Find the wavelength in meters for a transverse mechanical wave with an amplitude of 10 cm and a radian frequency of 20π rad/s if the medium through which it travels has a bulk modulus of 40 MPa and a density of 1000 kg/m^3.

Answers

Answer 1

Answer:

The wavelength of the wave is 20 m.

Explanation:

Given that,

Amplitude = 10 cm

Radial frequency [tex]\omega = 20\pi\ rad/s[/tex]

Bulk modulus = 40 MPa

Density = 1000 kg/m³

We need to calculate the velocity of the wave in the medium

Using formula of velocity

[tex]v=\sqrt{\dfrac{k}{\rho}}[/tex]

Put the value into the formula

[tex]v=\sqrt{\dfrac{40\times10^{6}}{10^3}}[/tex]

[tex]v=200\ m/s[/tex]

We need to calculate the wavelength

Using formula of wavelength

[tex]\lambda =\dfrac{v}{f}[/tex]

[tex]\lambda=\dfrac{v\times2\pi}{\omega}[/tex]

Put the value into the formula

[tex]\lambda=\dfrac{200\times2\pi}{20\pi}[/tex]

[tex]\lambda=20\ m[/tex]

Hence, The wavelength of the wave is 20 m.


Related Questions

Membrane walls of living cells have surprisingly large electric fields across them due to separation of ions. (Membranes are discussed in some detail in Nerve Conduction—Electrocardiograms.) What is the voltage (in mV) across a 7.95 nm thick membrane if the electric field strength across it is 6.60 MV/m? You may assume a uniform electric field.

Answers

Answer:

Voltage, V = 0.0524 volts

Explanation:

Thickness of the membrane, [tex]d=7.95\ nm=7.95\times 10^{-9}\ m[/tex]

Electric field strength, [tex]E=6.6\ MV/m=6.6\times 10^6\ V/m[/tex]

We need to find the voltage across it. The relationship between the voltage, electric field and the distance is given by :

[tex]V=E\times d[/tex]

[tex]V=6.6\times 10^6\ V/m\times 7.95\times 10^{-9}[/tex]

V = 0.0524 volts

So, the voltage across the thick membrane is 0.0524 volts. Hence, this is the required solution.

The voltage across a 7.95 nm thick membrane with an electric field strength of 6.60 MV/m, is found to be 52.47 mV.

To find the voltage across a membrane, we can use the relationship between electric field strength (E) and voltage (V) given by the formula:

V = E * d

where:

V is the voltage

E is the electric field strength

d is the thickness of the membrane

In this case, the electric field strength (E) is given as 6.60 MV/m and the thickness of the membrane (d) is 7.95 nm.

First, convert the thickness from nanometers to meters:

d = 7.95 nm = 7.95 * 10⁻⁹ m

Now use the formula to calculate the voltage:

V = 6.60 * 10⁶ V/m * 7.95 * 10⁻⁹ m

V = 5.247 * 10⁻² V = 52.47 mV

Therefore, the voltage across the 7.95 nm thick membrane is 52.47 mV.

If your car accelerates from rest at a steady rate of 4.2 m/s^2, how soon will it reach 72 km/h ( 44.7 mph or 20 m/s)?

Answers

Answer:

The car will reach 20 m/s in 4.76 seconds

Explanation:

The car moves following an uniformly accelerated motion, therefore we know that [tex]v=v_0+ a(t-t_0)[/tex]

Where [tex]v_0 = 0[/tex] are [tex]t_0 =0[/tex]

Then [tex]t= \frac{v}{a}=\frac{20 m/s}{4.2 m/s^{2}}=4.76s[/tex]

Two ice skaters, Frank and Mary, are initially facing each other and separated by 2000 m on a smooth frozen lake. Mary begins skating towards Frank at t = 0 s with an acceleration of 0.75 m/s^2. After she reaches a speed of 12 m/s, she continues skating at a constant 12 m/s. Three seconds after Mary begins to skate, Frank starts skating. He accelerates at 1.1 m/s^2 for 9 s and then skates at a constant speed. a) When do the skaters pass each other? b) How far from Mary’s starting position is the point at which the skaters pass each other?

Answers

Answer:

a) 99.1 s

b) 1093.2 m

Explanation:

The equation for speed with constant acceleration is

V(t) = V0 + a * t

Mary starts accelerating with a speed of zero, so

V0 = 0

V(t) = a * t

To reach a speed of 12 m/s

t = V(t) / a

t = 12 / 0.75 = 16 s

The equation for position under constant acceleration is

X(t) = X0 + V0 * t + 1/2 * a * t^2

Mary's starting position is zero

X0 = 0

X(t) = 1/2 * a * t^2

X(16) = 1/2 * 0.75 * 16^2 = 96 m

Frank starts skating 3 seconds after Mary, and he accelerates at 1.1 m/s^2 for 9 s. He will stop accelerating at second 12 (9 + 3).

His position after accelerating will be:

X(12) = X0 + V0 * (t - 3) + 1/2 * a * (t - 3)^2

His initial position is 2000, and his initial speed is zero

x(12) = 2000 - 1/2 1.1 * (12 - 3)^2 = 1955.5 m

Shi speed will be

V(12) = -1.1 * (12 - 3) = -9.9 m/s

From there they will move at constant speed from these positions.  We can consider them as moving at constant speed starting at t0 = 16 and t0 = 12 respectively.

For Mary:

X(t) = X0 + V0 * (t - t0)

X(t) = 96 + 12 * (t - 16)

For Frank:

X(t) = 1955.5 - 9.9 * (t - 12)

Equating these two we can find the time when they meet:

96 + 12 * (t - 16) = 1955.5 - 9.9 * (t - 12)

96 + 12*t - 192 = 1955.5 - 9.9*t + 118.8

21.9*t = 2170.3

t = 2170.3 / 21.9 = 99.1 s

Replacing this time value on either equation we get the position:

X(99.1) = 96 + 12 * (99.1 - 16) = 1093.2 m

Two narrow slits are separated by a distance of 0.10 mm. When illuminated with 550 nm light, a diffraction pattern is observed on a screen 2.2 m from the slits. What is the lateral separation of the first and second order maxima seen on the screen (in cm)?

Answers

Answer:

1.21 cm.

Explanation:

Given that the wavelength of light is 550 nm.

And the distance between the slits is 0.10 mm.

And the distance to the screen is 2.2 m.

As we know that the lateral separation can be defined by the formula.

[tex]LS=\dfrac{m\lambda D}{d}[/tex]

Here, m is the order of maxima, [tex]\lambda[/tex] is the wavelength , d is the distance between the slits and D is the distance to the screen.

For first maxima m=1, and for second maxima m=2.

