T =temperature of gas

R = Gas constant = 0.0821 L.atm/K.mol

If the volume of the gas sample is decreased to 15.7 L holding the temperature constant, the number of molecule-wall collisions per unit area per unit time will remain the same.

Therefore, the number of molecule-wall collisions per unit area per unit time will remain the same.

To learn more about ideal gas equation, here:

https://brainly.com/question/14826347

#SPJ5

Problem PageQuestion Suppose an iron atom in the oxidation state formed a complex with three hydroxide anions and three water molecules. Write the chemical formula of this complex.

Answers

The Question is incomplete here is the complete question " Suppose an iron atom in the oxidation state +3 formed a complex with three hydroxide anions and three water molecules. Write the chemical formula of this complex.

Answer:

{Fe(OH)3(H20)3}

Explanation:

Oxidation state is the electron gained or lost by and atom, So if iron is in +3 state in formula it must have lost three electron.

We know that OH posses the oxidation state of -1 and water have zero oxidation state. SO, Let's take iron equal to y and find its oxidation state in the formula

y + 3 ( - 1 ) + 3 ( 0 ) = 0

y - 3 + 0 = 0

y-3=0

y= + 3

Hence it's proved that iron has +3 oxygen state.

Thermal decomposition of 5.0 metric tons of limestone to lime and carbon dioxide requires 9.0 x 106 kJ of heat. Convert this energy to joules A. 9.0 x 108 J B. 9.0 x 104 J C. 9.0 x 103 J D. 9.0 x 109 J E. None of these is within 5% of the correct answer

Answers

Answer : The correct option is, (D) [tex]9.0\times 10^9J[/tex]

Explanation :

As we are given that the energy require for decomposition is, [tex]9.0\times 10^6kJ[/tex].

Now we have to calculate the energy in joules.

Conversion used :

1 kJ = 1000 J

As, 1 kJ of energy = 1000 J

So, [tex]9.0\times 10^6kJ[/tex] of energy = [tex]\frac{9.0\times 10^6kJ}{1kJ}\times 1000J[/tex]

                                          = [tex]9.0\times 10^9J[/tex]

Therefore, the energy in joules is, [tex]9.0\times 10^9J[/tex]

Thermal decomposition of 5.0 metric tons of limestone to lime and carbon dioxide requires 9.0 × 10⁹ Joules of heat.

What is energy?

Enegy is the quantitative property which is used by any system to perform any work.

Chemical reactions generally involves energy in the form of heat energy and given amount of energy is 9.0 × 10⁶ kJ.

We know that:

1 kJ = 1000 J

So, 9.0 × 10⁶ kJ = 9.0 × 10⁶ kJ  × 1000

9.0 × 10⁶ kJ = 9.0 × 10⁹ J

Hence, option (D) is correct i.e. 9.0 × 10⁹ J.

To know more about heat energy, visit the below link:

https://brainly.com/question/19666326

Consider the volumes of benzaldehyde and acetone that you used for your scaled-down version of the lab (as described on the Aldol Condensation page and in the Aldol Lab quiz), and consider how these reactants are added to the reaction mixture. There is a potential problem associated with the preparation and addition of the benzaldehyde/acetone mixture, which would be exacerbated by the scaling down of the reaction. What is this problem, and why would this become a bigger problem at smaller scale

Answers

Answer:

Aldol condensation is possible only when their is alpha Hydrogen atom is present. It ia present only in the acetophenone and not in benzaldehyde.

Explanation:

Which of the following is/are a true statement about 1 mole samples of oxygen,
hydrogen, and nitrogen gas at STP?

I. Only oxygen and hydrogen are diatomic molecules.
II. All 3 samples occupy the same volume.
III. All 3 samples have the same mass.

A) I only
B) II only
C) I and II only
D) II and III only
E) I, II and III

Answers

i think it could possibly could be D

What is the heat energy released?

Estimate the heat energy released when one mole of the of the fuel molecule acetylene C2H2 undergoes complete combustion with oxygen to form carbon dioxide and water.

Answers

Thermal energy (also called heat energy) is produced when a rise in temperature causes atoms and molecules to move faster and collide with each other. The energy that comes from the temperature of the heated substance is called thermal energy.

Copper was the first metal to be produced from its ore because it is the easiest to smelt, that is, to refine by heating in the presence of carbon. The ore was likely malachite (Cu2(OH)2CO3). What is the mass percent of copper in malachite?

Answers

Answer:

57.5%

Explanation:

The mass percent of copper in malachite (Cu2(OH)2CO3) can be determined as follow:

Molar Mass of malachite (Cu2(OH)2CO3) = (2x63.5) + 2(16 +1) + 12 + (16x3) = 127 + 2(17) + 12 + 48 = 127 + 34 + 12 + 48 = 221g/mol

Mass of Cu in Cu2(OH)2CO3 = 2 x 63.5 = 127g

The percentage by mass of Cu in Cu2(OH)2CO3 is given by:

Mass of Cu/Molar Mass of Cu2(OH)2CO3 x 100

=> 127/221 x 100

=> 57.5%

Therefore, 57.5% by mass of Cu is contained in malachite Cu2(OH)2CO3

You are given mixture made of 290 grams of water and 14.2 grams of salt. Determine the % by mass of salt in the salt solution.

