Jill has a swimming pool in her backyard. It is shaped like a rectangle and measures approximately 16.3 feet wide and 26.2 feet long. It is an average of 5 feet deep. During a few hot weeks during the summer, some water evaporates from the pool, and Jill needs to add 8 inches of water to the depth of the pool, using her garden hose. Although her water pressure varies, the water flows through Jill’s garden hose at an average rate of 10 gallons/minute.

How many liters will Jill need to add to her pool to return the water level to its original depth? How many gallons of water is this? Reminder: Volume = Length x Width x Depth

Answers

Answer 1

Answer:

The dimensions of swimming pool are:

Length = 26.2 feet

Width = 16.3 feet

Height = 5 feet

During a few hot weeks during the summer, some water evaporates from the pool, and Jill needs to add 8 inches of water to the depth of the pool.

We will convert 8 inches o feet.

1 inch = 1/12 feet

So, 8 inch = [tex]8/12=0.66[/tex] feet

Now we have to tell how much water will be there in 0.66 feet depth.

So, volume = [tex]16.3\times26.2\times0.66=281.86[/tex] cubic feet.

1 cubic feet has 7.480 gallons

So, 281.86 cubic feet will have [tex]281.86\times7.480=2108.31[/tex] gallons of water.

Answer 2

The volume is the product of the area of the top of the pool and the

height of water added which is approximately 8,062 liters.

Response:

The volume of water Jill needs to add is 8,062 litersThe volume in gallons is 2,129.8 gallons

How can the required volume that Jill  needs to add be calculated?

The given dimensions of the pool are;

Width of the pool = 16.3 feet

Length of the pool = 26.2 feet

Height of water to be added = 8 inches

Required:

The volume of water to be added in liters

Solution:

First part

1 feet = 12 inches

Therefore;

[tex]8 \ inches = \dfrac{8}{12} \ feet = \mathbf{ \dfrac{2}{3} \ feet}[/tex]

Therefore;

Volume of water added is therefore;

Volume, V = Length × Width × Depth

[tex]V = 16.3 \times 26.2 \times \dfrac{2}{3} = \mathbf{284\frac{53}{75}}[/tex]

Therefore;

The volume added, V = [tex]\mathbf{284\frac{53}{75}}[/tex] ft.³

1 ft.³ = 28.31685 L

Therefore;

[tex]284\frac{53}{75} \, ft.^3 = 284\frac{53}{75} \times 28.31685 \ L \approx \mathbf{8062 \, L}[/tex]

The volume of water that Jill needs to add to her pool is approximately 8062 L.

Second part

1 L = 0.264172 gallons

8062 L = 8062 × 0.264172 gallons ≈ 2129.8 gallons

The volume of water added to the pool in gallons is approximately 2,129.8 gallons

Learn more about calculating the volume of solids here:

https://brainly.com/question/21983203


Related Questions

Let A {x ∈ N : 3 ≤ x ≤ 13}, B {x ∈ N : x is even}, and C {x ∈ N : x is odd}.

(a) Find A ∩ B.

(b) Find A ∪ B.

(c) Find B ∩ C.

(d) Find B ∪ C. 3. Find an example of sets A and B such that A ∩ B {3, 5} and A ∪ B {2, 3, 5, 7, 8}.

Answers

The answer for the sets corresponding to the given conditions is as follows:

a) A ∩ B = {4, 6, 8, 10, 12}.

b) A ∪ B = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

c)  B ∩ C = {}.

d) B ∪ C = {1, 2, 3, 4, 5, 6, 7, 8...}.

e) Set A = {3, 5, 7}   and  Set B = {2,4, 6, 8, 10, 12}

Given:

Set A =  {x ∈ N : 3 ≤ x ≤ 13}

Set B =  {x ∈ N : x is even}

Set C  = {x ∈ N : x is odd}.

Solve each option:

(a) Find A ∩ B (the intersection of sets A and B):

Set A contains natural numbers from 3 to 13 (inclusive): A = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

Set B contains even natural numbers: B = {2, 4, 6, 8, 10, 12, ...}.

The intersection of A and B includes even numbers that are between 3 and 13: A ∩ B = {4, 6, 8, 10, 12}.

(b) Find A ∪ B (the union of sets A and B):

Set A contains natural numbers from 3 to 13 (inclusive): A = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

Set B contains even natural numbers: B = {2, 4, 6, 8, 10, 12, ...}.

The union of A and B includes all numbers from both sets: A ∪ B = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

(c) Find B ∩ C (the intersection of sets B and C):

Set B contains even natural numbers: B = {2, 4, 6, 8, 10, 12, ...}.

Set C contains odd natural numbers: C = {1, 3, 5, 7, 9, 11, ...}.

The intersection of B and C is the empty set, as there are no numbers that are both even and odd.

(d) Find B ∪ C (the union of sets B and C):

Set B contains even natural numbers: B = {2, 4, 6, 8, 10, 12, ...}.

Set C contains odd natural numbers: C = {1, 3, 5, 7, 9, 11, ...}.

The union of B and C includes all natural numbers: B ∪ C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...}.

(e) For the given example:

Set A = {3, 5, 7}

Set B = {2,4, 6, 8, 10, 12}

This example satisfies the conditions A ∩ B = {3, 5} and A ∪ B = {2, 3, 5, 7, 8}

The intersection and Unioun of all the sets is found from A and B.

Learn more about Set theory here:

https://brainly.com/question/29055360

#SPJ12

Final answer:

The intersection of sets A and B is {4, 6, 8, 10, 12}. The union of sets A and B is {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}. The intersection of sets B and C is {}. The union of sets B and C is {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

Explanation:

(a) To find the intersection of sets A and B, we need to identify the elements that are common to both sets. In set A, we have: {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}. In set B, we have: {4, 6, 8, 10, 12}. The elements that are common to both sets are: {4, 6, 8, 10, 12}. Therefore, A ∩ B = {4, 6, 8, 10, 12}.

(b) To find the union of sets A and B, we need to combine all the elements from both sets. In set A, we have: {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}. In set B, we have: {4, 6, 8, 10, 12}. Combining these sets gives us: {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}. Therefore, A ∪ B = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

(c) To find the intersection of sets B and C, we need to identify the elements that are common to both sets. In set B, we have: {4, 6, 8, 10, 12}. In set C, we have: {3, 5, 7, 9, 11, 13}. The elements that are common to both sets are: {}. Therefore, B ∩ C = {}.