Difference in the lateral maxima will be,

[tex]\Delta LS=\dfrac{2\lambda D}{d}-\dfrac{1\lambda D}{d}\\\Delta LS=\dfrac{\lambda D}{d}[/tex]

Substitute all the variables in the above equation.

[tex]\Delta LS=\dfrac{550 nm\times 2.2m}{0.10mm}\\\Delta LS=\dfrac{550\times 10^{-9} nm\times 2.2m}{0.10\times 10^{-3} }\\ \Delta LS=121\times 10^{-4}m\\ \Delta LS=1.21 cm[/tex]

Therefore, the lateral separation difference  between between first order and second order maxima is 1.21 cm.

Kathy tests her new sports car by racing with Stan, an experienced racer. Both start from rest, but Kathy leaves the starting line 1.00 s after Stan does. Stan moves with a constant acceleration of 3.4 m/s2 while Kathy maintains an acceleration of 4.49 m/s2. (a) Find the time at which Kathy overtakes Stan. 6.7 Correct: Your answer is correct. seenKey 6.7 s from the time Kathy started driving

Answers

Answer:

time at which Kathy overtakes Stan is 6.70 sec

Explanation:

given data

time = 1 sec

acceleration= 3.4 m/s²

acceleration = 4.49  m/s²

to find out

the time at which Kathy overtakes Stan

solution

we consider here travel time for kathy = t1

and travel time for stan is = t2

and we know initial velocity = 0

so

t1 = 1 + t2

and distance travel equation by kinematic is

d1 = ut + [tex]\frac{1}{2}[/tex] at²

d1 = 0+  [tex]\frac{1}{2}[/tex] 4.49 (t2)²   ................1

and

d2 = 0 + [tex]\frac{1}{2}[/tex] 3.4 (1+t2)²   ..................2

and when overtake distance same so  from equation 1 and 2

[tex]\frac{1}{2}[/tex] 4.49 (t2)²  = [tex]\frac{1}{2}[/tex] 3.4 (1+t2)²

t2 = 6.703828 sec

so time at which Kathy overtakes Stan is 6.70 sec

A firefighting crew uses a water cannon that shoots water at 25.0 m/s at a fixed angle of 52.0 ∘ above the horizontal. The firefighters want to direct the water at a blaze that is 12.0 m above ground level. How far from the building should they position their cannon? There are two possibilities (d1

Answers

Final answer:

To calculate the distance the firefighters should position their water cannon from the building, analyze the vertical motion of the water stream. Therefore, the firefighters should position their water cannon approximately 11.40 meters from the building.

Explanation:

To find the horizontal distance from the building where the firefighters should position their water cannon, we can use the projectile motion equations.

Given:

[tex]- Initial \ velocity \ of \ the \water \ cannon, \( v_0 = 25.0 \, \text{m/s} \)\\- Launch angle, \( \theta = 52.0^\circ \)\\- Vertical displacement, \( y = 12.0 \, \text{m} \)\\- Vertical acceleration due to gravity, \( g = 9.81 \, \text{m/s}^2 \)\\[/tex]

First, we'll find the time it takes for the water to reach a height of 12.0 m. We'll use the kinematic equation for vertical motion:

[tex]\[ y = v_{0y}t + \frac{1}{2}gt^2 \][/tex]

Where:

[tex]- \( v_{0y} \) is the initial vertical component of the velocity\\- \( t \) is the time[/tex]

Since the initial velocity is at an angle, we need to find its vertical component:

[tex]\[ v_{0y} = v_0 \sin(\theta) \][/tex]

Substitute the given values:

[tex]\[ v_{0y} = 25.0 \, \text{m/s} \times \sin(52.0^\circ) \]\[ v_{0y} \approx 25.0 \, \text{m/s} \times 0.788 \]\[ v_{0y} \approx 19.7 \, \text{m/s} \][/tex]

Now, let's use the equation for vertical motion to solve for \( t \):

[tex]\[ 12.0 \, \text{m} = (19.7 \, \text{m/s})t - \frac{1}{2}(9.81 \, \text{m/s}^2)t^2 \][/tex]

This is a quadratic equation, we can solve it to find \( t \). Let's denote [tex]\( a = -4.905 \, \text{m/s}^2 \) and \( b = 19.7 \, \text{m/s} \):[/tex]

[tex]\[ -4.905t^2 + 19.7t - 12.0 = 0 \][/tex]

Now, we can use the quadratic formula to solve for \( t \):[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Let's calculate \( t \).

We have the quadratic equation:

[tex]\[ -4.905t^2 + 19.7t - 12.0 = 0 \][/tex]

Using the quadratic formula:

[tex]\[ t = \frac{-19.7 \pm \sqrt{(19.7)^2 - 4(-4.905)(-12.0)}}{2(-4.905)} \]\[ t = \frac{-19.7 \pm \sqrt{389.21 - 235.2}}{-9.81} \]\[ t = \frac{-19.7 \pm \sqrt{154.01}}{-9.81} \]\[ t = \frac{-19.7 \pm 12.41}{-9.81} \][/tex]

Now, we have two possible values for \( t \):

[tex]1. \( t_1 = \frac{-19.7 + 12.41}{-9.81} \)\\2. \( t_2 = \frac{-19.7 - 12.41}{-9.81} \)[/tex]

Calculating each value:

[tex]1. \( t_1 = \frac{-7.29}{-9.81} \) \( t_1 \approx 0.742 \) seconds\\2. \( t_2 = \frac{-32.11}{-9.81} \) \( t_2 \approx 3.27 \) seconds[/tex]

Since the time \( t \) cannot be negative, we'll take [tex]\( t = t_1 \approx 0.742 \) seconds[/tex].

Now, to find the horizontal distance \( x \) from the building, we can use the equation for horizontal motion:

[tex]\[ x = v_{0x} \cdot t \][/tex]

where \( v_{0x} \) is the initial horizontal component of the velocity, given by:

[tex]\[ v_{0x} = v_0 \cdot \cos(\theta) \][/tex]

Substituting the given values:

[tex]\[ v_{0x} = 25.0 \, \text{m/s} \cdot \cos(52.0^\circ) \]\[ v_{0x} \approx 25.0 \, \text{m/s} \cdot 0.615 \]\[ v_{0x} \approx 15.375 \, \text{m/s} \][/tex]

Now, we can find \( x \):

[tex]\[ x = 15.375 \, \text{m/s} \cdot 0.742 \, \text{s} \]\[ x \approx 11.40 \, \text{m} \][/tex]

Therefore, the firefighters should position their water cannon approximately 11.40 meters from the building.

Monochromatic light passes through a double slit, producing interference, the distance between the slit centres is 1.2 mm and the distance between constructive fringes on a screen 5 m away is 0.3 cm. What is the wavelength?