Answers

Answer:

Solution is 4.67% by mass of salt

Explanation:

% by mass is the concentration that defines the mass of solute in 100g of solution.

In this case we have to find out the mass of solution with the data given:

Mass of solution = Mass of solute + Mass of solvent

Solute:  Salt → 14.2 g

Solvent: Water → 290 g

Solution's mass = 14.2 g + 290g = 304.2 g

% by mass = (mass of solute / mass of solution) . 100

(14.2 g / 304.2g) . 100 = 4.67 %

Other Questions
What is the area of the purple region? * I'll give BRAINLIEST!!!!!!!!!!!!At the end of World War I, the Allied Nations (England, France and the United States) had the most powerful air forces in the world. What did each country do with these air forces after the war?Group of answer choicesEach country retained approximately the same amount of planes.Each country increased their air forces substantively.Each country decreased their air forces and weakened them.England and France cut back on theirs, but the US increased theirs dramatically. A metal block has a mass of 122 grams and measures 2cm x 2cm x 4cm. What is the density of the block? Which element or elements in the periodic table are most similar to the reactivity to chlorine If sally has 50000 pennies and she gives 2 to her sister how much does she have left The _______ was intended to return status quo and bring back power to the old order. This is in industrialism/nationalism unit. Please Help Me Out! I'd Appreciate It So Much! TYSM!A construction crew is lengthening a road. The road started with a length of 57 miles, and the crew is adding 4 miles to the road each day. Let L represent the total length of the road (in miles), and let D represent the number of days the crew has worked. Write an equation relating L to D. Then use this equation to find the total length of the road after the crew has worked 36 days.Equation: ?Total Length of the road after 36 days: ? A ray of laser light travels through air and enters an unknown material. The laser enters the material at an angle of 36 degrees to the normal. The refracted angle is 27.5 degrees. If the index of refraction of air is n = 1.00, what is the index of refraction of the unknown material? g jackson's kitten weighed 2 punds and 3 ounces.a month later the kitten weighed 56 ounces . how much weight did the kitten gain in that month I am a worker in a northern city. My job is to teach immigrants about life in theUnited States and how to become citizens. In return, they vote for candidateschosen by my employer. I work for.A. The federal governmentB. A textile factoryC. The state governmentD. A political machine Match the description with the appropriate clade 1.Sheds outer cuticle, radial cleavage, schizocoelous formation, reduced cilia, triploblastic, bilateral symmetry 2.Triploblastic, bilateral symmetry 3.Segmented, trochophore larvae, spiral cleavage, schizocoelous coelom formation, triploblastic, bilateral symmetry 4.Metazoa lacking tissue level of organization 5.Diploblastic, radial symmetry, unique stinging cells (cnidocytes) 6. Sheds outer cuticle, radial cleavage, schizocoelous formation, reduced cilia, triploblastic, bilateral symmetry, segmented a. Ecdysozoa b. Bilateria c. Annelida d. Parazoa e. Cnidaria f. Arthropoda Unpolarized light with intensity I0I0I_0 is incident on an ideal polarizing filter. The emerging light strikes a second ideal polarizing filter whose axis is at 40.0 to that of the first. Determine the intensity of the beam after it has passed through the second polarizer. g Two charged particles are separated by a distance of .99m. If the charge on particle one is .00045C and the charge on particle two is .0000032C. What is the amount of force between them? What action by President Grant made him susceptible to the charge of being corrupt?A. He tried to limit the presence of the federal military in the South.B. He gave donors and friends powerful positions in government.C. He favored pardoning Confederate leaders.D. He favored the prosecution of Ku Klux Klan members. A main provision of the Monroe Doctrine was to: A cooking magazine shows a photo of a main dish on the front cover of 5 out of the 12 issues it publishes each year,how many times will it be on front cover for 5 years Plz help if u understand!? Use the following quote to answer the question."The power to propose the revision or amendment of any portion or portions of this constitution by initiative is reserved to the people, provided that, any such revision or amendment, except for those limiting the power of government to raise revenue, shall embrace but one subject and matter directly connected therewith."The quote above is from the (3 points)Group of answer choices U.S. Constitution and extends the powers of initiative and recall to the people Florida constitution and extends the powers of initiative and recall to the people Florida constitution and extends the power of initiative to the people U.S. Constitution and extends the power of initiative to the people Indicate the effect of each of the following transactions on (1) the current ratio, (2) working capital, (3) stockholders equity, (4) book value per share of common stock, and (5) retained earnings. Assume that the current ratio is greater than 1:1. (Indicate the effect of each transactions by selecting "+" for increase, "" for decrease, and "NC" for no change.) Transactions:A. Collected account receivable. B. Wrote off account receivable. C. Converted a short-term note payable to a long-term note payable. D. Purchased inventory on account. E. Declared cash dividend. F. Sold merchandise on account at a profit. G. Issued stock dividend. H. Paid account payable. I. Sold building at a loss.Effect:Current RatioWorking CapitalStockholders EquityBook ValueRetained EarningsA.B.C.D.E.F.G.H.I how would the history of ancient Egypt be different if rabbits were held in high esteem instead of cats?