Paul has just purchased a $1.250.000 home and made a $400,000 down payment The balance can be amortized at 3% for 30 years What are the monthly payments? (5 marks) Tay

Answers

Answer 1

Answer:

The monthly payment is $3583.63 ( approx )

Step-by-step explanation:

Given,

The total cost of the home = $1,250,000

There is a downpayment of $400,000,

Thus, the present value of the loan, PV =  1250000 - 400,000 = $ 850,000

Annual rate = 3 % = 0.03,

So, the monthly rate, r = [tex]\frac{0.03}{12}=\frac{1}{400}[/tex]

And, time ( in years ) = 30

So, the number of months, n = 12 × 30 = 360

Hence, the monthly payment of the loan,

[tex]P=\frac{PV(r)}{1-(1+r)^{-n}}[/tex]

[tex]=\frac{850000(\frac{1}{400})}{1-(1+\frac{1}{400})^{-360}}[/tex]

[tex]=3583.6342867[/tex]

[tex]\approx \$3583.63[/tex]


Related Questions

Solve the Method of variation of Parameters. y" - 3y' + 2y = 4e^3t

Answers

Answer:

CF+PI=[tex]c_1e^{2x}+c_2e^{x}[/tex]+[tex]2e^{3t}[/tex]

Step-by-step explanation:

we have given y"-3y'=2y=[tex]4e^{3t}[/tex]

this differential equation solution have two part that CF and PI

CALCULATION OF CF :

[tex]m^2-3m+2=0[/tex]

[tex]m^2-2m-m+2=0[/tex]

[tex](m-1)(m-2)=0[/tex]

m=1 and m=2

so CF=[tex]c_1e^{2x}+c_2e^{x}[/tex]

CALCULATION OF PI :

PI =   [tex]\frac{4e^{3t}}{(m-1)(m-2)}[/tex]

at m= 3 in PI

[tex]PI=\frac{4e^{3t}}{2}=2e^{3t}[/tex]

so the complete solution is

CF+PI=[tex]c_1e^{2x}+c_2e^{x}[/tex]+[tex]2e^{3t}[/tex]

Subjects for the next presidential election poll are contacted using telephone numbers in which the last four digits are randomly selected​ (with replacement). Find the probability that for one such phone​ number, the last four digits include at least one 0.

Answers

Answer: 0.3439

Step-by-step explanation:

Total number of digits : 10

The number of digits except zero =9

The probability of selecting non-zero number :-

[tex]\dfrac{9}{10}=0.9[/tex]

Then, the probability that one such phone number , the last four digits do not include any zero:-

[tex]\text{P(no zero )}=(0.9)^4[/tex]

Then , the probability that for one such phone​ number, the last four digits include at least one 0:-

[tex]\text{P(at-least one zero )}=1-(0.9)^4=0.3439[/tex]

Hence, the probability that for one such phone​ number, the last four digits include at least one 0 is 0.3439 .

Final answer:

To find the probability of at least one 0 in a four-digit number, one can use the complement of the probability of no 0s occurring in any of the digits. The probability of at least one 0 is approximately 34.39%.

Explanation:

The student is inquiring about the probability of a certain event, specifically related to randomly generating telephone numbers. To find the probability that at least one digit is a 0 in a randomly generated four-digit number, we can use the complementary probability approach. The probability of not getting a 0 in one digit is 9/10 since there are 9 other possible digits (1-9). Hence, the probability of not getting a 0 in any of the four digits is (9/10)^4. Subtracting this from 1 will give the probability of having at least one 0 in the four-digit sequence:


Probability of at least one 0 = 1 - (Probability of no 0 in any digit)


Probability of at least one 0 = 1 - (9/10)^4


After calculating, we have:


Probability of at least one 0 = 1 - 0.6561 = 0.3439

Therefore, the probability of having at least one 0 in a randomly chosen telephone number with four digits is approximately 34.39%.

x + y + w = b

2x + 3y + z + 5w = 6

z + w = 4

2y + 2z + aw = 1

For what values a, b (constants) is the system:

(a) inconsistent?

(b) consistent w/ a unique sol'n?

(c) consistent w/ infinitely-many sol'ns?

Answers

Answer:

(a) a=6 and b≠[tex]\frac{11}{4}[/tex]

(b)a≠6

(c) a=6 and b=[tex]\frac{11}{4}[/tex]

Step-by-step explanation:

writing equation in agumented matrix form

[tex]\begin{bmatrix}1 &1 & 0 &1 &b\\ 2 &3 & 1 &5 &6\\ 0& 0 & 1 &1 &4\\ 0& 2 & 2&a &1\end{bmatrix}[/tex]

now [tex]R_{2} =R_{2}-2\times R_{1}[/tex]

[tex]\begin{bmatrix}1 &1& 0 &1 &b\\ 0 &1& 1 &3 &6-2b\\ 0& 0 & 1 &1 &4\\ 0& 2 & 2&a &1\end{bmatrix}[/tex]

now [tex]R_{4} =R_{4}-2\times R_{2}[/tex]

[tex]\begin{bmatrix}1 &1& 0 &1 &b\\ 0 &1& 1 &3 &6-2b\\ 0& 0 & 1 &1 &4\\ 0& 0 & 0 &a-6 &4b-11\end{bmatrix}[/tex]

a) now for inconsistent

rank of augamented matrix ≠ rank of matrix

for that  a=6 and b≠[tex]\frac{11}{4}[/tex]

b) for consistent w/ a unique solution

rank of augamented matrix = rank of matrix

  a≠6

c) consistent w/ infinitely-many sol'ns

  rank of augamented matrix = rank of matrix < no. of variable

for that condition

 a=6 and b=[tex]\frac{11}{4}

then rank become 3 which is less than variable which is 4.