Answers

Answer:

The wavelength of the light is [tex]7200\ \AA[/tex].

Explanation:

Given that,

Distance between the slit centers d= 1.2 mm

Distance between constructive fringes [tex]\beta= 0.3\ cm[/tex]

Distance between fringe and screen D= 5 m

We need to calculate the wavelength

Using formula of width

[tex]\beta=\dfrac{D\lambda}{d}[/tex]

Put the value into the formula

[tex]0.3\times10^{-2}=\dfrac{5\times\lambda}{1.2\times10^{-3}}[/tex]

[tex]\lambda=\dfrac{0.3\times10^{-2}\times1.2\times10^{-3}}{5}[/tex]

[tex]\lambda=7.2\times10^{-7}\ m[/tex]

[tex]\lambda=7200\ \AA[/tex]

Hence, The wavelength of the light is [tex]7200\ \AA[/tex].

An automobile approaches a barrier at a speed of 20 m/s along a level road. The driver locks the brakes at a distance of 50 m from the barrier. What minimum coefficient of kinetic friction is required to stop the automobile before it hits the barrier?

Answers

Final answer:

The minimum coefficient of kinetic friction required to stop the automobile before it hits the barrier is approximately 0.2041.

Explanation:

To stop the automobile before it hits the barrier, the minimum coefficient of kinetic friction needed can be found using the equation F = μk Mcg. The force of friction is equal to the product of the coefficient of kinetic friction (μk), the mass of the car (Mc), and the acceleration due to gravity (g). Since the car is stopping, its acceleration is negative, equal in magnitude to the square of its velocity divided by twice the stopping distance.



Using the given information, we can solve for the coefficient of kinetic friction:



F = μk Mcg

μk Mcg = (Mc)((-v^2)/(2d))



Substituting the values, we get:



μk = ((-v^2)/(2d))/g

where v = 20 m/s and d = 50 m.



Substituting the values in the equation, we get:



μk = ((-20^2)/(2*50))/9.8 ≈ -0.2041 ≈ 0.2041



Therefore, the minimum coefficient of kinetic friction required to stop the automobile before it hits the barrier is approximately 0.2041.

Learn more about kinetic friction here:

https://brainly.com/question/36370309

#SPJ3

Temperature and pressure of a region upstream of a shockwave are 295 K and 1.01* 109 N/m². Just downstream the shockwave, the temperature and pressure changes to 800 K and 8.74 * 10 N/m². Determine the change in following across the shockwave: a. Internal energy b. Enthalpy c. Entropy

Answers

Answer:

change in internal energy 3.62*10^5 J kg^{-1}

change in enthalapy  5.07*10^5 J kg^{-1}

change in entropy 382.79 J kg^{-1} K^{-1}

Explanation:

adiabatic constant [tex]\gamma =1.4[/tex]

specific heat is given as [tex]=\frac{\gamma R}{\gamma -1}[/tex]

gas constant =287 J⋅kg−1⋅K−1

[tex]Cp = \frac{1.4*287}{1.4-1} = 1004.5 Jkg^{-1} k^{-1}[/tex]

specific heat at constant volume

[tex]Cv = \frac{R}{\gamma -1} = \frac{287}{1.4-1} = 717.5 Jkg^{-1} k^{-1}[/tex]

change in internal energy [tex]= Cv(T_2 -T_1)[/tex]

                            [tex]  \Delta U = 717.5 (800-295)  = 3.62*10^5 J kg^{-1}[/tex]

change in enthalapy [tex]\Delta H = Cp(T_2 -T_1)[/tex]

                                 [tex] \Delta H = 1004.5*(800-295) = 5.07*10^5 J kg^{-1}[/tex]

change in entropy

[tex]\Delta S =Cp ln(\frac{T_2}{T_1}) -R*ln(\frac{P_2}{P_1})[/tex]

[tex]\Delta S =1004.5 ln(\frac{800}{295}) -287*ln(\frac{8.74*10^5}{1.01*10^5})[/tex]

[tex]\Delta S = 382.79 J kg^{-1} K^{-1}[/tex]

If you throw a rock straight up and there is no air drag, what is the acceleration of the rock on the way up? What is its acceleration on the way down? What is the velocity of the rock at the instant it reaches its highest point in its trajectory? What is the acceleration of the rock at its highest point?

Answers

Answer:

Explanation:

The rock will decelerate at the rate of g or 9.8 m s⁻²while on its way up because of gravitational attraction towards the earth.  . In other words , it will accelerate with the magnitude - 9.8 m s⁻² while on its way up.

On its way down , it will accelerate due to gravitational attraction. In this case acceleration will be positive and equal to 9.8 m s⁻².

At the highest point in its trajectory , rock  becomes stationary or comes to  rest momentarily. So at the peak position , velocity is zero.

At the highest point , as the gravitational force continues to act on the body undiminished, its acceleration will remain the same ie 9.8 m s⁻² at the highest point as well. It will act in the downward direction.

A car starts out when the air temperature is 288 K. The air pressure in the tires is 460 kPa. After driving a while, the temperature of the air in the tires increases to 298 K. What is the pressure in the tires at that point, assuming the volume remains constant?

(A) 476 kPa
(B) 498 kPa
(C) 488 kPa
(D) 563 kPa
(E) 512 kPa

Answers

Answer:

(A) 476 kPa

Explanation:

If the volume remains constant, the ideal gas law says:

P/T=constant

so: P1/T1=P2/T2

P2=P1*T2/T1=460*298/288=476KPa

Answer:

A. The final pressure at the tire would be 476 kPa

Explanation:

Since the volume is constant the ideal gas equation would be used to obtain the final pressure at the tire.

Given

the initial temperature [tex]T_{1}[/tex] = 288 K

the initial pressure [tex]P_{1}[/tex] = 460 k Pa

the final temperature [tex]T_{2}[/tex] = 298 K

the final pressure [tex]P_{2}[/tex] = ?

Using the ideal gas equation;

PV = nRT

[tex]P_{1}[/tex] / [tex]T_{1}[/tex]  = [tex]P_{2}[/tex] / [tex]T_{2}[/tex]

Making [tex]P_{2}[/tex] the subject formula

[tex]P_{2}[/tex]  = ([tex]P_{1}[/tex] x [tex]T_{2}[/tex] ) / [tex]T_{1}[/tex]

[tex]P_{2}[/tex]  = (460 x 298) / 288

[tex]P_{2}[/tex]  = 475.972 kPa

[tex]P_{2}[/tex]  ≈ 476 kPa

Therefore the final pressure at the tire would be 476 kPa

Calculate the volume of a sphere of radius R. Write out each step.