(d) To find the union of sets B and C, we need to combine all the elements from both sets. In set B, we have: {4, 6, 8, 10, 12}. In set C, we have: {3, 5, 7, 9, 11, 13}. Combining these sets gives us: {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}. Therefore, B ∪ C = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

Find the solution of the given initial value problem:

y''- y = 0, y(0) = 2, y'(0) = -1/2

Answers

Answer:  The required solution of the given IVP is

[tex]y(x)=\dfrac{3}{4}e^x+\dfrac{5}{4}e^{-x}.[/tex]

Step-by-step explanation:  We are given to find the solution of the following initial value problem :

[tex]y^{\prime\prime}-y=0,~~~y(0)=2,~~y^\prime(0)=-\dfrac{1}{2}.[/tex]

Let [tex]y=e^{mx}[/tex] be an auxiliary solution of the given differential equation.

Then, we have

[tex]y^\prime=me^{mx},~~~~~y^{\prime\prime}=m^2e^{mx}.[/tex]

Substituting these values in the given differential equation, we have

[tex]m^2e^{mx}-e^{mx}=0\\\\\Rightarrow (m^2-1)e^{mx}=0\\\\\Rightarrow m^2-1=0~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{since }e^{mx}\neq0]\\\\\Rightarrow m^2=1\\\\\Rightarrow m=\pm1.[/tex]

So, the general solution of the given equation is

[tex]y(x)=Ae^x+Be^{-x},[/tex] where A and B are constants.

This gives, after differentiating with respect to x that

[tex]y^\prime(x)=Ae^x-Be^{-x}.[/tex]

The given conditions implies that

[tex]y(0)=2\\\\\Rightarrow A+B=2~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

and

[tex]y^\prime(0)=-\dfrac{1}{2}\\\\\\\Rightarrow A-B=-\dfrac{1}{2}~~~~~~~~~~~~~~~~~~~~~~~~(ii)[/tex]

Adding equations (i) and (ii), we get

[tex]2A=2-\dfrac{1}{2}\\\\\\\Rightarrow 2A=\dfrac{3}{2}\\\\\\\Rightarrow A=\dfrac{3}{4}.[/tex]

From equation (i), we get

[tex]\dfrac{3}{4}+B=2\\\\\\\Rightarrow B=2-\dfrac{3}{4}\\\\\\\Rightarrow B=\dfrac{5}{4}.[/tex]

Substituting the values of A and B in the general solution, we get

[tex]y(x)=\dfrac{3}{4}e^x+\dfrac{5}{4}e^{-x}.[/tex]

Thus, the required solution of the given IVP is

[tex]y(x)=\dfrac{3}{4}e^x+\dfrac{5}{4}e^{-x}.[/tex]

Suppose that out of 1500 first-year students at ICU, 350 are taking history, 300 are taking mathematics, and 270 are taking both history and mathematics. How many first- year students are taking history or mathematics?

Answers

Step-by-step explanation:

Assuming that the 350 taking history and the 300 taking math each includes the 270 taking both history and math, then:

N(H or M) = N(H) + N(M) − N(H and M)

N = 350 + 300 − 270

N = 380

There are 380 first-year students taking history or mathematics.


Find the Laplace transform of f(t) when:

f(t)= 9 , 0 = or < t < 2

f(t)= (t-5)^2 , 2= or < t < 5

f(t)= 2te^6t , t > or = 5

Answers

[tex]f(t)=\begin{cases}9&\text{for }0\le t<2\\(t-5)^2&\text{for }2\le t<5\\2te^{6t}&\text{for }t\ge5\end{cases}[/tex]

and presumably 0 for [tex]t<0[/tex]. We can express [tex]f(t)[/tex] in terms of the unit step function,

[tex]u(t-c)=\begin{cases}1&\text{for }t\ge c\\0&\text{for }t<c\end{cases}[/tex]

[tex]f(t)=9(u(t)-u(t-2))+(t-5)^2(u(t-2)-u(t-5))+2te^{6t}u(t-5)[/tex]

Quick explanation: [tex]9u(t)=9[/tex] for [tex]t\ge0[/tex], and [tex]9u(t-2)=9[/tex] for [tex]t\ge2[/tex]. So subtracting these will cancel the value of 9 for all [tex]t\ge2[/tex] and leave us with the value of 9 over the interval we want, [tex]0\le t<2[/tex]. The same reasoning applies for the other 3 terms.

Recall the time displacement theorem:

[tex]\mathcal L_s\{f(t-c)u(t-c)\}=e^{-sc}\mathcal L_s\{f(t)\}[/tex]

By this property, we have

[tex]\mathcal L_s\{9u(t)\}=\mathcal L_s\{9\}=\dfrac9s[/tex]

[tex]\mathcal L_s\{9u(t-2)\}=e^{-2s}\mathcal L_s\{9\}=\dfrac{9e^{-2s}}s[/tex]

[tex]\mathcal L_s\{(t-5)^2u(t-2)\}=\mathcal L_s\{((t-2)-3)^2u(t-2)\}[/tex]

[tex]=e^{-2s}\mathcal L_s\{(t-3)^2\}=\left(\dfrac2{s^3}-\dfrac6{s^2}+\dfrac9s\right)e^{-2s}[/tex]

[tex]\mathcal L_s\{(t-5)^2u(t-5)\}=e^{-5s}\mathcal L_s\{t^2\}=\dfrac{2e^{-5s}}{s^3}[/tex]

[tex]\mathcal L_s\{2te^{6t}u(t-5)\}=\mathcal L_s\{2e^{30}(t-5)e^{6(t-5)}+10e^{30}e^{6(t-5)}\}[/tex]

[tex]=2e^{30-5s}\mathcal L_s\{te^{6t}+5e^{6t}\}=2e^{30-5s}\left(\dfrac1{(s-6)^2}+\dfrac5{s-6}\right)[/tex]

Putting everything together, we end up with

[tex]\boxed{\mathcal L_s\{f(t)\}=\dfrac{(2-6s)e^{-2s}-2e^{-5s}}{s^3}+\dfrac9s-\dfrac{2e^{30-5s}(29-5s)}{(s-6)^2}}[/tex]

What is the difference between any normal distribution and the standard normal distribution?

Answers

Explanation:

"Any normal distribution" may have arbitrary mean and standard deviation. The "standard normal distribution" has a mean of zero and a standard deviation of 1.

Assume that an airline’s flights for miami leave every 33 minutes and flights from dallas leave every 45 minutes. If the flights to miami and dallas have just departed, how many minutes will it be before this happen again?