Is the given function phi(x) = x^2 - x^-1 an explicit solution to the linear equation d^2y/dx^2 - 2/x^2 y = 0? Circle your answer. (a) yes (b) no

Answers

Answer:

Yes

Step-by-step explanation:

We are given that a function [tex]\phi(x)=x^2-x^{-1}[/tex]

We have to find that given function is an explicit solution to the linear equation

[tex]\frac{d^2y}{dx^2}-\frac{2}{x^2}y=0[/tex]

If given function is an explicit solution of given linear equation then it satisfied the given differential equation

Differentiate w.r.t x

Then we get [tex]\phi'(x)=2x+x^{-2}[/tex]

Again differentiate w.r.t x

Then we get

[tex]\phi''(x)=2-\frac{2}{x^3}[/tex]

Substitute all values in the given differential equation

[tex]2-\frac{2}{x^3}-\frac{2}{x^2}(x^2-x^{-1})[/tex]

=[tex]2-\frac{2}{x^3}-2+\frac{2}{x^3}=0[/tex]

Hence, given function is an explicit solution of given differential equation.

Therefore, answer is yes.

The slope of the _________________ is determined by the relative price of the two goods, which is calculated by taking the price of one good and dividing it by the price of the other good. Opportunity cost productive efficiency budget constraint production possibilities frontier

Answers

Answer:

The answer is - budget constraint

Step-by-step explanation:

The slope of the budget constraint is determined by the relative price of the two goods, which is calculated by taking the price of one good and dividing it by the price of the other good.  

A budget constraint happens when a consumer demonstrates limited consumption patterns by a certain income.

Express as the sum or difference of logarithms. log311y

Answers

Final answer:

The function log311y can be expressed as the sum of two logarithms, log3(11) + log3(y), according to the product rule of logarithms.

Explanation:

The function log311y represents the logarithm base 3 of the product of the numbers 11 and y. Using the rules of logarithms, we can rewrite this expression as a sum of two logarithms.

According to the product rule of logarithms, the logarithm of a product is the sum of the logarithms of the component numbers. Applying this rule to our expression, log311y becomes:

log3(11) + log3(y)

This is the sum of the logarithm base 3 of 11 and the logarithm base 3 of y. In conclusion, the function log311y can be expressed as the sum of the separate logarithms: log3(11) + log3(y).

Learn more about Logarithms here:

https://brainly.com/question/37245832

#SPJ6

Final answer:

The logarithm log3(11y) can be broken down into two simpler logarithms, log3(11) and log3(y), by using properties of logarithms. This is the sum of the two simpler logarithms.

Explanation:

To express the logarithm log3(11y) as the sum or difference of logarithms, we will utilize the properties of logs:

The logarithm of a product is the sum of the logarithms of the numbers (log(xy) = log(x) + log(y)).The logarithm of a number raised to an exponent is the product of the exponent and the logarithm of the number.The logarithm of a quotient is the difference of the logarithms of the numbers.

Applying these properties to the given logarithm, we find:

log3(11y) = log3(11) + log3(y)

Thus, the original logarithm has been expressed as a sum of two simpler logarithms.

Learn more about Logarithms here:

https://brainly.com/question/37287488

#SPJ6

You can afford monthly deposits of 140 into an account that pays 3.8% compounded monthly. How long will be untl you have $11.300 to buy a boat? Type the number of months: (Round to the next higher month it not exact Question He Check Answer Enter your answer in the answer box and then click Check Answer All parts showing

Answers

Answer:

72 months approx.

Step-by-step explanation:

Monthly deposit = m = $140

r = 3.8% or 0.038

Amount needed in the account = A = $11300

The formula will be :

[tex]11300=140(\frac{(1+0.038/12)-1}{0.038/12} )[/tex]

[tex]11300=140(\frac{(1+0.038/12)-1}{0.003166})[/tex]

[tex]11300=44219.83((1.003166)^{m}-1)[/tex]

[tex]0.2555=(1.003166)^{m}-1[/tex]

[tex]1.2555=(1.003166)^{m}[/tex]

m=log1.2555/log1.003166

m =71.98 ≈ 72

Hence, it will take 72 months approx.

Use set notation to write the members of the following set, or state that the set has no members

Odd numbers between 22 and 66 that are multiples of 5.

Answers

Answer:

Odd numbers that are multiple of 5 and are in between 22 and 66 are-

25, 35, 45, 55, 65

Let this set be represented by A

A= {25, 35, 45, 55, 65}

the above form represents the set in its roster form

Final answer:

The set notation for the odd numbers between 22 and 66 that are multiples of 5 is { x ∈ N | x is odd, 22 < x < 66, x ≡ 0 (mod 5) }.