Answers

Answer:

[tex]V=\frac{4}{3}\pi R^{3}[/tex]

Explanation:

The volume of a body is defined as the capacity of the object. The amount of matter that object contains is called its volume.

All the three dimensional objects have volume.

The SI unit of volume is m^3. The volume of liquids is measured by teh unit litre or milli litre.

The volume of the sphere is given by

[tex]V=\frac{4}{3}\pi R^{3}[/tex]

where, R is the radius of the sphere.

Joe and Max shake hands and say goodbye. Joe walks east 0.40 km to a coffee shop, and Max flags a cab and rides north 3.65 km to a bookstore. How fare apart is there destination?

Answers

Answer:

3.67 km

Explanation:

Joe distance towards coffee shop is,

[tex]OB=0.40 km[/tex]

And the Max distance towards bookstore is,

[tex]OA=3.65 km[/tex]

Now the distance between the Joy and Max will be,

By applying pythagorus theorem,

[tex]AB=\sqrt{OB^{2}+OA^{2}}[/tex]

Substitute 0.40 km for OB and 3.65 km for OA in the above equation.

[tex]AB=\sqrt{0.40^{2}+3.65^{2}}\\AB=\sqrt{13.4825} \\AB=3.67 km[/tex]

Therefore the distance between there destination is 3.67 km.

A parachutist falls 50.0 m without friction. When the parachute opens, he slows down at a rate of 61 m/s^2. If he reaches the ground with a speed of 17 m/s, how long was he in the air (in seconds)?

Answers

Answer:

55.66 m

Explanation:

While falling by 50 m , initial velocity u = 0

final velocity = v , height h = 50 , acceleration g = 9.8

v² = u² + 2gh

= 0 + 2 x 9.8 x 50

v = 31.3 m /s

After that deceleration comes into effect

In this case final velocity v = 17 m/s

initial velocity u = 31.3 m/s

acceleration a = - 61 m/s²

distance traveled h = ?

v² = u² + 2gh

(17)² = (31.3)² - 2x 61xh

h = 690.69 / 2 x 61

= 5.66 m

Total height during which he was in air

= 50 + 5.66

= 55.66 m

A stunt man drives a car at a speed of 20 m/s off a 28-m-high cliff. The road leading to the cliff is inclined upward at an angle of 20°. How far from the base of the cliff does the car land? What is the car's impact speed?

Answers

Final answer:

The car lands approximately 45.67 meters away from the base of the cliff, and its impact speed is 36.1 m/s.

Explanation:

The situation described involves typing a projectile motion. Ignore any effect of air resistance for simplicity's sake. The stunt man's car exits the ramp at an angle, and continues its journey downwards under the force of gravity.

Firstly, we need to break down the initial velocity of the car into its horizontal and vertical components. Horizontal component (Ux) is governed by the formula Ux = U cos θ which results to 20 cos 20° = 18.79 m/s. Vertical component (Uy) is calculated by Uy = U sin θ which gives us 20 sin 20° = 6.84 m/s.

Following this, we need to calculate the total time the car is in the air (t), governed by the equation h = Uy * t - (1/2) * g * t², where g represents gravity (9.8 m/s²) and h is the height of the cliff (28m). Solving for t gives us approximately 2.43 seconds.

Finally, we find the horizontal distance (X) the car covers during the time it's in the air: X = Ux * t  = 18.79 m/s * 2.43 s ≈ 45.67 m.

To calculate the impact speed, we take the square root of the sum of the squares of the final horizontal and vertical velocities. The final vertical velocity (Vy) = Uy + g * t = 6.84 m/s + 9.8 m/s² * 2.43 s = 30.95 m/s. The impact speed then equals √((18.79 m/s)² + (30.95 m/s)²) = 36.1 m/s.

Learn more about Projectile Motion here:

https://brainly.com/question/29545516

#SPJ12

Suppose a person pushes thumbtack that is 1/5 centimeter long into a bulletin board, and the force (in dynes) exerted when the depth of the thumbtack in the bulletin board is x centimeters is given by F(x) = 1000 (1 + 2x)2 for 0 ≤ x ≤ 1 5 . Find the work W done by pushing the thumbtack all the way into the board.

Answers

Answer:

W = 290.7 dynes*cm

Explanation:

d = 1/5 cm = 0.2 cm

The force is in function of the depth x:

F(x) = 1000 * (1 + 2*x)^2

We can expand that as:

F(x) = 1000 * (1 + 4*x + 4x^2)

F(x) = 1000 + 4000*x + 4000*x^2

Work is defined as

W = F * d

Since we have non constant force we integrate

[tex]W = \int\limits^{0.2}_{0} {(1000 + 4000*x + 4000*x^2)} \, dx[/tex]

W = [1000*x + 2000*x^2 + 1333*X^3] evaluated between 0 and 0.2

W = 1000*0.2 + 2000*0.2^2 + 1333*0.2^3 - 1000*0 - 2000*0^2 - 1333*0^3

W = 200 + 80 + 10.7 = 290.7 dynes*cm

In this exercise, we have to use work knowledge to calculate the total, in this way:

[tex]W = 290.7[/tex]

Given some information about the exercise we find that:

d = 1/5 cm = 0.2 cm[tex]F(x) = 1000 * (1 + 2*x)^2[/tex]

Using the working definition we find that:

[tex]W = F * d\\W = [1000*x + 2000*x^2 + 1333*X^3]\\W = 1000*0.2 + 2000*0.2^2 + 1333*0.2^3 - 1000*0 - 2000*0^2 - 1333*0^3\\W = 200 + 80 + 10.7 = 290.7[/tex]

See more about work at brainly.com/question/1374468

In physics, why would an equation like y=mx+b be plotted as a straight line rather than as a parabola, as is done in math?

Answers

Answer:

Explanation:

In Both Physics and Math

y=mx+b is plotted as straight line where

m=slope of line

b=intercept on Y-axis

whereas Equation of parabola is something like this

[tex]y^2=4ax[/tex]

or

[tex]x^2=4ay[/tex]

Math is a tool to solve Physics problems so equations are same in math and physics

A ball is thrown into the air by a baby alien on a planet in the system of Alpha Centauri with a velocity of 27 ft/s. Its height in feet after t seconds is given by y = 27 t − 20 t 2 y=27t-20t2. A. Find the average velocity for the time period beginning when t=3 and lasting .01 s: Preview .005 s: Preview .002 s: Preview .001 s: Preview NOTE: For the above answers, you may have to enter 6 or 7 significant digits if you are using a calculator. Estimate the instanteneous velocity when t=3. Preview Get help: Video

Answers

Answer:

[tex]V_{3.01}=-93.2m/s[/tex]

[tex]V_{3.005}=-93.1m/s[/tex]

[tex]V_{3.002}=-93.04m/s[/tex]

[tex]V_{3.001}=-93.02m/s[/tex]

[tex]V_{3}=-93m/s[/tex]

Explanation:

To calculate average velocity we need the position for both instants t0 and t1.

