Answer:
A
Explanation:
Van der Waals forces are the weak electric forces of attraction between molecules and their strength is dependent on the distance between the molecules. The longer the distance between the molecules the weaker the forces. Weaker Van der Waals forces mean that molecules can easily escape from the liquid - hence meaning higher volatility.
Answer:
A!!!
Explanation:
Use tabulated electrode potentials to calculate ∆G° rxn for each reaction at 25 °C in kJ.
(a) Pb2+(aq) + Mg(s) ➝ Pb(s) + Mg2+(aq)
(b) Br2(l) + 2 Cl-(aq) ➝ 2 Br-(aq) + Cl2( g)
(c) MnO2(s) + 4 H+(aq) + Cu(s) ➝ Mn2+(aq) + 2 H2O(l) + Cu2+(aq)
Answer: (a) [tex]\Delta G^0=-432.25kJ[/tex] , (b) [tex]\Delta G^0=55.96kJ[/tex] and (c) [tex]\Delta G^0=-171.74kJ[/tex]
Explanation: (a) Oxidation half reaction for the given equation is:
[tex]Mg(s)\rightarrow Mg^2^+(aq)+2e^-E^0=2.37V[/tex]
The reduction half equation is:
[tex]Pb^2^+(aq)+2e^-\rightarrow Pb(s)E^0=-0.13V[/tex]
[tex]E^0_c_e_l_l=E^0_r_e_d_u_c_t_i_o_n+E^0_o_x_i_d_a_t_i_o_n[/tex]
[tex]E^0_c_e_l_l=-0.13V+2.37V[/tex]
[tex]E^0_c_e_l_l=2.24V[/tex]
[tex]\Delta G^0=-nFE^0_c_e_l_l[/tex]
where n is the number of moles of electrons transferred and F is faraday constant.
2 moles of electrons are transferred in the cell reaction which is also clear from both the half equations.
[tex]\Delta G^0=-2mol*96485\frac{C}{mol}*2.44V[/tex]
[tex]\Delta G^0=-432252.8J[/tex]
or [tex]\Delta G^0=-432.25kJ[/tex]
(b) Oxidation half reaction for the given equation is:
[tex]2Cl^-(aq)\rightarrow Cl_2(g)+2e^-E^0=-1.36V[/tex]
Reduction half equation is:
[tex]Br_2(l)+2e^-\rightarrow 2Br^-E^0=1.07V[/tex]
[tex]E^0_c_e_l_l=1.07V+(-1.36V)[/tex]
[tex]E^0_c_e_l_l=1.07V-1.36V[/tex]
[tex]E^0_c_e_l_l=-0.29V[/tex]
Now, we can calculate the [tex]\Delta G^0[/tex] same as we did for part a.
[tex]\Delta G^0=-2mol*96485\frac{C}{mol}*(-0.29V)[/tex]
[tex]\Delta G^0=55961.3J[/tex]
or [tex]\Delta G^0=55.96kJ[/tex]
(c) Oxidation half reaction for the given equation is:
[tex]Cu(s)\rightarrow Cu^2^+(aq)+2e^-E^0=-0.34V[/tex]
reduction half equation is:
[tex]MnO_2(s)+4H^+(aq)+2e^-\rightarrow Mn^2^+(aq)+2H_2O(l)E^0=1.23V[/tex]
[tex]E^0_c_e_l_l=1.23V+(-0.34V)[/tex]
[tex]E^0_c_e_l_l=0.89V[/tex]
[tex]\Delta G^0=-2mol*96485\frac{C}{mol}*0.89V[/tex]
[tex]\Delta G^0=-171743.3J[/tex]
or [tex]\Delta G^0=-171.74kJ[/tex]
To calculate the standard Gibbs free energy change (∆G°) for each reaction at 25°C in kJ, we can use tabulated electrode potentials. By writing half-cell reactions and summing the electrode potentials, we can determine the overall reaction's standard potential (E°). Then, using the formula ∆G° = -nFE°, we can calculate the standard Gibbs free energy change.
Explanation:Use tabulated electrode potentials to calculate ∆G° rxn for each reaction at 25 °C in kJ.
a) Pb2+(aq) + Mg(s) ➝ Pb(s) + Mg2+(aq)First, we need to write half-cell reactions for the given equation:Pb2+ + 2e- ➝ Pb (E° = -0.126 V)Mg2+ + 2e- ➝ Mg (E° = -2.37 V)Next, we can sum up the electrode potentials to calculate the overall reaction's standard potential:E° rxn = E°(Pb) - E°(Mg)E° rxn = -0.126 V - (-2.37 V) = 2.244 VFinally, we can use the formula ∆G° = -nFE° to calculate the standard Gibbs free energy change:∆G° = -2F(2.244 V)b) Br2(l) + 2 Cl-(aq) ➝ 2 Br-(aq) + Cl2( g)First, we need to write half-cell reactions for the given equation:Br2 + 2e- ➝ 2Br- (E° = 1.07 V)Cl2 + 2e- ➝ 2Cl- (E° = 1.36 V)Next, we can sum up the electrode potentials to calculate the overall reaction's standard potential:E° rxn = E°(2Br-) - E°(2Cl-)E° rxn = 2(1.07 V) - 2(1.36 V) = -0.640 VFinally, we can use the formula ∆G° = -nFE° to calculate the standard Gibbs free energy change:∆G° = -2F(-0.640 V)c) MnO2(s) + 4 H+(aq) + Cu(s) ➝ Mn2+(aq) + 2 H2O(l) + Cu2+(aq)First, we need to write half-cell reactions for the given equation:MnO2 + 4H+ + 2e- ➝ Mn2+ + 2H2O (E° = 1.23 V)Cu2+ + 2e- ➝ Cu (E° = 0.34 V)Next, we can sum up the electrode potentials to calculate the overall reaction's standard potential:E° rxn = E°(Mn2+) - E°(Cu)E° rxn = 1.23 V - 0.34 V = 0.89 VFinally, we can use the formula ∆G° = -nFE° to calculate the standard Gibbs free energy change:∆G° = -2F(0.89 V)Learn more about Calculating standard Gibbs free energy change here:https://brainly.com/question/34263086
#SPJ3