Explanation:

The set notation for the odd numbers between 22 and 66 that are multiples of 5 can be written as:

{ x ∈ N | x is odd, 22 < x < 66, x ≡ 0 (mod 5) }

Identify the set as a set of natural numbers, denoted as N.Define the condition for the set membership using a vertical bar |.List the conditions for the set, which include being odd, between 22 and 66, and a multiple of 5.Use the congruence notation x ≡ 0 (mod 5) to represent the requirement of being a multiple of 5.

Learn more about Set notation here:

https://brainly.com/question/32799768

#SPJ2

Find the range of the function f of x equals the integral from negative 6 to x of the square root of the quantity 36 minus t squared

Answers

[tex]f(x)=\displaystyle\int_{-6}^x\sqrt{36-t^2}\,\mathrm dt[/tex]

The integrand is defined for [tex]36-t^2\ge0[/tex], or [tex]-6\le t\le6[/tex], so the domain should be the same, [tex]-6\le x\le6[/tex].

When [tex]x=-6[/tex], the integral is 0.

The integrand is non-negative for all [tex]x[/tex] in the domain, which means the value of [tex]f(x)[/tex] increases monotonically over this domain. When [tex]x=6[/tex], the integral gives the area of the semicircle centered at the origin with radius 6, which is [tex]\dfrac\pi26^2=18\pi[/tex], so the range is [tex]\boxed{0\le f(x)\le 18\pi}[/tex].

Final answer:

The range of the function f(x) is the integral from -6 to x of the square root of the quantity 36 minus t squared is [0, 6*π] because the total area of the semicircle is the maximum value.

Explanation:

The function f(x) is the integral from -6 to x of the square root of the quantity 36 minus t squared. This is a known geometrical shape, which is a semicircle with radius 6. To find the range of this function, we need to know the possible outcomes of this function. In general, for a semicircle of radius r, the values of the square root of the quantity r squared minus t squared will vary from 0 to r, both inclusive. So, if you consider the function from -6 to 6, the range would be [0, 6*π] because the total area of the semicircle is the maximum value.

Learn more about Range of Function here:

https://brainly.com/question/28030873

#SPJ11

6. Let A and B be nxn matrices . Compute (A + B) (A + B). Explain all steps.

Answers

Answer:

(A+B)(A+B)=A.A+B.A+A.B+B.B

Step-by-step explanation:

Given that matrices A and B are nxn matrices

We need to find (A+B)(A+B)

For understanding the multiplication of matrices let'take A is mxn and B is pxq matrices,we can multiple only when n=p,so our Ab matrices will be mxq.

We know that that in matrices AB is not equal to BA.

Now find  

(A+B)(A+B)=A.A+B.A+A.B+B.B

So from we can say that (A+B)(A+B) is not equal to A.A+2B.A+B.B because AB is not equal to BA in matrices.

So (A+B)(A+B)=A.A+B.A+A.B+B.B

point) Suppose that the trace of a 2 x 2 matrix A is tr(A)= -9 and the determinant is det(A) 18. Find the eigenvalues of A. The eigenvalues of A are (Enter your answers as a comma separated list.)

Answers

Answer with explanation:

Matrix A= (2 × 2) Matrix

Trace A= -9

Also,Determinant A= |A|=18

⇒Characteristics Polynomial is given by

Δ(A)=A² -A ×trace (A)+Determinant (A)

=A²+9 A+18

=(A+6)(A+3)

So, eigenvalues can be obtained by substituting :

 Δ(A)=0

(A+6)(A+3)=0

A= -6 ∧ A= -3

Two Eigenvalues are = -6, -3

Find the amount of time needed for the sinking fund to reach the given accumulated amount. (Round your answer to two decimal places.) $295 monthly at 5.2% to accumulate $25,000.

Answers

Answer:

8.82 years.

Step-by-step explanation:

Since, the monthly payment formula is,

[tex]P=\frac{PV(r)}{1-(1+r)^{-n}}[/tex]

Where, PV is the present value of the loan,

r is the rate per month,

n is number of months,

Here,

PV =  $ 25,000,

Annual rate = 5.2 % = 0.052 ⇒ Monthly rate, r = [tex]\frac{0.052}{12}[/tex]

( 1 year = 12 months )

P = $ 295,

By substituting the values,

[tex]295=\frac{25000(\frac{0.052}{12})}{1-(1+\frac{0.052}{12})^{-n}}[/tex]

By the graphing calculator,

We get,

[tex]n = 105.84[/tex]

Hence, the time ( in years ) = [tex]\frac{105.84}{12}=8.82[/tex]

A Game of Thrones fan predicts there is a 70% chance that her favorite character will survive the next season and a 75% chance that her second favorite character will die. There is also a 16% chance that both characters will die. What’s the probability that the second character will die given that the first character dies? What kind of probability is this called?

Answers

Final answer:

The probability that the second character will die given that the first character dies is 53.33%. This is known as conditional probability.

Explanation:

To find the probability that the second character will die given that the first character dies, we use the concept of conditional probability.