Now we will proceed to calculate all the positions we need:

[tex]Y_{3}=-99m/s[/tex]

[tex]Y_{3.01}=-99.932m/s[/tex]

[tex]Y_{3.005}=-99.4655m/s[/tex]

[tex]Y_{3.002}=-99.18608m/s[/tex]

[tex]Y_{3.001}=-99.09302m/s[/tex]

Replacing these values into the formula for average velocity:

[tex]V_{3-3.01}=\frac{Y_{3.01}-Y_{3}}{3.01-3}=-93.2m/s[/tex]

[tex]V_{3-3.005}=\frac{Y_{3.005}-Y_{3}}{3.005-3}=-93.1m/s[/tex]

[tex]V_{3-3.002}=\frac{Y_{3.002}-Y_{3}}{3.005-3}=-93.04m/s[/tex]

[tex]V_{3-3.001}=\frac{Y_{3.001}-Y_{3}}{3.001-3}=-93.02m/s[/tex]

To know the actual velocity, we derive the position and we get:

[tex]V=27-40t = -93m/s[/tex]

You measure the velocity of a drag racer that accelerates with constant acceleration. You want to plot the data and determine the acceleration of the dragster. Would you use a. a) Linear equation
b) Quadratic equation
c) cubic equation
d) a higher order equation

Answers

Answer:

a) Linear equation

Explanation:

Definition of acceleration

[tex]a=\frac{dv}{dt}\\[/tex]

if a=constant and we integrate the last equation

[tex]v(t)=v_{o}+a*t[/tex]

So the relation between the time and the velocity is linear. If we plot the velocity in function of time, the plot is a line, and the acceleration is the slope of this line.

An engineer has a 37.0 µH inductor, a 37.0 µF capacitor, and a variable frequency AC source. Determine the source frequency (in kHz) at which the inductor and capacitor have the same reactance.

Answers

Answer:

Frequency will be 4.30 kHz

Explanation:

We have inductance [tex]L=37\mu H=37\times 10^{-6}H[/tex]

And capacitance [tex]C=37\mu H=37\times 10^{-6}F[/tex]

Inductive reactance is given by [tex]X_L=\omega L[/tex]

And capacitive reactance [tex]X_C=\frac{1}{\omega C}[/tex]

As in question it is given that inductive reactance and capacitive reactance is same

So [tex]X_L=X_C[/tex]

[tex]\omega L=\frac{1}{\omega C}[/tex]

[tex]\omega ^2=\sqrt{\frac{1}{LC}}=\frac{1}{\sqrt{37\times 10^{-6}\times 37\times 10^{-6}}}=27027.027rad/sec[/tex]

We know that angular frequency [tex]\omega =2\pi f[/tex]

[tex]2\times 3.14\times f=27027.027[/tex]

f = 4303.66 Hz =4.30 kHz

A child slides down a hill on a toboggan with an acceleration of 1.8 m/s^2. If she starts at rest, how far has she traveled in : (a) 1.0 s, (b) 2.0 s, and (c) 3.0 s?

Answers

The distances traveled by the child on the toboggan are [tex]0.9, 3.6, and\ 8.1[/tex] respectively.

The distance traveled by the child on the toboggan can be calculated using the equations of motion for uniformly accelerated motion. The equation that relates distance (d), initial velocity (u), acceleration (a), and time (t) is given by:

[tex]d = ut + (1/2)at^2[/tex]

In this case, the child starts at rest [tex](u = 0)[/tex] and has an acceleration of a[tex]= 1.8 m/s^2[/tex].

Calculate the distances for the given times:

(a) For t = 1.0 s:

[tex]d = (0) \times (1.0 ) + (1/2) \times (1.8 ) \times (1.0 )^2\\d = 0 + 0.9 \\d = 0.9\ m[/tex]

(b) For t = 2.0 s:

[tex]d = (0) \times (2.0 ) + (1/2) \times (1.8 ) \times (2.0 )^2\\d = 0 + 3.6\\d = 3.6\ m[/tex]

(c) For t = 3.0 s:

[tex]d = (0) \times (3.0 ) + (1/2) \times (1.8 ) \times (3.0)^2\\d = 0 + 8.1\\d = 8.1\ m[/tex]

So, the distances traveled by the child on the toboggan are [tex]0.9, 3.6, and\ 8.1[/tex] respectively.

To know more about the distance:

https://brainly.com/question/34824016

#SPJ12

Final answer:

Using the kinematic equation for motion with constant acceleration, the distance traveled by the child on the toboggan is 0.9 m after 1.0 s, 3.6 m after 2.0 s, and 8.1 m after 3.0 s.

Explanation:

To solve for the distance traveled by the child on the toboggan in each case, we'll use the kinematic equation for motion with constant acceleration: d = v_i * t + \frac{1}{2} * a * t^2, where d is the distance traveled, v_i is the initial velocity, t is the time, and a is the acceleration.

Since the child starts at rest, the initial velocity v_i is 0 m/s. The acceleration a is given as 1.8 m/s^2.

(a) For t = 1.0 s: d = 1/2 * 1.8 m/s^2 * (1.0 s)^2 = 0.9 m(b) For t = 2.0 s: d = 1/2 * 1.8 m/s^2 * (2.0 s)^2 = 3.6 m(c) For t = 3.0 s: d = 1/2 * 1.8 m/s^2 * (3.0 s)^2 = 8.1 m

Which of the following statements regarding heuristics and empiricism is true? A. Heuristics allows a priori theoretical concepts B. Empiricism makes no use of logic C. Empiricism relies solely on theoretical concepts D. Heuristics makes no use of logic E. Heuristics can't be based on a trial and error approach

Answers

Final answer:

The statement that heuristics allow a priori theoretical concepts is true. Heuristics are mental shortcuts that can definitely be informed by a priori theoretical concepts, while empiricism emphasizes the role of experience in the formation of ideas.

Explanation:

Regarding the question on the statements about heuristics and empiricism, the best choice would be 'A'. Heuristics allow a priori theoretical concepts'. Heuristics are mental shortcuts or rules of thumb that simplify decisions, particularly under conditions of uncertainty. They are not necessarily based on theoretical concepts but rather on practical, personal experience or common sense. However, they can certainly be informed by a priori theoretical concepts in the sense that our theoretical understanding can shape the rules of thumb we use.

On the other hand, empiricism is a philosophical system that emphasizes the role of experience, especially sensory perception, in the formation of ideas, while discounting a priori reasoning, intuitiveness, and innate ideas. Hence, options B, C, and D are incorrect. Option E is also incorrect as heuristics can definitely be based on a trial and error approach.