Answers

Answer:

495

Step-by-step explanation:

To find this you have to find the LCM of the two times which in this case is 33 and 45. The LCM of those two is 495.

The minutes it will be before this happens again is 495.

What is the unitary method?

The unitary method is a method for solving a problem by the first value of a single unit and then finding the value by multiplying the single value.

Assume that an airline’s flights for Miami leave every 33 minutes and flights from Dallas leave every 45 minutes.

To find the LCM of the two times which in this case is 33 and 45.

Factor;

33 = 3 x 11

45 = 5 x 3 x 3

Thus, The LCM of those two is 495.

Learn more about the unitary method;

https://brainly.com/question/23423168

#SPJ2

A problem is given below. Instead of trying to solve that problem, state a simpler problem and solve it instead Thirteen people are being honored for their work in reducing pollution. In how many ways can we line up these people for a picture? Which of the following is a simpler version of the given problem? O A. In how many ways can fifteen people be lined up for a picture? O B. In how many ways can three people be selected from a group of thirteen people? O C. In how many ways can three people be lihed up for a picture? O D. In how many ways can thirteen people be selected from a group of fifteen people? What is the solution to this simpler problem? ways Click to select your answeris) here to search Q G

Answers

Answer:

d

Step-by-step explanation:

13 cant be divided equally nor cubed  because its not an even number u can try to give all thirteen of then

Final answer:

The simpler version of the initial problem is arranging three people in a line. There are three choices for the first spot, two for the second, and one for the third, which results in a total of six possible arrangements. This involves the principle of permutation in combinatorics.

Explanation:

The subject of the given problem can be defined as permutations. If we're looking for a simpler version of it, we should choose a problem which still involves line-up or arrangement of a smaller number of people. Hence, the best option is: 'In how many ways can three people be lined up for a picture?'

To solve this simpler problem, we consider the number of available spots for each person in the line. For the first spot, there are 3 people that could be selected. After the first person is chosen, there are only 2 people left for the second spot. Lastly, there is only 1 person left for the third spot. So, the total number of ways we can line up 3 people for a picture is 3*2*1 = 6 ways.

This is a basic principle called permutation in combinatorics which is a fundamental concept in mathematics that deals with counting, both as a means and an end in obtaining results.

Learn more about Permutation here:

https://brainly.com/question/23283166

#SPJ2

I have two bags. Bag 1 contains 10 blue marbles, while Bag 2 contains 15 blue marbles. I pick one of the bags at random, and throw 6 red marbles in it. Then I shake the bag and choose 5 marbles (without replacement) at random from the bag. If there are exactly 2 red marbles among the 5 chosen marbles, what is the probability that I have chosen Bag 1?

Answers

The probability that has been chosen Bag 1 is 0.2087.

Given that, bag 1 contains 10 blue marbles, while bag 2 contains 15 blue marbles.

Here we have;

Bag 1 contains 10 blue marbles

Bag 2 contains 15 blue marbles

Chosen a bag at random and throw 5 red marbles in it.

[tex]Required Probability = P(\frac{Bag 1}{2 red and 3 blue marbles})[/tex]

= [tex]\frac{P(bag 1)\cap(2 Red \ and \ 3 blue)}{P(2 \ red \ and \ 3 \ blue \ marbles)}[/tex]

= [tex]\frac{\frac{1}{2}\times ^6C_2\times^{10}C_3}{\frac{1}{2}\times^6C_2\times^{10}C_3+\frac{1}{2}\times^6C_2\times^{15}C_3}[/tex]

= 0.2087

Therefore, the probability that has been chosen Bag 1 is 0.2087.

To learn more about the probability visit:

https://brainly.com/question/11234923.

#SPJ4

Final answer:

To find the probability of choosing Bag 1 given there are 2 red marbles among the 5 chosen marbles, we can use Bayes' theorem to calculate the probability.

Explanation:

To solve this problem, we can use Bayes' theorem to find the probability that Bag 1 was chosen given there are exactly 2 red marbles among the 5 chosen marbles. Let's denote Bag 1 as event A and Bag 2 as event B.

The probability of choosing Bag 1 is 1/2, since we picked one of the bags at random.The probability of choosing 6 red marbles from Bag 1 is (10+6) choose 6 / (10+15+6) choose 6.The probability of choosing 2 red marbles and 3 non-red marbles from Bag 1 is (10 choose 2) * (21 choose 3) / (31 choose 5).Putting all the probabilities together, we can calculate the probability of choosing Bag 1 given that there are exactly 2 red marbles among the 5 chosen marbles.

The answer to the question is the probability of choosing Bag 1 given there are exactly 2 red marbles among the 5 chosen marbles.

Find the average value of the function over the given interval and all values of x in the interval for which the function equals its average value. (Round your answer to three decimal places.) f(x) = 4x3 − 3x2, [−1, 3]

Answers

The average value of [tex]\(f(x)\) over \([-1, 3]\)[/tex] is 13. The function equals its average value at certain [tex]\(x\)[/tex] values.

To find the average value of the function [tex]\( f(x) = 4x^3 - 3x^2 \)[/tex] over the interval [tex]\([-1, 3]\)[/tex], we'll first calculate the definite integral of the function over that interval and then divide it by the length of the interval.

The formula for the average value of a function [tex]\( f(x) \)[/tex] over an interval [tex]\([a, b]\)[/tex] is given by:

[tex]\[ \text{Average value} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \][/tex]

For the function [tex]\( f(x) = 4x^3 - 3x^2 \)[/tex] over the interval [tex]\([-1, 3]\)[/tex], we have:

[tex]\[ \text{Average value} = \frac{1}{3-(-1)} \int_{-1}^{3} (4x^3 - 3x^2) \, dx \][/tex]

First, let's find the integral:

[tex]\[ \int (4x^3 - 3x^2) \, dx = \frac{4}{4}x^4 - \frac{3}{3}x^3 + C \]\[ = x^4 - x^3 + C \][/tex]

Now, we'll evaluate this integral from -1 to 3:

[tex]\[ \left[ x^4 - x^3 \right]_{-1}^{3} = (3^4 - 3^3) - ((-1)^4 - (-1)^3) \]\[ = (81 - 27) - (1 - (-1)) \]\[ = 54 - 2 \]\[ = 52 \][/tex]

So, the definite integral is 52.