The formula for conditional probability is P(B|A) = P(A and B) / P(A), where P(B|A) is the probability of event B occurring given that event A has occurred, P(A and B) will be the probability of both events A and B occurring, and P(A) is the probability of event A occurring.

In this scenario, event A is the first character dying, and event B is the second character dying. The student has already stated there is a 70% chance that the first character will survive, which means there is a 30% (100% - 70%) chance that the first character will die.

They've also stated a 16% chance that both characters will die. Applying the formula gives us P(B|A) = P(A and B) / P(A) = 0.16 / 0.30 = 0.5333, or 53.33%.

Therefore, the probability that the second character will die given that the first character dies is 53.33%. This kind of probability is called conditional probability.

A person pulls horizontally with a force of 64 N on a 14-kg box. There is a force of friction between the box and the floor of 36 N. Find the acceleration of the box in m/s2 Show your work

Answers

The net force is what remains of the pull when we subtract the friction force:

[tex]F = 64-36 = 28N[/tex]

Now, use the law

[tex]F=ma[/tex]

and solve it for the acceleration

[tex]a = \dfrac{F}{m}[/tex]

to get the result:

[tex]a = \dfrac{28}{14}=2[/tex]

Answer:

2 m/s²

Step-by-step explanation:

F = applied force in the horizontal direction = 64 N

f = frictional force acting between the box and the floor = 36 N

m = mass of the box = 14 kg

a = acceleration of the box = ?

Force equation along the horizontal direction is given as

F - f = ma

Inserting the values

64 - 36 = 14 a

28 = 14 a

a =  [tex]\frac{28}{14}[/tex]

a = 2 m/s²

Answer all questions: 1) The electric field of an electromagnetic wave propagating in air is given by E(z,t) = 4cos(6 x 10^8 t - 2z) +3 sin(6 x 10 t -2z) (V/m). Find the associated magnetic field H(z,t)

Answers

Final answer:

The magnetic field H(z,t) of an electromagnetic wave is related to the electric field E(z,t) by a factor of the speed of light. Therefore, if E(z,t) = 4cos(6 x 10^8 t - 2z) +3 sin(6 x 10^8 t -2z), the associated magnetic field would be H(z,t) = (4/c) cos(6 x 10^8 t - 2z) +(3/c) sin(6 x 10^8 t -2z), where c is speed of light, approximately 3 x 10^8 m/s.

Explanation:

The question is asking for the associated magnetic field H(z,t) of an Electromagnetic wave given the electric field E(z,t). A crucial fact to know for this question is that the electric and magnetic fields in an electromagnetic wave are perpendicular to each other and the direction of propagation. They also have a constant ratio of magnitudes in free space or air, which is the speed of light given by c = 1/√εOMO. Because of these relations, we know that we can find the magnetic field by simply dividing the given electric field by the speed of light in units that match the given Electric field.

So, if E(z,t) = 4cos(6 x 10^8 t - 2z) +3 sin(6 x 10^8 t -2z), then the associated magnetic field would be H(z,t) = (4/c) cos(6 x 10^8 t - 2z) +(3/c) sin(6 x 10^8 t -2z), where c is the speed of light, approximately 3 x 10^8 m/s.

Learn more about Electromagnetic Waves here:

https://brainly.com/question/29774932

#SPJ12

Final answer:

To find the associated magnetic field H(z, t), you can use Faraday's law of electromagnetic induction. This law states that the rate of change of magnetic flux through a surface is equal to the induced electromotive force (EMF) along the boundary of the surface. By following a step-by-step process, you can find the magnetic field B(z, t) using the given electric field E(z, t).

Explanation:

The associated magnetic field H(z, t) can be found by using Faraday's law of electromagnetic induction. Faraday's law states that the rate of change of magnetic flux through a surface is equal to the electromotive force (EMF) along the boundary of the surface. In this case, the magnetic field is changing due to the time-dependent electric field, so we can use Faraday's law to find the magnetic field.

Start by finding the magnetic flux through a surface with an area A in the z-direction.The magnetic field B is perpendicular to the surface, so the magnetic flux is given by Φ = B * A.By Faraday's law, the rate of change of magnetic flux is equal to the induced EMF around the boundary of the surface. In this case, the induced EMF is caused by the changing electric field.From the given electric field E(z, t), we can differentiate it with respect to time to find the rate of change, which gives us the induced EMF.Equating the rate of change of magnetic flux to the induced EMF, we can solve for the magnetic field B(z, t).

By following these steps, you can find the associated magnetic field H(z, t) using Faraday's law of electromagnetic induction.

Learn more about Faraday's law here:

https://brainly.com/question/1640558

#SPJ12

The recommended single dose for a particular drug is 100 mg. How many doses can be obtained from 20 grams of the drug?


A. 2,000 doses
B. 200 doses
C. 2 doses
D. 20 doses

Answers

Answer:

B. 200 doses

Step-by-step explanation:

Given,

1 dose is required for 100 mg,

Since, 1 mg = 0.001 g,

⇒ 100 mg = 0.1 g

⇒ 1 dost is required for 0.1 g,

Thus, the ratio of doses and quantity ( in gram ) is [tex]\frac{1}{0.1}=10[/tex]

Let x be the doses required for 20 grams,

So, the ratio of doses and quantity is [tex]\frac{x}{20}[/tex]

[tex]\implies \frac{x}{20}=10[/tex]

[tex]\implies x=200[/tex]

Hence, 200 doses can be obtained from 20 grams of the drug.