Learn more about Heuristics and Empiricism here:

https://brainly.com/question/32222421

#SPJ6

Carl is eating lunch at his favorite cafe when his friend Isaac calls and says he wants to meet him. Isaac is calling from a city 155 miles155 miles away, and wants to meet Carl somewhere between the two locations. Isaac says he will start driving right away, but Carl needs 31.0 min31.0 min to finish his lunch before he can begin driving. Isaac plans to drive at 70.0 mph70.0 mph , and Carl plans to drive at 50.0 mph50.0 mph . Ignore acceleration and assume the highway forms a straight line. How long will Isaac be driving before he meets Carl?

Answers

Answer:

1.507 h

Explanation:

We can think that they move at constant speed, so their positions will follow

X(t) = Xo + v * t

However Carl will start moving 31 minutes later, so we can adjust the equation like this

X(t) = Xo + v * (t - t1)

Where t1 is the time at which each of them will start moving, 0 for Isaac since he starts driving right away, and 31 minutes (0.5167 h) for Carl

Also, we can considre the initial position of Carl to be 0 and his speed to be 50, while Isaac will have an initial position of 155 and a speed of -70 (negative because he is driving towards the origin of coordinates).

Then we have these two equations:

x(t) = 0 + 50 * (t - 0.5167)

x(t) = 155 - 70 * t

These are equations of lines, the point where they intersect determines the place and time they meet.

50 * (t -0.5167) = 155 - 70 * t

50 * t - 25.83 = 155 - 70 * t

120 * t = 180.83

t = 180.83 / 120 = 1.507 h

This is the time Isaac will be driving

Issac will drive for [tex]\boxed{1.507\text{ hr}}[/tex] before he meets carl.

Further Explanation:

The acceleration of the driving is ignored. It means that the motion of the cars is purely linear on the highways.

Given:

The distance between Carl and Issac is [tex]155\text{ miles}[/tex].

The speed of Carl is [tex]50\text{ mph}[/tex].

The speed of Issac is [tex]70\text{ mph}[/tex].

The time taken by Carl to finish lunch before starting to drive is [tex]31\text{ min}[/tex].

Concept:

Since Carl is eating lunch and he will start after 31 minutes, Issac will cover some distance within this time.

The distance covered by Issac before Carl starts to drive is,

[tex]\begin{aligned}d_1&=\text{speed}\times\text{time}\\&=50\text{ mph}\times\left(\dfrac{31}{60}\right)\text{hr}\\&=36.16\text{ mile}\end{aligned}[/tex]

Now after Issac has covered [tex]36.16\text{ miles}[/tex], Carl starts to drive. So, the distance left between Carl and Issac to be covered after carl starts to drive is,

[tex]\begin{aligned}d&=155\text{ miles}-36.16\text{ miles}\\&=118.84\text{ miles}\end{aligned}[/tex]

So, now the sum of the distances covered by Issac and Carl in time [tex]t[/tex] should be equal to the [tex]118.84\text{ miles}[/tex].

[tex]\begin{aligned}D_{\text{Issac }}+D_{\text{Carl}}&=118.84\text{ miles}\\(V_{Issac}\times t)+(V_{Carl}\times t)&=118.84\text{ miles}\end{aligned}[/tex]

Substituting the values of speed of Issac and Carl,

[tex]\begin{aligned}(70\times t)+(50\times t)&=118.84\text{ miles}\\120t&=118.84\text{ miles}\\t&=\frac{118.84}{120}\text{ hr}\\t&=0.990\text{ hr}\end{aligned}[/tex]

So, Issac and Carl meet after [tex]0.990\text{ hr}[/tex] after Carl starts driving.

So, the time for which Issac has been driving is,

[tex]\begin{aligned}T_{\text{ Issac}}&=0.990\text{ hr}+\dfrac{31}{60}\text{ hr}\\&=(0.990+0.516)\text{ hr}\\&=1.507\text{ hr}\end{aligned}[/tex]

Thus, Issac will drive for [tex]\boxed{1.507\text{ hr}}[/tex] before he meets carl.

Learn More:

1. Acceleration of the book due to force applied https://brainly.com/question/9719731

2. A toy train rolls around a horizontal 1.0-m-diameter track https://brainly.com/question/9575487

3. Velocity is the combination of which of the following https://brainly.com/question/1890447

Answer Details:

Grade: College

Subject: Physics

Chapter: Linear motion in one dimension

Keywords:

Carl, Issac, Speed, meet, 155 miles, eating lunch, 70 mph, 50 mph, 31 min, between two locations, highway forms a straight line.

Pulsed lasers used in science and medicine produce very short bursts of electromagnetic energy. If the laser light wavelength is 1062 nm (this corresponds to a Neodymium-YAG laser), and the pulse lasts for 34 picoseconds, how many wavelengths are found within the laser pulse?

How short would the pulse need to be to fit only one wavelength?

Answers

Explanation:

Given that,

Wavelength of the laser light, [tex]\lambda=1062\ nm=1062\times 10^{-9}\ m[/tex]

The laser pulse lasts for, [tex]t=34\ ps=34\times 10^{-12}\ s[/tex]

(a) Let d is the distance covered by laser in the given by, [tex]d=c\times t[/tex]

[tex]d=3\times 10^8\times 34\times 10^{-12}[/tex]

d = 0.0102 meters

Let n is the number of wavelengths found within the laser pulse. So,

[tex]n=\dfrac{d}{\lambda}[/tex]

[tex]n=\dfrac{0.0102}{1062\times 10^{-9}}[/tex]

n = 9604.51

(b) Let t is the time need to be fit only in one wavelength. So,

[tex]t=\dfrac{\lambda}{c}[/tex]

[tex]t=\dfrac{1062\times 10^{-9}}{3\times 10^8}[/tex]

[tex]t=3.54\times 10^{-15}\ s[/tex]

Hence, this is the required solution.

Calculate the time (in seconds) needed for a car to accelerate from 0 m/s to 25 m/s at 5 m/s^2?

Answers

Answer:

Car will take 5 sec to reach from 0 m/sec to 25 m/sec

Explanation:

We have given initial velocity u = 0 m/sec

And final velocity v = 25 m/sec

Acceleration [tex]a=5m/Sec^2[/tex]

From first equation of motion we know that [tex]v=u+at[/tex], here v is final velocity, u is initial velocity, a is acceleration and t is time

So [tex]25=0+5\times t[/tex]

[tex]t=4 sec[/tex]

So car will take 5 sec to reach from 0 m/sec to 25 m/sec

A bicyclist is finishing his repair of a flat tire when a friend rides by with a constant speed of 3.1 m/s . Two seconds later the bicyclist hops on his bike and accelerates at 2.4 m/s^2 until he catches his friend. a) How much time does it take until he catches his friend (after his friend passes him)?
Express your answer using two significant figures.