Now, we'll find the average value:

[tex]\[ \text{Average value} = \frac{1}{3-(-1)} \times 52 \]\[ = \frac{52}{4} \]\[ = 13 \][/tex]

The average value of the function [tex]\( f(x) = 4x^3 - 3x^2 \)[/tex] over the interval [tex]\([-1, 3]\) is 13.[/tex]

To find the values of [tex]\( x \)[/tex] in the interval for which the function equals its average value, we set [tex]\( f(x) \)[/tex] equal to 13 and solve for [tex]\( x \):[/tex]

[tex]\[ 4x^3 - 3x^2 = 13 \][/tex]

This equation can be solved numerically. By using methods like graphing, Newton's method, or a numerical solver, we can find the roots of this equation within the interval [tex]\([-1, 3]\).[/tex] These roots will be the [tex]\( x \)[/tex] values where the function equals its average value.

The average value of [tex]\(f(x) = 4x^3 - 3x^2\)[/tex]over [tex]\([-1, 3]\) is 13.[/tex]

The values of x that make [tex]\(f(x) = 13\)[/tex] are approximately -0.771, 1.979, and 2.792.

To find the average value of the function [tex]\(f(x) = 4x^3 - 3x^2\)[/tex]over the interval [-1, 3], we can use the formula for the average value of a function over an interval [a, b] :

[tex]\[ A = \frac{1}{b - a} \int_{a}^{b} f(x) dx. \][/tex]

Determine the integral of f(x) :

  To find the integral of f(x), we first compute the antiderivative of[tex]\(4x^3 - 3x^2\):[/tex]

  [tex]\[ \int (4x^3 - 3x^2) dx = x^4 - x^3. \][/tex]

Evaluate the integral over [tex]\([-1, 3]\):[/tex]

  Now, let's find [tex]\(\int_{-1}^{3} (4x^3 - 3x^2) dx\):[/tex]

[tex]\[ \int_{-1}^{3} (4x^3 - 3x^2) dx = (x^4 - x^3) \Big|_{-1}^{3}. \][/tex]

  Evaluate the antiderivative at 3 and -1 :

  - When [tex]\(x = 3\), \(3^4 - 3^3 = 81 - 27 = 54\),[/tex]

  - When [tex]\(x = -1\), \((-1)^4 - (-1)^3 = 1 + 1 = 2\).[/tex]

  Thus, [tex]\[ \int_{-1}^{3} (4x^3 - 3x^2) dx = 54 - 2 = 52. \][/tex]

Find the average value over [-1, 3]:

  Using the result from step 2, the average value over [tex]\([-1, 3]\)[/tex]  is:

 [tex]\[ A = \frac{1}{3 - (-1)} \cdot 52 = \frac{1}{4} \cdot 52 = 13. \][/tex]

Therefore, the average value of [tex]\(f(x) = 4x^3 - 3x^2\)[/tex] over the interval [tex]\([-1, 3]\) is \(13\).[/tex]

Now, let's find the values of x in [-1, 3] for which f(x) = 13):

[tex]\[ 4x^3 - 3x^2 = 13. \][/tex]

Rearrange the equation:

[tex]\[ 4x^3 - 3x^2 - 13 = 0.[/tex]

This cubic equation is more complex to solve algebraically. The approximate solutions can be obtained numerically, using a graphing calculator, computational software, or by iterative methods.

Using an approximation method, we get the following solutions (rounded to three decimal places):

1. [tex]\( x \approx -0.771 \),[/tex]

2. [tex]\( x \approx 1.979 \),[/tex]

3. [tex]\( x \approx 2.792 .[/tex]

These are the values of x in the interval [-1, 3] for which f(x) = 13).

Question :

Find the average value of the function over the given interval and all values of x in the interval for which the function equals its average value. (Round your answer to three decimal places.) f(x) = 4x3 − 3x2, [−1, 3]

A study was done to determine the stress levels that students have while taking exams. The stress level was found to be normally distributed with a mean stress level of 8.2 and a standard deviation of 1.34. What is the probability that at your next exam, you will have a stress level between 9 and 10?

Answers

Answer: 0.1841

Step-by-step explanation:

Given: Mean : [tex]\mu=8.2[/tex]

Standard deviation : [tex]\sigma = 1.34[/tex]

The formula to calculate z-score is given by :_

[tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x= 9, we have

[tex]z=\dfrac{9-8.2}{1.34}\approx0.60[/tex]

For x= 10, we have

[tex]z=\dfrac{10-8.2}{1.34}\approx1.34[/tex]

The P-value = [tex]P(0.6<z<1.34)=P(z<1.34)-P(z<0.6)[/tex]

[tex]=0.9098773-0.7257469=0.1841304\approx0.1841[/tex]

Hence, the probability that at your next exam, you will have a stress level between 9 and 10 = 0.1841

If your navigator tells you your position is 0.7 nautical miles from the West Point light, how far is that in feet? And how far is it in meters?

Answers

Answer:

that would be 4253.28 feet

that would be 1296.4 m

Step-by-step explanation:

I think that's the answer and I hope it helps :)

Evaluate the expression:

v ⋅ w

Given the vectors:

r = <8, 8, -6>; v = <3, -8, -3>; w = <-4, -2, -6>

Answers

Answer:

v.w = 22

Step-by-step explanation:

We are given

r = <8, 8, -6>; v = <3, -8, -3>; w = <-4, -2, -6>

and we need to evaluate v.w

Using the formula:  v.w = vxwx+vywy+vzwz

Putting values and solving:

v.w = 3(-4)+(-8)(-2)+(-3)(-6)

v.w = -12+16+18

v.w = 22

So, v.w = 22

K is the midpoint, in the line JL, equally. The space between segment JK is 2k-5. The space between segment KL is 3x-8. What is JL

Answers

Answer:

JL=2 units

Step-by-step explanation:

we know that

If k is the midpoint in the line JL

then

JL=JK+KL

JK=KL

substitute the given values

2x-5=3x-8

Solve for x

3x-2x=-5+8

x=3

so

JK=2x-5=2(3)-5=1 units

KL=3x-8=3(3)-8=1 units

therefore

JL=JK+KL=1+1=2 units

Solve Using Dirac Deltla/discontinuous forcing

Consider the following scenario. A salt tank that initially contains 50 gallons of pure water. A brine solution containing 1/5 lb/gal of salt flows in to the tank at a rate of 5 gal/min. Brine flows out of the tank at the same rate. At time t = 15 minutes the mechanism regulating salt flow in to the tank breaks and 20 pounds of salt is dumped instantaneously in to the tank. Although water continues to flow in to the tank at the original 5 gal/min, there is no salt in the water.