Option 'B' is correct.

To solve this question, we will follow these steps:
1. We need to ensure that we use the same units for both the drug amount and the dose. Since the drug amount is given in grams and the dose in milligrams, we will convert the drug amount from grams to milligrams.
2. We know that 1 gram is equivalent to 1000 milligrams.
3. Now, let's convert the drug amount from grams to milligrams:
  We have 20 grams of the drug, so the conversion to milligrams is:
  \(20 \text{ grams} \times \dfrac{1000 \text{ milligrams}}{1 \text{ gram}} = 20,000 \text{ milligrams}\)
4. Next, we will divide the total milligrams of the drug by the milligram dosage that is recommended per dose to find out how many doses we can get from the drug amount.
5. Given that each dose is 100 mg, we now divide the total drug amount in milligrams by the dose in milligrams:
  \(20,000 \text{ milligrams} \div 100 \text{ milligrams per dose} = 200 \text{ doses}\)
Therefore, from 20 grams of the drug, we can obtain 200 doses.
The correct answer is:
  B. 200 doses

Assume that when adults with smartphones are randomly​ selected, 51​% use them in meetings or classes. If 11 adult smartphone users are randomly​ selected, find the probability that fewer than 5 of them use their smartphones in meetings or classes.

Answers

Answer:

The probability is 0.2356.

Step-by-step explanation:

Let X is the event of using the smartphone in meetings or classes,

Given,

The probability of using the smartphone in meetings or classes, p = 51 % = 0.51,

So, the probability of not using smartphone in meetings or classes, q = 1 - p = 1 - 0.51 = 0.49,

Thus, the probability that fewer than 5 of them use their smartphones in meetings or classes.

P(X<5) = P(X=0) + P(X=1) + P(X=2) + P(X=3)+P(X=4)

Since, binomial distribution formula is,

[tex]P(x) = ^nC_r p^x q^{n-x}[/tex]

Where, [tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex]

Here, n = 11,

Hence,  the probability that fewer than 5 of them use their smartphones in meetings or classes

[tex]=^{11}C_0 (0.5)^0 0.49^{11}+^{11}C_1 (0.5)^1 0.49^{10}+^{11}C_2 (0.5)^2 0.49^{9}+^{11}C_3 (0.5)^3 0.49^{8}+^{11}C_4 (0.5)^4 0.49^{7} [/tex]

[tex]=(0.5)^0 0.49^{11}+11(0.5)0.49^{10} + 55(0.5)^2 0.49^{9}+165 (0.5)^3 0.49^{8} +330(0.5)^4 0.49^{7} [/tex]

[tex]=0.235596671797[/tex]

[tex]\approx 0.2356[/tex]

When studying radioactive​ material, a nuclear engineer found that over 365​ days, 1,000,000 radioactive atoms decayed to 973 comma 635 radioactive​ atoms, so 26 comma 365 atoms decayed during 365 days. a. Find the mean number of radioactive atoms that decayed in a day. b. Find the probability that on a given​ day, 51 radioactive atoms decayed.

Answers

Answer:

A. number of decayed atoms = 73.197

Step-by-step explanation:

In order to find the answer we need to use the radioactive decay equation:

[tex]N(t)=N0*e^{kt}[/tex] where:

N0=initial radioactive atoms

t=time

k=radioactive decay constant

In our case, when t=0 we have 1,000,000 atoms, so:

[tex]1,000,000=N0*e^{k*0}[/tex]

[tex]1,000,000=N0[/tex]

Now we need to find 'k'. Using the provied information that after 365 days we have 973,635 radioactive atoms, we have:

[tex]973,635=1,000,000*e^{k*365}[/tex]

[tex]ln(973,635/1,000,000)/365=k[/tex]

[tex] -0.0000732=k[/tex]

A. atoms decayed in a day:

[tex]N(t)=1,000,000*e^{-0.0000732t}[/tex]

[tex]N(1)=1,000,000*e^{-0.0000732*1}[/tex]

[tex]N(1)= 999,926.803[/tex]

Number of atoms decayed in a day = 1,000,000 - 999,926.803 = 73.197

B. Because 'k' represents the probability of decay, then the probability that on a given day 51 radioactive atoms decayed is k=0.0000732.