Answers

Answer:

5.91 seconds

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

Distance = Speed × Time

⇒Distance = 3.1t

Distance traveled by bicycle that passes through = 3.1t

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow s=0\times t+\frac{1}{2}\times 2.4\times (t-2)^2\\\Rightarrow s=1.2(t-2)^2[/tex]

They both travel the same distance

[tex]3.1t=1.2(t-2)^2\\\Rightarrow 31t=12\left(t-2\right)^2\\\Rightarrow 12t^2-79t+48=0[/tex]

[tex]t=\frac{79+\sqrt{3937}}{24},\:t=\frac{79-\sqrt{3937}}{24}\\\Rightarrow t=5.91, 0.67[/tex]

Hence, time taken by the bicyclist to catch the other bicyclist is 5.91 seconds

Two boats start together and race across a 48-km-wide lake and back. Boat A goes across at 48 km/h and returns at 48 km/h. Boat B goes across at 24 km/h, and its crew, realizing how far behind it is getting, returns at 72 km/h. Turnaround times are negligible, and the boat that completes the round trip first wins.
(1) Which boat wins? (Or is it a tie?)

(A) boat A
(B) boat B
(C) it's a tie
.
(2) By how much? answer in km
(3) What is the average velocity of the winning boat? answer needs to be km/h

Answers

Answer:

Part 1)

Boat A will win the race

Part 2)

Boat A will win the race by 48 km as the 2nd boat will reach the other end while boat A will just touches the finish line

Part 3)

average velocity must be zero

Explanation:

As we know that the distance moved by the boat is given as

[tex]d = 48 km[/tex]

now the time taken by the boat to move to and fro is given as

[tex]t = \frac{d}{v}[/tex]

[tex]t = \frac{48 + 48}{48}[/tex]

[tex]t = 2 hrs[/tex]

Time taken by Boat B to cover the distance

[tex]t = \frac{48}{24} + \frac{48}{72}[/tex]

[tex]t = 2.66 h[/tex]

Part 1)

Boat A will win the race

Part 2)

Boat A will win the race by 48 km as the 2nd boat will reach the other end while boat A will just touches the finish line

Part 3)

Since the displacement of Boat A is zero

so average velocity must be zero

Final answer:

Boat A wins the race since it takes a total of 2 hours for the round trip, which is faster than Boat B's 2.6667 hours. Boat A wins by approximately 48 km when Boat B finishes. The average velocity of the winning boat (Boat A) is 48 km/h.

Explanation:

To determine which boat wins and by how much, we need to calculate the time each boat takes to make the round trip across the 48-km-wide lake. For Boat A, since it travels at 48 km/h both ways, the time to go across and back is simply the total distance (48 km there and 48 km back, for a total of 96 km) divided by the speed (48 km/h):

Time for Boat A = Total Distance / Speed = 96 km / 48 km/h = 2 hours.
For Boat B, the time to go across at 24 km/h and come back at 72 km/h must be calculated separately and then summed:

Time to go across for Boat B = Distance / Speed = 48 km / 24 km/h = 2 hours.
Time to come back for Boat B = Distance / Speed = 48 km / 72 km/h = 0.6667 hours.
Total time for Boat B = 2 hours + 0.6667 hours = 2.6667 hours.
Boat A wins since it takes less time to complete the round trip.

To find out by how much Boat A wins, we need to convert the time difference into distance. Since Boat A has already finished when Boat B has 0.6667 hours to go, we calculate how far Boat B would travel in that time at their average speed on the way back (72 km/h):

Difference in distance = Time difference x Speed of Boat B on return = 0.6667 hours x 72 km/h = 48 km.
For the average velocity of the winning boat (Boat A), considering the round trip without any rest or waiting time, it remains constant at 48 km/h because it travels at that speed in both the outward and return journeys.

If a boulder is dropped straight down off the edge of a vertical cliff, how long does it take it to reach 90 Km/h? Give in seconds

Answers

Answer:

2.551 m/s

Explanation:

Given:

Boulder is dropped from the cliff

thus,

Initial speed of the boulder, u = 0 m/s

Final speed to be obtained, v = 90 km/h =[tex]90\times\frac{5}{18}[/tex] =25 m/s

also, in the case of free fall the acceleration of the boulder will be equal to the acceleration due to the gravity i.e g = 9.8 m/s²

Now, from the Newton's equation of motion

v = u + at

where, a is the acceleration = g = 9.8 m/s²

t is the time

on substituting the respective values, we get

25 = 0 + 9.8 × t

or

t = [tex]\frac{\textup{25}}{\textup{9.8}}[/tex]

or

t = 2.551 m/s

What is the weight of a 2.5-kg pumpkin? Remember to always show all work.

Answers

Final answer:

The weight of a 2.5-kg pumpkin is calculated by multiplying the mass by the acceleration due to gravity, resulting in 24.5 newtons (N) when rounded to one decimal place.

Explanation:

To find out the weight of a 2.5-kg pumpkin, you would need to multiply its mass by the acceleration due to gravity. In most physics problems, this is approximately 9.8 meters per second squared (m/s²). Therefore, the weight W can be calculated using the formula W = m×g, where m is the mass in kilograms and g is the acceleration due to gravity.

So, for a 2.5-kg pumpkin, W = 2.5 kg × 9.8 m/s² = 24.5 kg·m/s². Since weight is a force, it is measured in newtons (N) in the International System of Units (SI). Therefore, the pumpkin weighs 24.5 N.

Final answer:

The weight of a 2.5-kg pumpkin is calculated by multiplying its mass by the gravitational acceleration, which results in a weight of 24.5 Newtons (N) on Earth.

Explanation:

The weight of a pumpkin is the force with which it is pulled towards the Earth due to gravity. To calculate the weight, you can use the formula:

Weight (W) = mass (m) × gravitational acceleration (g)

Where the gravitational acceleration on Earth is typically 9.8 meters per second squared (9.8 m/s²). For a 2.5-kg pumpkin, the calculation would be:

Weight (W) = 2.5 kg × 9.8 m/s²

Weight (W) = 24.5 kg·m/s²

Since weight is measured in Newtons (N), and 1 kg·m/s² is equivalent to 1 Newton, the weight of the pumpkin is 24.5 Newtons (N). When converting measurements and rounding, it's important to consider significant figures and the least precise measurement. In this calculation, both 2.5 kg and 9.8 m/s² are exact enough, so our final answer in Newtons does not need additional rounding.