1. Write an IVP describing the amount of salt in the tank at time t.

2. Solve the IVP from Problem 1.

3. Plot the solution found in Problem 2 and explain the results.

Answers

Let [tex]A(t)[/tex] denote the amount of salt in the tank at time [tex]t[/tex]. We're told that [tex]A(0)=0[/tex].

For [tex]0\le t\le15[/tex], the salt flows in at a rate of (1/5 lb/gal)*(5 gal/min) = 1 lb/min. When the regulating mechanism fails, 20 lbs of salt is dumped and no more salt flows for [tex]t>15[/tex]. We can capture this in terms of the unit step function [tex]u(t)[/tex] and Dirac delta function [tex]\delta(t)[/tex] as

[tex]\text{rate in}=u(t)-u(t-15)+20\delta(t-15)[/tex]

(in lb/min)

The salt from the mixed solution flows out at a rate of

[tex]\text{rate out}=\left(\dfrac{A(t)\,\mathrm{lb}}{50+(5-5)t\,\mathrm{gal}}\right)\left(5\dfrac{\rm gal}{\rm min}\right)=\dfrac A{10}\dfrac{\rm lb}{\rm min}[/tex]

Then the amount of salt in the tank at time [tex]t[/tex] changes according to

[tex]\dfrac{\mathrm dA}{\mathrm dt}=u(t)-u(t-15)+20\delta(t-15)-\dfrac A{10}[/tex]

Let [tex]\hat A(s)[/tex] denote the Laplace transform of [tex]A(t)[/tex], [tex]\hat A(s)=\mathcal L_s\{A(t)\}[/tex]. Take the transform of both sides to get

[tex]s\hat A(s)-A(0)=\dfrac1s-\dfrac{e^{-15s}}s+20e^{-15s}-\dfrac1{10}\hat A(s)[/tex]

Solve for [tex]\hat A(s)[/tex], then take the inverse of both sides.

[tex]\hat A(s)=\dfrac{\frac{10-10e^{-15s}}{s^2}+\frac{200e^{-15s}}s}{10s+1}[/tex]

[tex]\implies\boxed{A(t)=10-10e^{-t/10}+\left(30e^{3/2-t/10}-10\right)u(t-15)}[/tex]

A ramp is 10 feet in length. The ramp is lifted 4 feet off the ground to the truck door. What is the distance across the ground from the bottom of the ramp to the ground underneath the truck door? Approximate to the nearest hundredth. ≈ 3.46 feet ≈ 5.29 feet ≈ 9.17 feet ≈ 10.77 feet

Answers

Answer:

The distance is 9.17 feet.

Step-by-step explanation:

The ramp, vertical distance it is lifted, and the ground form a right triangle, whose hypotenuse the ramp, and whose base and perpendicular are the ground and the lifted distance respectively.

Thus we have a triangle whose hypotenuse [tex]H[/tex] is 10 feet, the perpendicular [tex]P[/tex] is 4 feet, and a base [tex]B[/tex] feet.

The Pythagorean theorem gives:

[tex]H^2=P^2+B^2[/tex]

We substitute the values [tex]H=10[/tex], [tex]P =4[/tex] and solve for B:

[tex]B=\sqrt{H^2-P^2} =\sqrt{10^2-4^2} =9.17.[/tex]

Thus the distance is 9.17 feet.

Answer:

the Answer is ≈ 9.17 feet

Step-by-step explanation:

it is correct on edge  2020

15 Points! Answer asap, please! Which is a correct name for the angle shown? (Image below)

Answers

Answer:

<CBA

Step-by-step explanation:

The angle name could be either

<ABC or <CBA

The vertex must be in the middle

Answer:

Yes, the answer is CBA

Step-by-step explanation:

Find the coefficient of x^25 in (1 + x + x^8)^10

Answers

The only way to get a term of degree 25 is by taking 3 copies of [tex]x^8[/tex], 1 copy of [tex]x[/tex], and 6 copies of 1. Then the coefficient of [tex]x^{25}[/tex] is

[tex]\dbinom{10}3\dbinom71\dbinom66=\dbinom{10}{3,1,6}=\dfrac{10!}{3!6!}=\boxed{840}[/tex]

7. Eleven students go to lunch. There are two circular tables in the dining hall, one can seat 7 people, the other can hold 4. In how many ways can they be seated

Answers

Answer:

239,580 ways of seating

Step-by-step explanation:

11 students will be divided into 2 groups. One group of 7 people and one group of 4 people. So first we need to find the number of ways of dividing 11 students into these 2 groups.

First group is of 7 people. We have to select 7 people out of 11. The order of selection does not matter so this is a combination problem. Selecting 7 people from 11 can be expressed as 11C7.

Formula for combination is:

[tex]^{n}C_{r}=\frac{n!}{r!(n-r)!}[/tex]

For the given case this would be:

[tex]^{11}C_{7}=\frac{11!}{7! \times 4!}=330[/tex]

So, there are 330 ways of selecting a group of 7 from 11 students. When these 7 students are selected the remaining 4 will go to the other group. So, we can say there are 330 ways to divide the 11 students in groups of 7 and 4. Note that if you start with group of 4 students, the answer will still the same because 11C4 is also equal to 330.

Next we have to arrange 7 students on a round table. The number of possible arrangements would be = (7 - 1)! = 6! = 720

Similarly, to arrange 4 people on a round table, the number of possible arrangements would be = (4 - 1)! = 3! = 6

Since, for each selection of the 330 groups, there are 720 + 6 possible seating arrangements, so the total number of possible seating arrangements would be:

330 ( 720 + 6) = 239,580 ways

Thus, there are 239,580 ways of seating 11 students.

Final answer:

There are 86400 ways the students can be seated in the dining hall.

Explanation:

There are two circular tables in the dining hall, one can seat 7 people and the other can seat 4 people. The students need to be seated in a way that they can be accommodated on these two tables.

The number of ways the students can be seated is:

1) Assign the even-numbered students to the table that can seat 7 people. There are 6 even-numbered students.

2) Assign the odd-numbered students to the table that can seat 4 people. There are 5 odd-numbered students.

3) Calculate the number of ways these students can be arranged on their respective tables. For the table with 7 seats, there are 6 students to be seated, so the number of ways is 6!. For the table with 4 seats, there are 5 students to be seated, so the number of ways is 5!.