Find the derivative of the function at P 0 in the direction of A. ​f(x,y,z) = 3 e^x cos(yz)​, P0 (0, 0, 0), A = - i + 2 j + 3k

Answers

The derivative of [tex]f(x,y,z)[/tex] at a point [tex]p_0=(x_0,y_0,z_0)[/tex] in the direction of a vector [tex]\vec a=a_x\,\vec\imath+a_y\,\vec\jmath+a_z\,\vec k[/tex] is

[tex]\nabla f(x_0,y_0,z_0)\cdot\dfrac{\vec a}{\|\vec a\|}[/tex]

We have

[tex]f(x,y,z)=3e^x\cos(yz)\implies\nabla f(x,y,z)=3e^x\cos(yz)\,\vec\imath-3ze^x\sin(yz)\,\vec\jmath-3ye^x\sin(yz)\,\vec k[/tex]

and

[tex]\vec a=-\vec\imath+2\,\vec\jmath+3\,\vec k\implies\|\vec a\|=\sqrt{(-1)^2+2^2+3^2}=\sqrt{14}[/tex]

Then the derivative at [tex]p_0[/tex] in the direction of [tex]\vec a[/tex] is

[tex]3\,\vec\imath\cdot\dfrac{-\vec\imath+2\,\vec\jmath+3\,\vec k}{\sqrt{14}}=-\dfrac3{\sqrt{14}}[/tex]

Find the future value (FV) of the annuity due. (Round your answer to the nearest cent.) $175 monthly payment, 7% interest, 11 years

Answers

Answer:

The future value of the annuity due to the nearest cent is $2956.

Step-by-step explanation:

Consider the provided information:

It is provided that monthly payment is $175, interest is 7% and time is 11 years.

The formula for the future value of the annuity due is:

[tex]FV of Annuity Due = (1+r)\times P[\frac{(1+r)^{n}-1}{r}][/tex]

Now, substitute P = 175, r = 0.07 and t = 11 in above formula.

[tex]FV of Annuity Due = (1+0.07)\times 175[\frac{(1+0.07)^{11}-1}{0.07}][/tex]

[tex]FV of Annuity Due = (1.07)\times 175[\frac{1.10485}{0.07}][/tex]

[tex]FV of Annuity Due = 187.5(15.7835)[/tex]

[tex]FV of Annuity Due = 2955.4789[/tex]

Hence, the future value of the annuity due to the nearest cent is $2956.

. Break downs occur on a 20-years-old car with rate λ= 0.5 breakdowns/week. The owner of the car is planning to have a trip on his car for 2 weeks. What is the probability that there will be no breakdown on his car in the trip? [ The rate = ? per two weeks]

Answers

Answer: 0.3679

Step-by-step explanation:

The formula for Poisson distribution  :-

[tex]P(x)=\dfrac{e^{-\lambda}\lambda^{x}}{x!}[/tex]

Let x be the number of breakdowns.

Given : The rate of breakdown per week :  0.5

Then , for 2 weeks period the number of breakdowns = [tex]\lambda=0.5\times2=1[/tex]

Then , the probability that there will be no breakdown on his car in the trip is given by :-

[tex]P(x)=\dfrac{e^{-1}1^{0}}{0!}=0.367879441171\approx0.3679[/tex]

Hence, the required probability : 0.3679

The manufacturer of a certain engine treatment claims that if you add their product to your​ engine, it will be protected from excessive wear. An infomercial claims that a woman drove 33 hours without​ oil, thanks to the engine treatment. A magazine tested engines in which they added the treatment to the motor​ oil, ran the​ engines, drained the​ oil, and then determined the time until the engines seized. Determine the null and alternative hypotheses that the magazine will test.

Answers

Answer: [tex]H_0:\mu\geq33[/tex]

[tex]H_a:\mu<33[/tex]

Step-by-step explanation:

Let [tex]\mu[/tex] be the average number of hours a person drive without adding the product.

Given claim : An infomercial claims that a woman drove 33 hours without​ oil.

i.e. [tex]\mu\geq33[/tex]

It is known that the null hypothesis always contains equal sign and alternative hypothesis is just opposite of the null hypothesis.

Thus the null and alternative hypothesis for the given situation will be :-

[tex]H_0:\mu\geq33[/tex]

[tex]H_a:\mu<33[/tex]

Write equations for the vertical and horizontal lines passing through the point . (7,5)

Answers

A horizontal line is a line where all of the [tex]y[/tex] values are the same. In this case, [tex]\boxed{y=5}[/tex], so that is the equation.

A vertical line is where all of the [tex]x[/tex] values are the same.  Here, [tex]\boxed{x=7}[/tex], so that's the equation.

Answer:

see below

Step-by-step explanation:

A horizontal line has the same y value  and has a constant y value

y=5

A vertical line has the same x value  and has a constant x value

x=7

List the different combinations of heads and tails that can occur when 3 ordinary coins are tossed. Use h for heads and t for tails. One combination is hht. List the other combinations, taking order into account (Use a comma to separate answers) More i () a Enter your answer in the answer box ere to search

Answers

[tex]HTT,HTH,HHH,TTT,THT,THH,TTH[/tex]

We are given three coins: one has heads in both faces, the second has tails in both faces, and the third has a head in one face and a tail in the other. We choose a coin at random, toss it, and it comes head. What is the probability that the opposite face is tails?

Answers

Answer: 0.33

Step-by-step explanation:

Let,

E1 be the coin which has heads in both facesE2 be the coin which has tails in both facesE3 be the coin which has a head in one face and a tail in the other.

In this question we are using the Bayes' theorem,

where,

P(E1) = P(E2) = P(E3) = [tex]\frac{1}{3}[/tex]

As there is an equal probability assign for choosing a coin.