A car travels on a straight, level road. (a) Starting from rest, the car is going 38 ft/s (26 mi/h) at the end of 4.0 s. What is the car's average acceleration in ft/s2? (b) In 3.0 more seconds, the car is going 76 ft/s (52 mi/h). What is the car's average acceleration for this time period?

Answers

Answer:

[tex]a)9.5\frac{ft}{s^2}\\ b) 12.66\frac{ft}{s^2}[/tex]

Explanation:

A body has acceleration when there is a change in the velocity vector, either in magnitude or direction. In this case we only have a change in magnitude. The average acceleration represents the speed variation that takes place in a given time interval.

a)

[tex]a_{avg}=\frac{\Delta v}{\Delta t}\\a_{avg}=\frac{v_{f}-v_{i}}{t_{f}- t_{i}}\\a_{avg}=\frac{38\frac{ft}{s}-0}{4 s- 0}=9.5\frac{ft}{s^2}\\[/tex]

b)

[tex]a_{avg}=\frac{\Delta v}{\Delta t}\\a_{avg}=\frac{v_{f}-v_{i}}{t_{f}- t_{i}}\\a_{avg}=\frac{76\frac{ft}{s}-38\frac{ft}{s}}{7 s- 4s}\\a_{avg}=\frac{38\frac{ft}{s}}{3s}=12.66\frac{ft}{s^2}[/tex]

Final answer:

The car's average acceleration for part (a) is 9.5 [tex]ft/s^2[/tex], and for part (b) it is 12.67 [tex]ft/s^2[/tex], calculated using the change in velocity over the time period.

Explanation:

Car's Average Acceleration

To find the car's average acceleration in part (a), we use the formula for average acceleration, which is the change in velocity (deltaV) divided by the time (t).

Average Acceleration (a) = (deltaV) / (t)For part (a), the initial velocity (V0) is 0 ft/s, the final velocity (V) is 38 ft/s, and the time (t) is 4.0 s.

Therefore, a = (38 ft/s - 0 ft/s) / 4.0 s = 9.5 [tex]ft/s^2[/tex]

For part (b), the final velocity (V) is now 76 ft/s and the time (t) is 3.0 s (the additional time).

Average Acceleration (a) = (76 ft/s - 38 ft/s) / 3.0 s = 12.67 [tex]ft/s^2[/tex]

Other Questions
4. Some examples of plant assets are (A) prepaid insurance, computers, and equipment. (B) supplies, furniture, and cash. (C) delivery equipment, supplies, and computers. (D) none of these. What is true about liquid water?A. Ice has a higher density then liquid water because it has less space between molecules B. Ice has a lower density then liquid water because it has more space between molecules C. Ice has a lower density then liquid water because it has less space between molecules D. Ice has a higher density than liquid water because it has more space between molecules this egyptian kingdom featured statues of pharaohs that looked like real people instead of idealized figures middle kingdom old kingdom new kingdom The average salary for a doctorate is 39,000 less than twice that of someone with a bachelor's degree. Combined, a people (one with a denctorate, are with a bachelor's earn 1+126,000. Find the salary for each degree. 120.000 - - 39000 24 = 165,ooo. Which of the following choices has the compounds correctly arranged in order of increasing solubility in water? (least soluble to most soluble) Which of the following choices has the compounds correctly arranged in order of increasing solubility in water? (least soluble to most soluble) LiF < NaNO3 < CHCl3 CH3OH < CH4 < LiF CH4 < NaNO3 < CHCl3 CCl4 < CHCl3 < NaNO3 CH3OH < Cl4 < CHCl3 how would a person deal negatively with conflict?A)Showing aggressionB)Avoiding conflictC)Acting hostileD)All of the above While applying the ecological systems model, the _____ is a special subset of an action system that includes the practitioners and formal service systems involved in work on the target problems.A) closed systemB) client systemC) open systemD) agency system Find the 85th term of the arithmetic sequence - 25, 37, 49, ... Identify the oxidation number of carbon in the compound lithium carbonate. Grand-cola spends $3 on direct materials, direct labor, and variable manufacturing overhead for every unit (12-pack of soda) it produces. Fixed manufacturing overhead costs $3million per year. The plant, which is currently operating at only 80 % of capacity, produced 15 million units this year. Management plans to operate closer to full capacity next year, producing 25 million units. Management doesn't anticipate any changes in the prices it pays for materials, labor, and manufacturing overhead. 1. What is the current total product cost (for the 15 million units), including fixed and variable costs? 2. What is the current average product cost per unit? 3. What is the current fixed cost per unit? 4. What is the forecasted total product cost next year (for the25 million units), including fixed and variable costs? 5. What is the forecasted average product cost next year? 6. What is the forecasted fixed cost per unit? 7. Why does the average product cost decrease as production increases? Prove the following theorems using truth table (a) X + XY = X (b) X + YZ = (X + Y)(X + Z) Draw a bond-line structure for each of the following compounds: 2.55 a) CH2-CHCH2C(CH3)3 (b) (CH3CH2)2CHCH2CH2OH (d) CH3CH2OCH2CH2OCH2CH3 (c) CH COCH2CH(CH3)2 (f) (CH3)2C=CHCH3 (e) (CH3CH2)3CBr For several years in massachusetts the lottery commission would mail residents coupons for free lotto tickets. to win the jackpot in Massachusetts, you have to correctly guess all six numbers drawn from a pool of 36. What is the expected value of the free lotto ticket if the jackpot is $8,000,000 and there is no splitting of the prize? Who officially elects the President of the United States? explain. A person with a genotype of HbSS has sickle cell disease. A person with a genotype of HbAS allele carries the sickle cell trait. A person with a genotype of HbAA does not have sickle cell disease and does not carry the trait. The Punnett square shows the genotype of two people carrying the sickle cell trait. What are the chances that their offspring will have sickle cell anemia? What is the result of segmenting a network with a bridge (switch)? (Choose two) a) It decreases the number of collision domains. b) It increases the number of broadcast domains. c) It decreases the number of broadcast domains. d) It makes smaller collision domains. e) It makes larger collision domains. f) It increases the number of collision domains. A client has come to the clinic to learn about diet changes she should make to reduce her chance of developing a chronic disease. What are the recommended daily requirements of EPA and DHA to reduce the risk of heart disease?A) 500 mg/dayB) 600 mg/dayC) 800 mg/dayD) 1000 mg/day Estimate square root of 43 to the nearest tenth What can be included in types of third-person point of view? A.)ordinary and obtrusive B.)incessant and incremental C.)obstructive and intrusive D.)omniscient and objectiveI just finished the test and the answer was D. A ball of mass 0.16 kg is moving forwards at a speed of 0.50 m/s. A second ball of mass 0.10kg is stationary. The first ball strikes the second ball. The second ball moves forwards at a speed of0.50 m/s.What is the speed of the first ball after the collision?