4) Multiply the number of ways for each table to get the total number of ways to seat the students: 6! * 5! = 720 * 120 = 86400.

Therefore, there are 86400 ways the students can be seated.

Learn more about Seating arrangement here:

https://brainly.com/question/4271236

#SPJ3

The side of a triangle with 3 equal sides is 8 inches shorter than the side of a square. The perimeter of the square is 46 inches more than the perimeter of the triangle. Find the length of a side of the square.

Answers

Answer:

The length of a side of the square is 22 inches.

Step-by-step explanation:

Let each side of square be = s

Let each side of triangle be = s - 8

Perimeter of square, p₁ = 4s

Perimeter of triangle = p₂ = 3s

                                          = 3(s-8)

                                          = 3s - 24

Therefore, according to the question

p₁ - p₂ = 46

4s - (3s - 24) = 46

4s - 3s + 24 = 46

s = 46 - 24

s = 22

The length of a side of the square is 22 inches.

(b) dy/dx = (x-y + 1)^2

Answers

Answer:

The required answer is [tex]x+C=\frac{1}{2}\ln|\frac{2+x-y}{y-x}|[/tex].

Step-by-step explanation:

The given differential equation is

[tex]\frac{dy}{dx}=(x-y+1)^2[/tex]

Substitute u=x-y+1 in the above equation.

[tex]\frac{du}{dx}=1-\frac{dy}{dx}[/tex]

[tex]\frac{dy}{dx}=1-\frac{du}{dx}[/tex]

[tex]1-\frac{du}{dx}=u^2[/tex]

[tex]1-u^2=\frac{du}{dx}[/tex]

Using variable separable method, we get

[tex]dx=\frac{du}{1-u^2}[/tex]

Integrate both the sides.

[tex]\int dx=\int \frac{du}{1-u^2}[/tex]

[tex]x+C=\frac{1}{2}\ln|\frac{1+u}{1-u}|[/tex]      [tex][\because \int \frac{dx}{a^2-x^2}=\frac{1}{2a}\n|\frac{a+x}{a-x}|+C][/tex]

Substitute u=x-y+1 in the above equation.

[tex]x+C=\frac{1}{2}\ln|\frac{1+x-y+1}{1-(x-y+1)}|[/tex]

[tex]x+C=\frac{1}{2}\ln|\frac{2+x-y}{y-x}|[/tex]

Therefore the required answer is [tex]x+C=\frac{1}{2}\ln|\frac{2+x-y}{y-x}|[/tex].

How many ways can a committee of five be chosen from 120 employees to interview prospective applicants.

Answers

Answer:

190578024 ways.

Step-by-step explanation:

We are asked to find the number of ways in which a committee of 5 be chosen from 120 employees to interview prospective applicants.

We will use combinations to solve our given problem.

[tex]_{r}^{n}\textrm{C}=\frac{n!}{(n-r)!r!}[/tex], where,

n = Total number of items,

r = Number of items being chosen at a time.

Upon substituting our given values in above formula, we will get:

[tex]_{5}^{120}\textrm{C}=\frac{120!}{(120-5)!5!}[/tex]

[tex]_{5}^{120}\textrm{C}=\frac{120!}{115!*5!}[/tex]

[tex]_{5}^{120}\textrm{C}=\frac{120*119*118*117*116*115!}{115!*5*4*3*2*1}[/tex]

[tex]_{5}^{120}\textrm{C}=\frac{120*119*118*117*116}{5*4*3*2*1}[/tex]

[tex]_{5}^{120}\textrm{C}=\frac{120*119*118*117*116}{120*1}[/tex]

[tex]_{5}^{120}\textrm{C}=\frac{119*118*117*116}{1}[/tex]

[tex]_{5}^{120}\textrm{C}=\frac{190578024}{1}[/tex]

Therefore, the committee of five can be chosen from 120 employees in 190578024 ways.

You start with 5000.00. Simple interest and yields .37% APR How much interest earned in one year?

Answers

Answer:

$1850.

Step-by-step explanation:

We are asked to find amount of interest earned in one year on an amount of $5000.

We will use simple interest formula to solve our given problem.

[tex]I=Prt[/tex], where,

I = Amount of interest earned,

r = Annual interest rate in decimal form.

t = Time in years.

Let us convert our given interest rate in decimal form.

[tex]37\%=\frac{37}{100}=0.37[/tex]

Upon substituting our given value in simple interest formula, we will get:

[tex]I=\$5000\times 0.37\times 1[/tex]

[tex]I=\$5000\times 0.37[/tex]

[tex]I=\$1850[/tex]

Therefore, an amount of $1850 is earned as interest in one year.

Use the Divergence Theorem to compute the net outward flux of the following field across the given surface S. F = < x^2, y^2, z^2 > ; S is the sphere {(x, y, z) : x^2 + y^2 + z^2 = 25}

Answers

[tex]\vec F(x,y,z)=\langle x^2,y^2,z^2\rangle\implies\mathrm{div}\vec F(x,y,z)=2x+2y+2z[/tex]

By the divergence theorem,

[tex]\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\iiint_R\mathrm{div}\vec F(x,y,z)\,\mathrm dx\,\mathrm dy\,\mathrm dz[/tex]

where [tex]R[/tex] the region with [tex]S[/tex] as its boundary. Convert to spherical coordinates, taking

[tex]\begin{cases}x=\rho\cos\theta\sin\varphi\\y=\rho\sin\theta\sin\varphi\\z=\rho\cos\varphi\end{cases}\implies\mathrm dx\,\mathrm dy\,\mathrm dz=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi[/tex]

Then the volume integral is

[tex]\displaystyle\iiint_R\mathrm{div}\vec F(x,y,z)\,\mathrm dx\,\mathrm dy\,\mathrm dz[/tex]

[tex]=2\displaystyle\int_0^{2\pi}\int_0^\pi\int_0^5(x+y+z)\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta[/tex]

[tex]=2\displaystyle\int_0^{2\pi}\int_0^\pi\int_0^5(\cos\theta\sin\varphi+\sin\theta\sin\varphi+\cos\varphi)\rho^3\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta=\boxed{0}[/tex]

In this exercise we have to use the divergent theorem to calculate the flow of the given equation, so we will find that:

[tex]\int\limits \int\limits \int\limits_R {divF(x,y,z)} \, dx dy dz= 0[/tex]

So from the given equation, we will find that:

[tex]\int\limits \int\limits_S {F} \, ds = \int\limits \int\limits \int\limits_R {div F(x, y, z) } \, dx dy dz[/tex]

where [tex]R[/tex] the region with [tex]S[/tex] as its boundary. Convert to spherical coordinates, taking:

[tex]\left[\begin{array}{c}x= \rho cos(\theta) sin(\phi) \\y= \rho sin(\theta) sin(\phi) \\z= \rho cos (\phi) \end{array}\right[/tex]

Then the volume integral is:

[tex]\int\limits \int\limits \int\limits_R {divF(x,y,z)} \, dxdydz\\= 2 \int\limits^{2\pi}_0 \int\limits^{\pi}_0 \int\limits^{5}_0 {(x+y+z)\rho ^2 sin(\phi) d(\rho) d(\phi) d(\theta)= 0[/tex]

See more about Divergence Theorem at brainly.com/question/6960786

The probability that a grader will make a marking error on any particular question of a multiple-choice exam is 0.10. If there are ten questions and questions are marked independently, what is the probability that no errors are made?The probability that a grader will make a marking error on any particular question of a multiple-choice exam is 0.10. If there are ten questions and questions are marked independently, what is the probability that no errors are made?

Answers

Answer:

  about 34.9%

Step-by-step explanation:

The probability of not making a marking error is 0.9. The probability of doing that 10 times independently is 0.9^10 ≈ 0.34868 ≈ 34.9%.

Find an implicit solution to the ODE. ("Homogeneous") y' = y^2x/y^3 +x^3 + y/x

Answers

I'm going to guess that you meant to include parentheses somewhere, so that the ODE is supposed to be

[tex]y'=\dfrac{y^2x}{y^3+x^3}+\dfrac yx[/tex]

Then substitute [tex]y(x)=xv(x)[/tex] so that [tex]y'(x)=xv'(x)+v(x)[/tex]. Then

[tex]xv'+v=\dfrac{x^3v^2}{x^3v^3+x^3}+v[/tex]

[tex]xv'=\dfrac{v^2}{v^3+1}[/tex]

which is separable as

[tex]\dfrac{v^3+1}{v^2}\,\mathrm dv=\dfrac{\mathrm dx}x[/tex]

Integrate both sides: on the left,

[tex]\displaystyle\int\frac{v^3+1}{v^2}\,\mathrm dv=\int\left(v+\frac1{v^2}\right)\,\mathrm dv=\dfrac12v^2-\dfrac1v[/tex]

The other side is trivial. We end up with

[tex]\dfrac12v^2-\dfrac1v=\ln|x|+C[/tex]

Solve in terms of [tex]y(x)[/tex]:

[tex]\boxed{\dfrac{y^2}{2x^2}-\dfrac xy=\ln|x|+C}[/tex]

A baker pours 108 oz of batter into 36 muffin tins, pouring the same amount in each. How much batter is in each tin?

Answers

Answer:  Each muffin tin contains 3 oz of batter.

Step-by-step explanation:  Given that a baker pours  108 oz of batter into 36 muffin tins such that each tin has same amount of batter.

We are to calculate the quantity of batter in each tin.

We will be using the UNITARY method to solve the given problem.

Quantity of batter in 36 muffin tins = 108 oz.

Therefore, the quantity of batter in 1 muffin tin is given by

[tex]Q_t=\dfrac{108}{36}=3~\textup{oz}.[/tex]

Thus, each muffin tin contains 3 oz of batter.

By dividing 108 oz of batter by 36 muffin tins, you find that each tin contains 3 oz of batter. This simple division problem helps distribute the batter evenly. Each tin thus gets exactly 3 oz.

To find out how much batter is in each muffin tin, you need to divide the total amount of batter by the number of muffin tins.

Here are the steps:

Take the total amount of batter, which is 108 oz.Divide this amount by the number of muffin tins, which is 36.Perform the division:108 ÷ 36 = 3 oz per muffin tin.

So, there are 3 oz of batter in each muffin tin.

find a nonzero vector x perpendicular to the vector v= [-2,-8,-7,2] u= [6,7,-2,8] x= [answer,answer,answer,answer]

Answers

Non zero vector x perpendicular to u and v : x = [tex][ \frac{-39}{14} x_2 - \frac{26}{14} x_3 , x_2 , x_3, \frac{17}{14}x_2 + \frac{23}{14} x_3 ][/tex]

Given, v= [-2,-8,-7,2] u= [6,7,-2,8]

Let the vector be x = [[tex]x_1 , x_2 , x_3, x_4[/tex]]

Now x is non xero vector perpendicular to vector 'v' and 'u' .

So,

x . v = 0

[tex]-2x_1 - 8x_2 - 7x_3 + 2x_4 = 0[/tex] .........1

x . u = 0

[tex]6x_1 + 7x_2 -2x_3 + 8x_4 = 0[/tex] .........2

Solve 1 and 2 to eliminate [tex]x_4[/tex] .

Multiply 1 with 4 to make the coefficients of [tex]x_4[/tex] same .

[tex]-8x_1 - 32x_2 - 28x_3 + 8x_4 = 0[/tex]

[tex]6x_1 + 7x_2 -2x_3 + 8x_4 = 0[/tex]

Subtract two equations,

[tex]-14x_1 -39x_2 -26x_3 = 0[/tex]

[tex]-14x_1 = 39x_2 + 26x_3[/tex]

[tex]x_1 = \frac{-39}{14} x_2 - \frac{26}{14} x_3[/tex]

From equation 1,

[tex]x_4 = x_1 + 4x_2 + \frac{7}{2} x_3[/tex]

[tex]x_4 = \frac{-39}{14} x_2 - \frac{26}{14} x_3+ 4x_2 + \frac{7}{2} x_3\\\\x_4 = \frac{17}{14}x_2 + \frac{23}{14} x_3[/tex]

Thus x = [tex][ \frac{-39}{14} x_2 - \frac{26}{14} x_3 , x_2 , x_3, \frac{17}{14}x_2 + \frac{23}{14} x_3 ][/tex]

[tex]x_2 = [-39/14 , 1 , 0 , 17/14] + x_3[-26/14, 0 , 1 , 23/14 ][/tex]

[tex]x_1 , x_3[/tex] are arbitrary .

For every value of [tex]x_2 , x_3[/tex] vector x is obtained.

Know more about non zero vector,

https://brainly.com/question/30195939

#SPJ4

Final answer:

To find a vector x that is perpendicular to vectors v and u, we can use the cross product.