Given that,

it comes up heads

so, let A be the event that heads occurs

then,

P(A/E1) = 1

P(A/E2) = 0

P(A/E3) =  [tex]\frac{1}{2}[/tex]

Now, we have to calculate the probability that the opposite side of coin is tails.

that is,

P(E3/A) = ?

∴ P(E3/A) = [tex]\frac{P(E3)P(A/E3)}{P(E1)P(A/E1) + P(E2)P(A/E2) + P(E3)P(A/E3) }[/tex]

= [tex]\frac{(1/3)(1/2)}{(1/3)(1) + 0 + (1/2)(1/3)}[/tex]

= [tex]\frac{1}{6}[/tex] × [tex]\frac{6}{3}[/tex]

= [tex]\frac{1}{3}[/tex]

= 0.3333 ⇒ probability that the opposite face is tails.

Given a double-headed coin, a double-tailed coin, and a regular coin, the probability that the opposite face is tails after tossing a head is 33.33%, assuming we picked one coin randomly and tossed it to see a head.

The student is asking about a problem involving conditional probability, with the specific condition that one of the sides that came up is a head. We are given three coins: a double-headed coin, a double-tailed coin, and a regular coin. The aim is to calculate the probability that the opposite face is tails given that the tossed coin shows heads.

First, we need to consider the total number of heads that can come up when choosing any coin. This yields two heads from the double-headed coin, and one head from the regular coin, resulting in three possible heads. However, only the regular coin has a tail on the opposite side.

Consequently, the probability that the opposite face is tails given that a head has been tossed is 1 out of 3, or 33.33%.

A company manufactures bicycles at a cost of $50 each. If the company's fixed costs are $700, express the company's costs as a linear function of x, the number of bicycles produced.

Answers

Answer:

[tex]y = 700 + 50x[/tex]

Step-by-step explanation:

Hello, great question. These types are questions are the beginning steps for learning more advanced Algebraic Equations.

If the company has a fixed cost (fixed being a keyword) of $700, then that cost will be a steady value before they even start to manufacture the bicycles. Afterwards they have to spend $50 on each bicycle they produce. Since we do not know the amount of bicycles that have been produced we can use the variable x to represent this.

[tex]y = 700 + 50x[/tex]

The equation above states that the company pays $700 plus $50 for every bike produced which comes out to a total of y.

if I've gained 35 pounds in 186 days, how many pounds per day?

Answers

Answer:

.188 pounds per day

Step-by-step explanation:

Given

35 pounds gained in 186 days

Divide the amount of pounds gained by the total number of days

35/186 = .188

Answer

Approximately .188 pounds per day.

Consider the sequence 1, 5, 12, 22, 35, 51, . . . (with a0 = 1). By looking at the differences between terms, express the sequence as a sequence of partial sums. Then find a closed formula for the sequence by computing the nth partial sum.

Answers

Final answer:

The given sequence can be expressed as a sequence of partial sums by finding the differences between terms and adding them to the previous term. The closed formula for the nth partial sum is Sn = n/2(3n - 1), where Sn represents the nth partial sum.

Explanation:

To express the given sequence as a sequence of partial sums, we can find the differences between consecutive terms:



5 - 1 = 4

12 - 5 = 7

22 - 12 = 10

35 - 22 = 13

51 - 35 = 16



From these differences, we can observe that each term in the sequence is obtained by adding the difference to the previous term. Therefore, the sequence can be written as a sequence of partial sums:



1, 1+4, 1+4+7, 1+4+7+10, 1+4+7+10+13, ...



To find a closed formula for the nth partial sum, we can use the formula for the sum of an arithmetic series:



Sn = n/2(a1 + an), where Sn represents the nth partial sum, a1 is the first term, and an is the nth term.



For the given sequence, a1 = 1 and the difference between consecutive terms is 3, so the nth term can be represented as an = 1 + 3(n-1). Substituting these values into the formula, we get:



Sn = n/2(1 + 1 + 3(n-1)) = n/2(2 + 3(n-1)) = n/2(3n - 1).

Learn more about Sequences here:

https://brainly.com/question/36944481

#SPJ11

Write the equation that passes through the given point and has the slope indicated: (1, -3); with slope (-3/5)

Answers

Answer:

y = -3/5x - 12/5

Step-by-step explanation:

The equation I'm going to give is going to be in slope-intercept form. If you need it in point-slope, I can do so in an edit or the comments.

Slope-intercept form is: y = mx + b where m is the slope, b is the y-intercept.

So let's plug in our given slope:

y = -3/5x + b

Using this, we now plug in our x- and y-coordinates from the given point to solve for b.

-3 = -3/5(1) + b

-3 = -3/5 + b

Add 3/5 to both sides to isolate variable b.

-3 + 3/5 = b

-15/5 + 3/5 = b

-12/5 = b

Plug this new info back into the original equation and your answer is

y = -3/5x - 12/5

WHAT IS THE PROBABILITY OF GETTING EITHER JACK OR A THREE WHEN DRAWING A SINGLE CARD FROM A DECK OF 52 CARDS? WHAT IS THE PROBABILITY THAT THE CARD IS EITHER A JACK OR A THREE?