Explanation:

To find a vector x that is perpendicular to vectors v and u, we can use the cross product. The cross product of two vectors is a vector that is perpendicular to both of them. To find the cross-product, we can use the formula:

x = (v2u3 - v3u2, v3u1 - v1u3, v1u2 - v2u1)

Plugging in the values, we get:

x = (-8(-2) - (-7)(7), (-7)(6) - (-2)(-2), (-2)(8) - (-8)(6)) = (1, 52, -32)

Learn more about cross-product here:

https://brainly.com/question/29097076

#SPJ11

find the value of solid figure not including hole cutout. Round to two decimal places. Cube figure is 12 feet long with 4 ft cutout. THANK YOU!!

Answers

Answer:

1577.20 ft³

Step-by-step explanation:

Cube of length = 12 ft = a

Hole diameter which is cutout = 4 ft = d

Hole radius which is cutout = 4/2 =2 ft = r

Volume of the cube = a³

⇒Volume of the cube = a×a×a

⇒Volume of the cube = 12×12×12

⇒Volume of the cube = 1728 ft³

The hole cut out will be in the shape of a cylinder

Volume of cylinder = πr²h

⇒Volume of cylinder = π×2²×12

⇒Volume of cylinder = 150.79 ft³

Now volume of the solid figure with hole cut out is

Volume of the cube - Volume of cylinder

=1728 - 150.79

=1577.20 ft³

∴ Volume of solid figure not including hole cutout is 1577.20 ft³

5. Convert 11010 to base ten. A) 22 B) 26 C) 11 D) 9

Answers

Answer:

26

Step-by-step explanation:

Converting 11010 to base 10.

1*24=16

1*23=8

0*22=0

1*21=2

0*20=0

Adding all to get Ans=26_10

Step2 converting 26_10 to 10

The equation calculation formula for 26_10 number to 10 is like this below.

10|26  

10|2|6

10|2|2

Ans:26_10

Assuming the given number is in base 2, we have

[tex]11010_2=2^4+2^3+2^1=16+8+2=26_{10}[/tex]

12. True/False and explain your answers. a) If A is invertible then det(A)det(A-1) = 1 b) Any matrix with a row of all zeros has a determinant of 1. c) If A is a skew symmetric matrix, AT = -A, and A has size n x n then A must be singular if n is odd.

Answers

Answer with explanation:

(A)

It is given that, A is invertible, That is inverse of matrix exist.

    [tex]|A|=|A^{-1}|\neq 0[/tex]

That is,  [tex]|A|=|A^{-1}|=1[/tex], is incorrect Statement.

False

(B)

If a Matrix has , either any row or column has all entry equal to Zero, then value of Determinant is equal to 0.

Any matrix with a row of all zeros has a determinant of 1 ,is incorrect Statement.

False

(C)

The Meaning of Singular matrix is that , then Determinant of Singular Matrix is equal to Zero.

For, a n×n , matrix, whether n is Odd or even

  [tex]A^{T}= -A\\\\|A^{T}|=|-A|=(-1)^n|A|[/tex]

So, the statement, If A is a skew symmetric matrix,  [tex]A^{T}= -A[/tex],and A has size n x n then A must be singular if n is odd ,is incorrect Statement.

False

Other Questions
The weight of a product is measured in pounds. A sample of 50 units is taken from a recent production. The sample yielded X = 75 lb, and we know that 2 = 100 lb. Calculate a 99 percent confidence interval for . GIVING 30 POINTS AND BRAINLIEST IF YOU ANSWER THIS CORRECTLY! HURRY PLEASE Read the excerpt from Act II, scene v of Romeo and Juliet.Friar Laurence: These violent delights have violent ends,And in their triumph die, like fire and powder,Which, as they kiss consume: the sweetest honeyIs loathsome in his own deliciousnessAnd in the taste confounds the appetite:Therefore love moderately; long love doth so;Too swift arrives as tardy as too slow.What do the oxymoron and paradox in this excerpt illustrate about love?A. Only love has the ability to overcome obstacles.B. Nothing good ever comes from truly loving another.C. Loving with restraint is the key to long-lasting love.D. True love causes one to lose the ability to reason. When is a rhombus a rectangle?. When its sides are parallelB. When its angles are convex anglesC. When its angles are right anglesD. When its sides are congruent 5/7 = y/6Solve the following proportion for yRound your answer to the nearest tenth What is the measure of angle x, in degrees A ruler's legitimacy depends mainly on which of these factors? A. the ruler's personal wealth B. the ruler's political ambition C. people's fear of ruler's power D. people's acceptance of ruler's authority Which of the following is NOT true for a spherical concave mirror? a. it cannot produce virtual imagesb. its focal length is half its radiusc. its focal length is positived. it can produce upright images Variable Costing Marsich Company has the following information for February: Sales $490,000 Variable cost of goods sold 220,500 Fixed manufacturing costs 83,300 Variable selling and administrative expenses 53,900 Fixed selling and administrative expenses 34,300 Determine the following for Marsich Company for the month of February: a. Manufacturing margin $ b. Contribution margin $ c. Operating income Find the area of the shaded region if the dimensions of the unshaded region are 20ft x 35ft. Part C Gallium crystallizes in a primitive cubic unit cell. The length of an edge of this cube is 362 pm. What is the radius of a gallium atom? Express your answer numerically in picometers. View Available Hint(s) radius = nothing pm p m Submit How does CRA-cAMP positively regulate the lac operon? What are the five elements of Taoism? Where do the bush blacks of the Guianas live?mountainscoastinteriorplateaus Describe how different types of solutes dissolve in water What do cellular respiration and fermentation have in common? They both occur in the mitochondria, they both Harvest energy from sugars, they both require oxygen to occur, they both end up with pyruvic acid. Seth is a competitive body builder. He says he has to have his 12-oz package of protein powder to "feed his muscles" every day. On the basis of this information, what can you conclude about his price elasticity of demand for protein powder?(A) It is perfectly inelastic(B) It is perfectly elastic(C) The price elasticity coefficient is 0(D) it is elastic A B-tree can be ____ in three ways: inorder, preorder, and postorder.A.copiedB.reversedC.traversed What is the value of y in this simplified expression?k + m 10 A positive charge (q = +6.0 C) starts from point A in a constant electric field and accelerates to point B. The work done by the electric force is WAB = +2.2 10-3 J. Determine the potential difference VB - VA between the two points. Be sure to include the proper algebraic sign. How does malcolm test macduff's trustworthiness and loyalty