Answers

Answer:

2/13

Step-by-step explanation:

there are 4 jacks and 4 threes in a standard poker deck.

4+4 is 8

8/52=2/13

The probability of drawing either a Jack or a three from a standard deck of 52 cards is 2/13, because there are 8 such cards in a deck and the total number of cards in the deck is 52.

The question asks for the probability of drawing either a Jack or a three from a standard deck of 52 cards. To solve this, we need to count how many Jacks and threes there are in a deck. Since each suit (hearts, diamonds, clubs, and spades) includes one Jack and one three, there are 4 Jacks and 4 threes in a standard deck. Therefore, there are 8 cards that satisfy the condition (either a Jack or a three).



Since the total number of cards in the deck is 52, the probability of drawing either a Jack or a three is calculated as the number of favorable outcomes (drawing a Jack or a three) divided by the total number of outcomes (drawing any card from the 52-card deck). Thus, the probability is:



Probability = (Number of Jacks + Number of threes) / Total number of cards = (4 + 4) / 52 = 8 / 52 = 2 / 13


Therefore, the probability of drawing either a Jack or a three from a standard deck of 52 cards is 2/13.

Other Questions
If an object is propelled upward from a height of 128 feet at an initial velocity of 112 feet per second, then its height h after t seconds is given by the equation h equals negative 16 t squared plus 112 t plus 128. After how many seconds does the object hit the ground? Round to the nearest tenth of a second. Which of the following phrases from Arithmetic is an example of metaphor?who is better in arithmeticIf you have two animal crackersArithmetic is seven eleven all good children go to heaven...and you say No no no Describe how the body maintains posture. In an old-fashioned amusement park ride, passengers stand inside a 3.0-m-tall, 5.0-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing suddenly drops away! If all goes well, the passengers will stick to the wall and not slide. Clothing has a static coefficient of friction against steel in the range 0.60 to 1.0 and a kinetic coefficient in the range 0.40 to 0.70. What is the minimum rotational frequency, in rpm, for which the ride is safe? Read the passage. Then answer the question that follows.ANTONY. Friends, Romans, countrymen, lend me your ears.I come to bury Caesar, not to praise him.The evil that men do lives after them;The good is oft interrd with their bones.So let it be with Caesar. The noble BrutusHath told you Caesar was ambitious.If it were so, it was a grievous fault,And grievously hath Caesar answered it.Here, under leave of Brutus and the restFor Brutus is an honourable man ,So are they all, all honourable menCome I to speak in Caesars funeral.The Tragedy of Julius Caesar,William ShakespeareWhich is the best summary of this part of Antonys speech?Antony calls the assassins "honourable men but subtly turns the crowd against them.Antony believes that if Caesar were truly ambitious, he paid the price for it.When people die, the good they have done is often lost and their evil deeds endure.Antony agrees with Brutus that Caesar was ambitious.the answer is A Based on the details in the story, what is its primarypurpose? What is the peak emf generated (in V) by rotating a 1000 turn, 42.0 cm diameter coil in the Earth's 5.00 105 T magnetic field, given the plane of the coil is originally perpendicular to the Earth's field and is rotated to be parallel to the field in 12.0 ms? According to Article Il of the Constitution, one of the president's duties is toserve as commander in chief.create laws and interpret themset up and manage the courts.serve in the House and Senate. Find a compact form for generating function of the sequence 4, 4, 4, 4, 1, 0, 1, 0, 1, 0, 1, 0, If the light is green as you approach an intersection, you should:A. Cover your brakesB. Expect it to change soonC. Speed up to enter the intersection Skeletal traction is applied directly to the bone and uses opposing forces to create the traction. Nursing care of the patient with skeletal traction include:a. All lines be free of tangles.b. Weight ordered is in continuous use.c. patient is given a trapeze bar to help mobility in the bed.d. Linens are changed only as need.e. Unaffected foot is kept against the footboard. The stairway shown is made out of solid concrete. The height of each step is four inches and the width is 10 inches. The length is 6 inches. What is the volume, in cubic inches, of the concrete used to create this stairway? PLEASE HELP!! MAKE SURE THEIR IS TWO POINTS PLEASEWhy were communist command economies unable to compete with free market economies in terms of production and efficiency during the Cold War? Describe at least two reasons to support your argument. Write an application that can hold five integers in an array. Display the integers from first to last, and then display the integers from last to first. If ax7yb is a term from the expansion of (x + y)12, describe how to determine its coefficient a and missing exponent b without writing the entire expansion. In what way does James Baldwin use a narrative structure?OA. The essay tells a story about race relations in Harlem.B. The essay gives background information about the 1943 HarlemRiot.OC. The essay questions the inequality between races.OD. The essay emphasizes themes of healing and forgiveness in theface of conflict myra's stamp collection consisted of 120 stamps in october. By the following march, her collection had grown to 138 stamps. By how much did her collection increase between october and march Determine the measure of arc CED. A. 180 B. 99 C. 198 D. 81 Name the target organ or gland of the following hormones:a. TSH - b. Oxytocin -c. Oxytocin - d. ACTH -e. FSH -f. Thyrotropin-releasing hormone - Discuss the relationship between smoking and various lung diseases. Choose 2 diseases only.